

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Editor

Vinay Dwivedi

**CIRCULAR BIOECONOMY AND SMART
AGRICULTURE FOR SUSTAINABLE FOOD
SYSTEMS- 2026**

ISBN: 978-625-93129-0-3

DOI: 10.5281/zenodo.18305582

Edited By
Vinay Dwivedi

January / 2026
İstanbul, Türkiye

Copyright © Haliç Yayınevi

Date: 19.01.2026

Halic Publishing House
İstanbul, Türkiye
www.halicyayinevi.com

All rights reserved no part of this book may be reproduced in any form, by photocopying or by any electronic or mechanical means, including information storage or retrieval systems, without permission in writing from both the copyright owner and the publisher of this book.

© Halic Publishers 2026
The Member of International Association of Publishers

The digital PDF version of this title is available Open Access and distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 license (<http://creativecommons.org/licenses/by-nc/4.0/>) which permits adaptation, alteration, reproduction and distribution for noncommercial use, without further permission provided the original work is attributed. The derivative works do not need to be licensed on the same terms.

adopted by Esma AKSAKAL

ISBN: 978-625-93129-0-3

Copyright © 2025 by Haliç Academic Publishers All rights reserved

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

EDITOR

Vinay Dwivedi

AUTHORS

Prof. Dr. Umar, I. S.

Dr. Vikram CHANDU V.

Arie Febrianto MULYADI

Muhammad, I. M.

Abhinayan M.B.

Meruva Nageswara S.K.P.

Sri Vishnu VARDHAN P.

Gauri VINOD

Arya Shyam NAMBIAR

Masudul Islam KHAN

TABLE OF CONTENTS

PREFACE.....	i
CHAPTER 1	
CIRCULAR BIOECONOMY IN AGRO-INDUSTRY: INTEGRATING GREEN TECHNOLOGIES FOR THE TRANSFORMATION OF AGRICULTURAL WASTE INTO HIGH-VALUE BIO-BASED PRODUCTS	
Arie Febrianto MULYADI.....	1
CHAPTER 2	
HARNESSING MOBILE APPLICATIONS TO DEEPEN FARMER PARTICIPATION IN EXTENSION SERVICES	
Prof. Dr. Umar, I. S.	
Muhammad, I. M.....	31
CHAPTER 3	
ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING APPLICATIONS IN VETERINARY DIAGNOSTICS AND DISEASE PREDICTION	
Dr. Vikram CHANDU V.	
Abhinayan M.B.	
Meruva Nageswara S.K.P.	
Sri Vishnu VARDHAN P.	
Gauri VINOD	
Arya Shyam NAMBIAR	50

CHAPTER 4

CLIMATE CHANGE AND THE GLOBAL FOOD SYSTEM: IMPACTS, VULNERABILITIES AND PATHWAYS TO RESILIENCE

Masudul Islam KHAN 88

PREFACE

This book brings together interdisciplinary perspectives that address the evolving challenges of agriculture, food systems, and sustainability in a rapidly changing global context. The chapters collectively highlight how technological innovation, data-driven approaches, and sustainable practices can strengthen food security, enhance productivity, and build resilience across agro-based systems.

The chapter Circular Bioeconomy in Agro-Industry: Integrating Green Technologies for the Transformation of Agricultural Waste into High-Value Bio-Based Products explores sustainable pathways for converting agricultural residues into valuable resources, reinforcing circular economy principles. Complementing this, Harnessing Mobile Applications to Deepen Farmer Participation in Extension Services emphasizes the role of digital tools in improving knowledge transfer, farmer engagement, and inclusive agricultural development.

Advances in intelligent technologies are further examined in Artificial Intelligence and Machine Learning Applications in Veterinary Diagnostics and Disease Prediction, which demonstrates how data analytics can improve animal health management and early disease detection. These innovations highlight the growing importance of precision agriculture and smart livestock systems in modern food production.

The final chapter, Climate Change and the Global Food System: Impacts, Vulnerabilities and Pathways to Resilience, places these technological and operational advances within a broader environmental and socio-economic framework. Together, the chapters provide a comprehensive view of how innovation, sustainability, and resilience can be integrated to support future-ready agricultural and food systems.

Editorial Team
January 19, 2026
Türkiye

CHAPTER 1

**CIRCULAR BIOECONOMY IN AGRO-INDUSTRY:
INTEGRATING GREEN TECHNOLOGIES FOR THE
TRANSFORMATION OF AGRICULTURAL WASTE
INTO HIGH-VALUE BIO-BASED PRODUCTS**

¹Arie Febrianto MULYADI

¹Department of Agricultural Industrial Technology, Faculty of Agricultural Technology, Universitas Brawijaya, Indonesia, arie_febrianto@ub.ac.id, ORCID ID: 0000-0002-7193-7904

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

INTRODUCTION

The global agro-industrial sector is currently facing a double-edged challenge: the imperative to meet the rising demand for food and industrial raw materials, and the urgent need to manage the colossal volume of organic waste generated in the process. For decades, the agro-industry has operated on a linear "take-make-dispose" model, which has led to significant environmental degradation, including greenhouse gas emissions from decomposing waste and the contamination of water bodies (Stegmann et al., 2020). However, the emergence of the circular bioeconomy framework has shifted this paradigm, repositioning agricultural residues not as environmental burdens, but as strategic biological assets. The valorization of these residues into high-value bio-based products is no longer a choice but a necessity for sustainable industrial development (D'Amato et al., 2017).

In the context of tropical and major agricultural producers, residues from staple crops like rice and sugarcane represent a massive untapped reservoir of carbon and energy. Rice (*Oryza sativa*) production, for instance, generates significant amounts of husk and straw. Rice husk, which is rich in silica and lignin, has been extensively studied for its potential in producing high-grade bio-silica and bio-composites, offering a sustainable alternative to synthetic fillers (Lim et al., 2012). Similarly, sugarcane bagasse, the fibrous residue remaining after juice extraction, serves as a primary candidate for second-generation bioethanol production and the synthesis of cellulose-based nanomaterials, contributing to the reduction of fossil fuel dependency (Cardona et al., 2010).

Furthermore, the beverage and plantation industry contributes unique waste streams that are highly concentrated in bioactive compounds. Coffee production generates "cascara" (coffee cherry pulp), which accounts for approximately 40% of the wet weight of the coffee fruit. While often discarded, cascara is exceptionally rich in polyphenols, caffeine, and dietary fibers. Recent studies have demonstrated that the valorization of cascara into functional beverages and nutraceuticals can mitigate the environmental impact of coffee processing while creating new revenue streams for farmers (Rebollo-Hernanz et al., 2019). Similarly, coconut shells, a major by-product in tropical regions, possess high density and high carbon content.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

These characteristics make them an ideal precursor for high-performance activated carbon and bio-oil through slow pyrolysis, providing sustainable solutions for water purification and renewable energy (Abnisa et al., 2013).

The fruit processing industry also presents significant opportunities for the extraction of high-value molecules from peels that are typically treated as landfill waste. Apple peels, for example, contain significantly higher concentrations of antioxidants and flavonoids compared to the fruit flesh, making them a premium source for the development of natural food preservatives and health supplements (Pathak et al., 2017). In a similar vein, dragon fruit (*Hylocereus polyrhizus*) peels are abundant in betacyanins—natural pigments with potent radical scavenging activities. The extraction of these pigments using green technologies not only provides a natural alternative to synthetic dyes but also enhances the economic value of the pitaya supply chain (Jamilah et al., 2011).

Despite the clear potential, the transition to a circular agro-industry requires the integration of "Green Technologies." Conventional extraction and processing methods often rely on toxic solvents and high energy consumption, which can negate the environmental benefits of using bio-based materials. Therefore, the adoption of ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and enzymatic biocatalysis is crucial to ensure that the "value-added" process remains truly sustainable.

This chapter aims to provide a comprehensive analysis of the transformation of agricultural waste into high-value products. By focusing on the integration of circular economy principles and green processing, this work explores the technological pathways for valorizing residues from rice, sugarcane, coffee, coconut, and fruit processing. Ultimately, this discussion seeks to bridge the gap between waste management and industrial innovation, providing a strategic roadmap for a more resilient and sustainable agro-industrial future.

1. AGRICULTURAL WASTE AS A HIDDEN RESOURCE

Defining the Potential of Agro-Industrial Residues

For decades, the agricultural industry has categorized its outputs into primary products and waste.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

However, from a biotechnological perspective, what is termed as "waste" is essentially unrecovered biomass rich in complex polymers and bioactive molecules. Agricultural residues are primarily composed of lignocellulosic materials—cellulose, hemicellulose, and lignin—which form the structural backbone of plants. In the context of a circular bioeconomy, these residues serve as a "hidden" resource because they contain high-density energy and precursor chemicals that can be converted into bioplastics, organic acids, and antioxidants (Sadh et al., 2018).

Chemical Composition and Functional Properties

The valorization potential of agricultural waste is determined by its chemical profile. Lignocellulosic biomass, such as rice straw and sugarcane bagasse, typically contains 30-50% cellulose, which can be hydrolyzed into fermentable sugars. Beyond structural carbohydrates, certain residues are abundant in secondary metabolites. For example, fruit peels and coffee residues contain significant amounts of polyphenols, flavonoids, and essential oils that possess high antioxidant and antimicrobial activities (Varo et al., 2021). Understanding these chemical blueprints is the first step in selecting the appropriate "green technology" for extraction and transformation.

Profiles of Specific Agro-Industrial Waste Streams

Rice and Sugarcane Residues (Bulk Biomass)

Rice husk and straw are among the most abundant agricultural wastes globally. Rice husk is unique due to its high ash content, specifically silica, which can exceed 20% of its dry weight. This makes it an excellent source for producing high-purity nanosilica for industrial applications (Ghorbani et al., 2015). On the other hand, sugarcane bagasse is a powerhouse of cellulose. Its fibrous nature allows for the production of biodegradable packaging and serves as a major feedstock for second-generation biorefineries (Silveira et al., 2015).

Coffee Cascara and Coconut Shells

Coffee "cascara" (the dried skin of coffee cherries) has long been neglected. However, it is a potent source of chlorogenic acid and caffeine.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Research indicates that cascara extract has significant potential in the functional food industry as a natural energizer and antioxidant (Heeger et al., 2017). In contrast, coconut shells represent a high-density carbon source. Due to their low ash and high lignin content, coconut shells are the preferred raw material for high-surface-area activated carbon, which is crucial for modern water filtration and gas adsorption technologies (Yahya et al., 2015).

Fruit Peels: Apple and Dragon Fruit

The peels of fruits like apples and dragon fruit are concentrated "bio-factories." Apple peels are particularly rich in pectin and quercetin, which have high value in the pharmaceutical and food thickening industries (Wiktor et al., 2016). Similarly, dragon fruit (*Hylocereus* spp.) peels contain betacyanins—vibrant natural pigments. These pigments are not only used as natural food colorants but also offer health benefits due to their ability to neutralize free radicals, making them a sustainable alternative to synthetic dyes (Lonare et al., 2014).

2. GREEN TECHNOLOGIES FOR SUSTAINABLE PROCESSING

The Paradigm of Green Extraction

The transition from conventional industrial processing to sustainable agro-industry is anchored in the "Six Principles of Green Extraction." These principles advocate for the use of renewable plant resources, alternative solvents (such as water or bio-solvents), reduced energy consumption, and the elimination of toxic by-products (Chemat et al., 2017). Conventional extraction methods, such as Soxhlet extraction or maceration, often require large volumes of petroleum-derived solvents (e.g., hexane) and long processing times, which can lead to the degradation of thermolabile bioactive compounds. In contrast, green technologies leverage physical phenomena like acoustic cavitation and electromagnetic radiation to enhance mass transfer, thereby increasing yield while preserving the integrity of the molecules (Picot-Allain et al., 2021).

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Ultrasound-Assisted Extraction (UAE): Harnessing Acoustic Cavitation

Ultrasound-Assisted Extraction (UAE) is one of the most versatile green technologies for valorizing fruit peels and soft tissues like coffee cascara. The fundamental mechanism of UAE is acoustic cavitation. When ultrasonic waves (typically between 20 kHz and 100 kHz) pass through a liquid medium, they create alternating compression and rarefaction cycles. These cycles generate micro-bubbles that grow and eventually collapse violently.

The collapse of these bubbles near the plant cell wall creates "micro-jets" and high-pressure shock waves that cause physical disruption of the cell matrix. For agricultural residues like dragon fruit peels and apple peels, this disruption facilitates the rapid release of intracellular compounds such as betacyanins and quercetin into the solvent (Vilas-Boas et al., 2020). Research has shown that UAE can reduce extraction time by up to 90% compared to traditional stirring, significantly lowering the carbon footprint of the process.

Microwave-Assisted Extraction (MAE): Selective Internal Heating

While UAE relies on mechanical energy, Microwave-Assisted Extraction (MAE) utilizes electromagnetic radiation (usually at 2.45 GHz) to heat the moisture within the plant cells. Unlike conventional heating, which relies on conduction and convection, MAE provides "volumetric heating." The microwave energy penetrates the sample and interacts with polar molecules, primarily water, causing them to rotate rapidly and generate heat (Mandal et al., 2007).

In the processing of coffee cascara and sugarcane bagasse, MAE is particularly effective. The rapid rise in internal pressure within the plant cells causes the cell walls to rupture from the inside out, allowing bioactive polyphenols and lignin fragments to migrate into the solvent almost instantaneously. For rice husk, MAE has been successfully applied to facilitate the leaching of organic matter, leaving behind high-purity amorphous silica (SiO₂) which is essential for industrial applications (Ghorbani et al., 2015). The selectivity of MAE allows for high yields of target compounds with minimal solvent usage.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Enzyme-Assisted Extraction (EAE) and Hybrid Approaches

For more recalcitrant residues like coconut shells and paddy straw, which are high in lignin and cellulose, mechanical or thermal energy alone might not be sufficient. Enzyme-Assisted Extraction (EAE) employs specific biocatalysts, such as cellulases, hemicellulases, and pectinases, to enzymatically degrade the complex carbohydrate-lignin matrix. EAE operates under mild conditions (low temperature and neutral pH), which is ideal for maintaining the bioactivity of the extracts (Puri et al., 2012).

Recent trends suggest that "hybrid" or "tandem" approaches such as Ultrasound-Microwave Assisted Extraction (UMAE) provide superior results. By combining the mechanical cell-disruption of ultrasound with the rapid heating of microwaves, researchers have achieved unprecedented recovery rates of antioxidants from fruit waste, making the process commercially viable for the functional food industry.

Comparative Advantages and Energy Efficiency

The adoption of these technologies offers a clear competitive advantage in terms of energy efficiency. Life Cycle Assessment (LCA) studies indicate that green extraction methods can reduce energy consumption by 40-70% compared to industrial-scale maceration. Furthermore, the use of "GRAS" (Generally Recognized as Safe) solvents like ethanol-water mixtures or Deep Eutectic Solvents (DES) ensures that the resulting bio-based products are free from toxic residues, meeting the stringent safety standards of the pharmaceutical and cosmetic sectors (Zuin & Ramin, 2018).

3. INTEGRATING OPTIMIZATION TECHNOLOGIES IN AGRO-INDUSTRIAL WASTE VALORIZATON

3.1 Case Study I: Valorization of Robusta Coffee Cascara into Antioxidant-Rich Clay Masks

Introduction to Cascara Valorization

As discussed in previous sections, coffee processing generates a massive volume of "cascara" or coffee cherry pulp, which accounts for approximately 40% of the wet weight of the fruit.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

In major coffee-producing regions, improper disposal of cascara leads to significant environmental issues due to its high organic load. However, Robusta coffee (*Coffea canephora*) skin is inherently rich in phenolic compounds, ranging from 1.8% to 8.56%, including chlorogenic acid, caffeine, and protocatechuic acid (Heeger et al., 2017). These compounds are potent antioxidants capable of neutralizing free radicals that cause oxidative stress and skin aging.

Integrating cascara extract into a cosmetic delivery system, such as a clay mask, offers a sustainable pathway for waste valorization. Clay masks are widely recognized for their ability to hydrate the skin, remove impurities, and provide a medium for the controlled release of bioactive molecules (Moosavi, 2017).

Methodology and Formulation

The transformation process began with the extraction of bioactive compounds from dried cascara using maceration with 96% ethanol (solvent-to-material ratio of 5:1). This green extraction approach ensures the recovery of thermolabile polyphenols. The resulting concentrated extract was formulated into a clay mask using a base of Kaolin and Bentonite.

The experimental design followed a Randomized Block Design (RBD) with six levels of Kaolin-to-Cascara ratios (35:0 to 30:5). Key additives included Glycerin as a humectant and Triethanolamine (TEA) as a pH stabilizer. The physicochemical characteristics including pH, moisture content, drying time, spreadability, and antioxidant activity were evaluated to determine the optimal formulation.

Physicochemical Characterization and Antioxidant Performance

The study revealed that the concentration of cascara extract significantly influenced the chemical and physical properties of the mask:

- pH Stability: The pH of the formulations ranged from 6.57 to 8.13. As the cascara extract concentration increased, the pH levels decreased due to the acidic nature of organic acids present in the coffee skin.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

These values remain within the safe range for topical applications, as the skin's natural acid mantle typically resides between 4.5 and 6.0 (Proksch, 2018).

- **Moisture Content and Drying Time:** The moisture content fluctuated between 39.13% and 41.51%. Formulations with higher cascara extract levels exhibited longer drying times (up to 25.77 minutes) because the liquid extract increased the total moisture volume, whereas Kaolin acted as a drying agent through its hydrophilic aluminol layers (Elfiyani et al., 2023).
- **Antioxidant Activity (IC50):** This is the most critical parameter for high-value products. The pure cascara extract showed an IC50 of 65.44 g/mL. When incorporated into the clay mask, the IC50 values ranged from 95.80 to 245.36 g/mL. The formulation P5 (4g extract and 31g Kaolin) was identified as the best treatment, providing a balanced profile with an IC50 of 111.59 g/mL, indicating strong radical scavenging activity (Rebollo-Hernanz et al., 2019).

Conclusion of the Case Study

The valorization of Robusta coffee cascara into an antioxidant clay mask demonstrates a successful "waste-to-wealth" strategy. By utilizing green extraction and precise formulation, coffee processing residues can be converted into high-value dermo-cosmetic products. This not only mitigates the environmental impact of coffee waste but also aligns with the global demand for sustainable and organic skincare solutions.

3.2. Case Study II: Advanced Valorization of Apple Peel Through Microwave-Assisted Extraction

The Phytochemical Potential of Apple Processing By-products

Apples (*Malus sylvestris* Mill) are a cornerstone of the global horticultural commodity market. However, the high industrial demand for processed products—such as apple chips—presents a significant environmental challenge in the form of massive peel waste, which can account for up to 16% of the total fruit mass (Piagentini & Pirovani, 2017).

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Within a circular bioeconomy perspective, this peel is not merely waste but a phytochemical "treasure trove."

Structurally, apple peels contain a much higher concentration of phenolic compounds compared to the fruit flesh. The presence of specific compounds such as quercetin, catechin, and chlorogenic acid provides a superior bioactive profile. These compounds act as effective electron donors to neutralize free radicals, offering great potential as raw materials for supplements designed to prevent cellular oxidative damage (Wolfe et al., 2003). The primary technical challenge lies in extracting these sensitive compounds without compromising their structural integrity through precise extraction technologies.

Principles of Microwave-Assisted Extraction (MAE) in Biomass Processing

The selection of Microwave-Assisted Extraction (MAE) in this study is based on an extraction kinetic efficiency that conventional methods lack. Unlike maceration, which relies on passive diffusion, MAE operates through a volumetric heating mechanism. Microwave radiation triggers the rotation of polar molecules—primarily water—within the plant cell matrix.

This process creates exponential internal pressure, which eventually triggers rapid cell rupture. This phenomenon paves the way for secondary metabolites to migrate into the solvent almost instantaneously (Mandal et al., 2007). In this case, using 96% ethanol as a polar solvent provides the necessary synergy between the solvent's dielectric constant and the polarity of the target compounds, maximizing phenolic recovery within a minimal timeframe (Routry & Orsat, 2012).

Strategic Optimization Using Response Surface Methodology (RSM)

To transform laboratory processes into industrial standards, accurate mathematical modeling is required via Response Surface Methodology (RSM) using a Central Composite Design (CCD). This optimization strategy focuses on two crucial variables:

- Extraction Duration : Tested across 3, 5, and 7 minutes.
- Material-to-Solvent Ratio : Tested at scales of 1:10, 1:20, and 1:30 (w/v).

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

The RSM approach allows for the identification of complex interactions between variables. The ultimate goal is not just to find the highest yield, but to identify the "sweet spot" between extraction efficiency (yield), total phenolic content (TPC), and antioxidant strength IC50 with a minimal number of experimental trials and high statistical validity (Bezerra et al., 2008).

Technical Insights and Performance Evaluation

Analysis of the response model reveals that the material-to-solvent ratio is the dominant factor determining extraction effectiveness.

- Yield Dynamics: Yield percentages ranged between 29.4% and 44.9%. Increasing the solvent ratio was proven to expand the contact area between the material matrix and the extractant liquid. This creates a sharper concentration gradient, mechanically driving more massive solute diffusion out of the cells (Handayani et al., 2016).
- Bioactive Quality and Antioxidant Potential: The highest phenolic content was achieved at radiation intensities capable of breaking down cell walls without triggering thermal degradation. Verification results showed a phenomenal figure of 59.146 mg GAE/g with an IC50 value of 25.693 ppm. Based on pharmacological classifications, an IC50 value below 50 ppm indicates that this apple peel extract possesses "very strong" antioxidant activity (Blois, 1958).

In conclusion, the optimization model suggests an extraction duration of 7 minutes with a ratio of 1:26.58. The verification accuracy, reaching 99.44% for yield and 94.12% for total phenols, proves that the integration of MAE and RSM is a highly reliable and scalable solution for the industry to transform apple waste into high-value products.

3.3 Case Study III: Microwave-Assisted Extraction of Natural Colorants from Red Dragon Fruit (*Hylocereus polyrhizus*) Peel

Industrial Waste Valorization: Red Dragon Fruit Peel

Red dragon fruit (*Hylocereus polyrhizus*) has emerged as a high-value commodity in tropical regions, particularly in Indonesia, where production in areas like Banyuwangi and Malang exceeds thousands of tons annually.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

However, the burgeoning fruit chip industry generates substantial biological waste, as the peel constitutes approximately 30 – 35% of the total fruit weight (Citramukti, 2008). Despite being discarded, dragon fruit peels are rich in betalains—water-soluble nitrogenous pigments that possess potent antioxidant and radical-scavenging properties. Utilizing this waste as a source of natural colorants not only addresses environmental concerns but also provides a sustainable alternative to synthetic dyes in the food industry.

Extraction Efficiency and Betalain Sensitivity

Betalains, which comprise red-violet betacyanins and yellow-orange betaxanthins, are highly polar and sensitive to environmental factors such as pH, light, and temperature (Cai et al., 2005). While traditional maceration is often used to extract these pigments, it is limited by long extraction times which may lead to pigment degradation. This study implemented Microwave-Assisted Extraction (MAE) to accelerate the process. MAE utilizes electromagnetic radiation to induce molecular friction within the plant matrix, facilitating the rapid release of solutes (Mandal, 2007). To maintain stability, 2% citric acid was added to the aqueous solvent, ensuring an acidic environment (pH = 2) which is critical for preserving the structure of betalain-like pigments (Sykes, 1998).

Impact of Extraction Duration and Material-Solvent Ratio

The extraction performance in this study was evaluated based on the duration (5, 10, and 15 minutes) and the material-to-solvent ratio (1:20 and 1:30 w/v).

- **Betacyanin Stability:** Contrary to common extraction trends where longer duration increases yield, the total betacyanin content in this study peaked at 5 minutes (0.4212 mg/100g) and significantly decreased as the duration extended to 15 minutes. This reduction indicates thermal degradation; prolonged exposure to microwave radiation generates excessive heat that disrupts the betalain chromophore structure (Chan et al., 2011).
- **Color Profile Dynamics:** The physical characterization through L* a* b* color coordinates further confirmed this degradation.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

The red intensity (a*) decreased while the yellow intensity (b*) increased over time. This shift suggests the conversion of betacyanins into degradation products or the increased extraction of yellow-toned betaxanthins as the cell walls underwent more intense microwave-induced rupture (Herbach et al., 2006).

- Yield and Impurities: Although the total yield reached its maximum at 15 minutes (16.44%), this "crude" yield includes non-pigment components such as sugars and organic acids. Therefore, for pigment-specific extraction, higher yield does not necessarily equate to higher quality.

Optimal Treatment and Comparative Efficiency

Through the Multiple Attribute Method, the optimal extraction condition was identified as 5 minutes of extraction with a 1:30 (w/v) material-to-solvent ratio. Compared to conventional maceration, which typically requires 45 minutes at 420C the MAE method achieved superior results in only 11% of the time. This demonstrates that MAE is a highly efficient "green" technology for the recovery of sensitive natural pigments from agro-industrial side-streams, offering significant energy savings and improved throughput for industrial applications.

3.4. Case Study IV: Optimization of Pyrolysis Temperature and Duration for Rice Husk-Derived Bio-charcoal

Rice Husk as a Strategic Solid Fuel Precursor

In the context of sustainable waste management, rice husk represents one of the most abundant agro-industrial by-products in Indonesia, with annual production exceeding 1.9 million tons in East Java alone. Chemically, rice husk is characterized by a high lignocellulosic content, comprising approximately 50% cellulose and 25–30% lignin, along with a significant silica fraction (Huda et al., 2022). The conversion of this bulky waste into bio-charcoal through pyrolysis is a strategic pathway to enhance its energy density and create high-quality raw materials for biobriquettes. This process involves the thermochemical decomposition of biomass in an oxygen-limited environment, which is critical for transforming raw fibers into stable, carbon-rich structures.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Modeling Thermochemical Decomposition using RSM-CCD

The quality of the resulting bio-charcoal is predominantly dictated by two critical process parameters: pyrolysis temperature and duration. This study utilized Response Surface Methodology (RSM) with a Central Composite Design (CCD) to navigate the complex interactions between temperature (ranging from 294 to 506 °C) and time (ranging from 78 to 162 minutes).

Statistical analysis through ANOVA revealed that most response variables—namely ash content, calorific value, volatile matter, and yield—followed a quadratic model, indicating non-linear relationships and significant factor interactions. In contrast, moisture content and fixed carbon were best described by linear models. The high prediction accuracy of these models (94–99%) underscores the robustness of RSM in predicting the physicochemical properties of the charcoal based on thermal treatment intensity.

Analysis of Carbonization and Energy Density

The carbonization efficiency is reflected in the inverse relationship between volatile matter and fixed carbon.

- Fixed Carbon and Volatiles: As the temperature increased toward the optimal range, a significant reduction in volatile matter was observed (reaching as low as 2.267%). This phenomenon is attributed to the devolatilization reaction, where light organic compounds and gases are released, leaving behind a stable aromatic carbon framework. Consequently, fixed carbon reached a peak of 95.429%, which is substantially higher than the minimum requirement of 75% set by the Indonesian National Standard (SNI 06-3730-1995).
- Calorific Value and Ash Content: The energy content, measured as the calorific value, reached an optimal point of 4,543 cal/g. While the increase in temperature generally enhances energy density by concentrating carbon, excessive temperatures can lead to the accumulation of inorganic residues, thereby increasing ash content. The optimization model successfully identified a point that balances high carbon concentration with a low ash content (2.304%), ensuring the charcoal remains efficient for combustion.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Optimal Process Conditions and Industrial Feasibility

The multi-response optimization identified the optimum conditions at a temperature of 475 °C and a duration of 120 minutes. These conditions yielded bio-charcoal that nearly met all parameters of the Indonesian standards for high-grade briquette feedstock. The verification trials confirmed the model's validity, showing that the actual experimental values were within the 95% prediction interval.

From an industrial perspective, the high yield (65.998%) achieved at this optimum point suggests that the process is not only technically effective but also economically viable. By utilizing optimized pyrolysis, agro-industrial producers can convert low-value rice husk into a consistent, high-energy solid fuel, directly contributing to the reduction of environmental pollution and the promotion of renewable energy alternatives in the circular economy.

4. SOCIO-ECONOMIC AND ENVIRONMENTAL IMPACTS

4.1 Economic Feasibility: Cost-Benefit Analysis of Green Technologies

The transition from conventional extraction and waste disposal methods to Microwave-Assisted Extraction (MAE) and optimized pyrolysis represents a paradigm shift in agro-industrial economics. Economic feasibility is no longer measured solely by yield, but by the "Total Value Optimization" that includes energy savings, labor reduction, and the creation of secondary market commodities.

Operational Efficiency and Energy Dynamics

The primary economic advantage of MAE, as demonstrated in the case studies of Cascara, Apple Peel, and Red Dragon Fruit, lies in its extreme temporal efficiency. Conventional maceration or Soxhlet extraction often requires hours, if not days, to achieve equilibrium. According to Chemat et al. (2017), green extraction techniques like MAE can reduce energy consumption by up to \$70 - 90% due to the direct interaction of microwave radiation with the moisture in the plant matrix, causing rapid cell rupture.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

This reduction in processing time—from 45 minutes in conventional methods to just 5 minutes in our optimized studies—translates directly into lower utility bills and increased factory throughput.

Furthermore, the utilization of aqueous or acidified water solvents, as seen in the Dragon Fruit study, significantly lowers the "Solvent Procurement and Recovery" cost. Traditional methods relying on hexane or high-grade ethanol involve high purchasing costs and require expensive explosion-proof recovery systems. By substituting these with water-based systems, industries can achieve a safer working environment and reduce chemical overheads (Armenta et al., 2015).

Waste-to-Profit Transformation

The pyrolysis of rice husk, as discussed in the fourth case study, exemplifies the "Circular Bio-economy" model. Currently, many rice mills pay for waste disposal or engage in illegal open-field burning to manage husk accumulation. By implementing optimized pyrolysis, these mills can produce bio-charcoal with a fixed carbon content of $>95\%$. Meyer et al. (2011) argue that the economic viability of pyrolysis is bolstered by the rising global demand for renewable solid fuels. Biobriquettes derived from rice husk charcoal can be sold at a premium to the hospitality and household energy sectors, transforming a disposal liability into a stable revenue stream.

4.2 Environmental Sustainability: GHG Mitigation and Landfill Diversion

Agro-industrial waste management is a critical component of climate change mitigation. The environmental impacts of the technologies discussed in this book extend beyond simple waste reduction to include active carbon sequestration and the prevention of toxic leaching.

Greenhouse Gas (GHG) Emissions and Methane Avoidance

When organic wastes like fruit peels and rice husks are sent to landfills, they undergo anaerobic decomposition, producing methane (CH₄). Methane is a potent greenhouse gas with a Global Warming Potential (GWP) significantly higher than carbon dioxide.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Bogner et al. (2008) emphasize that landfill emissions are one of the largest anthropogenic sources of methane globally. By diverting fruit peels into bioactive extraction processes and rice husks into pyrolysis, these emissions are eliminated at the source.

Furthermore, the pyrolysis process facilitates Carbon Sequestration. Unlike raw biomass that releases its carbon back into the atmosphere upon decay, bio-charcoal stores carbon in a stable, solid form. When bio-charcoal is used in biobriquettes or as a soil amendment (biochar), it effectively "locks" the carbon for hundreds of years, resulting in a net-negative carbon footprint for the industrial process (Dahiya et al., 2020).

Mitigating Landfill Overload and Soil Pollution

The diversion of 30 - 35% of total fruit weight (peels) from landfills prevents the formation of Leachate—a highly concentrated organic liquid that can contaminate groundwater and alter soil pH. As demonstrated in our Apple and Dragon Fruit studies, valorizing these peels extracts valuable antioxidants and pigments, leaving behind a significantly reduced and more stable residue that can be easily composted. This aligns with the findings of Ghisellini et al. (2016), who noted that circular economy loops in the food industry are essential for reducing the ecological footprint of urban food systems.

4.3 Contribution to Sustainable Development Goals (SDGs)

The integration of optimized green technologies is not merely a technical achievement but a direct contribution to the United Nations 2030 Agenda.

SDG 9: Industry, Innovation, and Infrastructure

The use of Response Surface Methodology (RSM) and Central Composite Design (CCD) to optimize process parameters represents a leap in Industrial Innovation. By providing precise mathematical models for extraction and pyrolysis, this research enables small and medium enterprises (SMEs) to adopt sophisticated processing techniques without the need for extensive trial-and-error budgets.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

According to the United Nations (2023), building resilient infrastructure and fostering innovation are key to inclusive and sustainable industrialization, particularly in developing nations where agricultural waste is abundant but underutilized.

SDG 12: Responsible Consumption and Production

SDG 12 aims at "doing more and better with less." The valorization of Cascara, fruit peels, and husks directly addresses Target 12.3 (reducing food loss along production chains) and Target 12.5 (substantially reducing waste generation). By extracting betalains and phenols from "trash," the agro-industry shifts toward a responsible production cycle where every component of the raw material is utilized. This minimizes the "ecological debt" of the food processing sector and promotes a sustainable lifestyle through the availability of natural, bio-based products (Zhu et al., 2020).

4.4 Socio-Economic Resilience for Local Communities

The socio-economic impact also extends to rural communities. Agro-industrial units located near farming hubs can create localized jobs in waste collection, processing, and the marketing of bio-based products. By decentralizing these technologies, local economies become more resilient to global market fluctuations in fossil fuel and synthetic chemical prices.

5. CHALLENGES AND FUTURE PERSPECTIVES

The transition from a laboratory-scale success to a fully integrated industrial application is a complex journey fraught with multi-dimensional hurdles. While the previous chapters have demonstrated the technical feasibility and optimization of valorizing agro-industrial wastes like cascara, apple peel, dragon fruit peel, and rice husk, this final chapter explores the critical barriers to large-scale implementation and the emerging digital paradigms that will shape the future of the bioeconomy.

5.1 Technical Barriers in Scaling Up Green Technologies

The primary challenge in moving from "bench-to-bedside" in agro-industrial technology is the "scaling effect." Laboratory experiments, typically utilize small, homogenous samples under highly controlled conditions. However, industrial reality introduces significant technical complexities.

Heat and Mass Transfer Uniformity

In Microwave-Assisted Extraction (MAE), the "penetration depth" of microwave radiation is a major limiting factor. As noted by Chemat et al. (2019), while microwaves provide rapid internal heating in small volumes, the radiation intensity decays as it moves toward the center of a larger industrial-scale vessel. This leads to non-uniform heating, where the periphery of the reactor may reach degradation temperatures (damaging sensitive pigments like betalains) before the core has reached the optimal extraction temperature.

Furthermore, in pyrolysis processes for rice husk, ensuring uniform thermal decomposition in a large-scale reactor is challenging due to the high silica content of the husk, which can cause "clinkering" or the formation of slag. This phenomenon can block reactor vents and reduce the efficiency of heat transfer to the carbon core, leading to inconsistent bio-charcoal quality (Galanakis, 2020).

Feedstock Heterogeneity

Industrial-scale valorization requires a massive and continuous supply of raw materials. Unlike laboratory samples that are carefully dried and ground, industrial feedstock varies in moisture content, particle size, and chemical composition depending on the harvest season and geographic origin. Piccolo and Andreottola (2023) emphasize that this variability can destabilize the optimized parameters found in RSM studies, requiring constant recalibration of the equipment which increases operational complexity and maintenance costs.

5.2 Regulatory Frameworks and Policy Support for Bio-based Markets

Technological innovation often outpaces the development of regulatory frameworks. For agro-industrial waste valorization to succeed commercially, a supportive and clear policy environment is essential.

Standardization and Certification

A significant barrier is the lack of harmonized standards for bio-based products. For natural colorants extracted from apple or dragon fruit peels to replace synthetic dyes, they must undergo rigorous safety assessments. Zhu et al. (2020) point out that regulatory bodies like the FDA (USA) and EFSA (EU) have different protocols for "natural" labeling, which can confuse consumers and increase the cost of compliance for exporters. Without a standardized "Bio-based Quality Mark," consumers may remain skeptical of the performance and safety of waste-derived products compared to their established synthetic counterparts.

Incentivization and Carbon Pricing

The bio-briquette market, derived from rice husk pyrolysis, currently competes with cheap, subsidized fossil fuels in many developing nations. Kirchherr et al. (2017) argue that without carbon taxes or green subsidies, the "circular economy" remains economically disadvantaged. Policies that penalize landfilling (Landfill Taxes) or reward carbon sequestration (Carbon Credits) are necessary to make the high initial investment in green technology more attractive to private investors. In Indonesia, while the "Circular Economy Roadmap" exists, the practical implementation of financial incentives for SMEs in the agro-industrial sector is still in its infancy.

5.3 The Role of Digitalization (Industry 4.0) in Agro-industrial Waste Management

The future of waste valorization lies in the synergy between biotechnology and digitalization, often referred to as Industry 4.0. Digital tools can mitigate the technical barriers discussed in Section 6.1 by providing real-time monitoring and adaptive control.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

IoT and Real-Time Optimization

Internet of Things (IoT) sensors can be integrated into MAE and pyrolysis reactors to monitor temperature, pressure, and solvent pH in real-time. Instead of relying on static RSM models, Zhong et al. (2017) describe a "Digital Twin" approach, where a digital replica of the reactor runs simulations based on sensor data to predict yields and adjust parameters instantly. For instance, if the moisture content of incoming rice husk changes, the AI-driven system can automatically adjust the pyrolysis duration to ensure the fixed carbon content remains above 95%.

Machine Learning for Predictive Valorization

Machine Learning (ML) algorithms can be trained on large datasets of plant phytochemical profiles to predict the antioxidant potential of various fruit peels before processing begins. As highlighted by Rana et al. (2021), ML can optimize the "desirability function" across thousands of variables, far beyond the capabilities of traditional RSM. This allows for the "personalization" of extraction processes, where a factory can switch from processing cascara to apple peels with minimal downtime by simply changing the digital recipe.

Blockchain for Traceability and Transparency

Blockchain technology offers a solution to the regulatory and consumer trust issues. By recording every stage of the valorization process—from the collection of waste at the rice mill to the final packaging of the bio-briquette—blockchain ensures a transparent and immutable supply chain. This "Digital Passport" for bio-based products can verify their green credentials, making it easier for companies to comply with international sustainability standards and access global "green" markets (Frank et al., 2019).

6. THE SYNERGY BETWEEN WASTE MANAGEMENT AND VALUE ADDITION

6.1 From Waste Management to Resource Valorization

Historically, agro-industrial waste management was viewed through the lens of "disposal and containment" a linear process aimed at minimizing the nuisance of by-products.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

However, as demonstrated through the case studies of Cascara, fruit peels, and rice husk, the paradigm has shifted toward Valorization. This synergy implies that the reduction of waste volume is directly proportional to the creation of high-value commodities.

According to Galanakis (2012), food waste valorization is the process of recovering functional compounds (like antioxidants from apple peels or betalains from dragon fruit) and utilizing the remaining biomass for energy. This dual-purpose approach ensures that "zero waste" is not just an idealistic goal but a profitable reality. The integration of Microwave-Assisted Extraction (MAE) and Pyrolysis has shown that waste can be transformed into pigments, pharmaceuticals, and solid fuels, effectively decoupling industrial growth from environmental degradation (Mirabella et al., 2014).

6.2 Technological Convergence and Optimization

The success of this synergy relies heavily on the precision of process parameters. The use of Response Surface Methodology (RSM) throughout this research has been the "bridge" between raw waste and refined value. Optimization ensures that we do not over-process (which leads to the degradation of sensitive betalains) or under-process (which results in low yields and wasted energy).

As highlighted by Dahiya et al. (2020), the synergy is most effective when multiple technologies are used in a "biorefinery" approach. For instance, after extracting antioxidants from fruit peels, the residue can still undergo pyrolysis to produce bio-charcoal. This cascading use of biomass maximizes the "Triple Bottom Line" economic profit, environmental health, and social well-being.

CONCLUSION

The research presented in this book confirms that agro-industrial side-streams are goldmines of bioactive compounds and energy.

- Green Extraction: MAE is a transformative tool for the rapid recovery of phenolics and pigments, reducing processing time from hours to minutes while maintaining high antioxidant activity.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

- Energy Recovery: Pyrolysis of lignocellulosic waste like rice husk provides a viable alternative to fossil fuels, achieving high carbon stability ($>95\%$ fixed carbon) and contributing to carbon sequestration.
- Predictive Modeling: The high accuracy ($>90\%$) of RSM models across all case studies proves that complex biological systems can be managed through data-driven engineering.

Call to Action for Stakeholders

The transition to a circular bioeconomy requires a synchronized effort from all sectors of society.

For the Agro-Industrial Sector:

Industries must move beyond the "efficiency trap" of linear production. Investing in green technologies like MAE and Pyrolysis should be viewed as a long-term risk management strategy. By valorizing waste, companies can insulate themselves from the rising costs of synthetic raw materials and waste disposal taxes. The adoption of Industry 4.0 (IoT and AI) to monitor these optimized processes will be the next frontier in maintaining competitiveness (Zhong et al., 2017).

For Policy Makers and Regulators:

Sustainability cannot thrive in a vacuum. Governments must provide the "carrot and the stick"—incentivizing bio-based innovation through grants and carbon credits while penalizing inefficient waste disposal through landfill taxes. Standardizing the certification for "waste-derived" products is crucial to building consumer trust and opening international trade routes for natural colorants and bio-fuels (Kirchherr et al., 2017).

For the Scientific and Academic Community:

The challenge for researchers is to move beyond lab-scale experiments. The future of research lies in Pilot-Scale Demonstration and Life Cycle Assessment (LCA).

*CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR
SUSTAINABLE FOOD SYSTEMS*

We must continue to bridge the gap between pure chemistry and industrial engineering, ensuring that our optimized models are resilient enough to handle the heterogeneity of real-world agricultural waste (Piccolo & Andreottola, 2023).

**CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR
SUSTAINABLE FOOD SYSTEMS**

REFERENCES

Abnisa, F., Arami-Niya, A., Wan Daud, W. M. A., & Sahu, J. N. (2013). Characterization of bio-oil and bio-char from pyrolysis of palm shell. *Biomass and Bioenergy*, 52, 88-93.

Ali, I., Bano, S., Kartasivaya, A., & Kim, J. (2016). Effects of pyrolysis temperature and time on the characteristics of biochars derived from agricultural wastes. *Journal of Industrial and Engineering Chemistry*, 34, 12-21.

Armenta, S., Garrigues, S., & de la Guardia, M. (2015). Green analytical chemistry. *Analytical Chemistry*, 80(24), 9654-9670.

Badan Pusat Statistik (BPS) Kabupaten Banyuwangi. (2024). Produksi Tanaman Pangan Provinsi Jawa Timur 2023. BPS Indonesia.

Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escalera, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. *Talanta*, 76(5), 965-977.

Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. *Nature*, 181(4617), 1199-1200.

Bogner, J., Pipatti, R., Hashimoto, S., Mareckova, K., Santamaria, K. V., & Faaij, A. (2008). Mitigation of global greenhouse gas emissions from waste: Conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. *Waste Management*, 28(4), 716-734.

Cai, Y. Z., Sun, M., & Corke, H. (2005). Characterization and antioxidant activity of betalains from plants of the Amaranthaceae family. *Journal of Agricultural and Food Chemistry*, 53(5), 1718-1723.

Cardona, C. A., Quintero, J. A., & Paz, I. C. (2010). Production of bioethanol from sugarcane bagasse: Status and perspectives. *Bioresource Technology*, 101(13), 4754-4766.

Chan, S. W., Chuah, L. H., Yap, P. S., Li, H. Y., & Ho, C. W. (2011). Optimized extraction of total phenolic compounds from dragon fruit (*Hylocereus polyrhizus*) peel using response surface methodology. *Journal of Applied Sciences*, 11(11), 1959-1965.

Chemat, F., Abert-Vian, M., Fabiano-Tixier, A. S., Strube, J., Uhlenbrock, L., Gunjevic, V., & Cravotto, G. (2019). Green extraction of natural

**CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR
SUSTAINABLE FOOD SYSTEMS**

products. Origins, current status, and future challenges. *TrAC Trends in Analytical Chemistry*, 118, 248-263.

Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. *Ultrasonics Sonochemistry*, 34, 540-560.

Citramukti, I. (2008). *Ekstraksi dan uji kualitas pigmen antosianin pada kulit buah naga merah (Hylocereus costaricensis)* [Unpublished undergraduate thesis]. Universitas Muhammadiyah Malang.

D'Amato, D., Droste, N., Allen, B., Kettunen, M., Lähtinen, K., Korhonen, J., Leskinen, P., Matthies, B. D., & Toppinen, A. (2017). Green, circular, bio economy: A comparative analysis of sustainability concepts. *Journal of Cleaner Production*, 168, 716-734.

Dahiya, S., Kumar, A. N., Shanthi Sravan, J., Chatterjee, S., Sarkar, O., & Mohan, S. V. (2020). Food waste biorefinery: Sustainable strategy for circular bioeconomy. *Bioresource Technology*, 248, 2-12.

Elfiyani, R., Nursal, F. K., Deviyolanda, R., & Shifa. (2023). Utilization of watermelon white peel extract in clay mask preparations. *Journal of Pharmaceutical and Clinical Sciences*, 10(2), 218-225.

Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. *International Journal of Production Economics*, 210, 15-26.

Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. *Trends in Food Science & Technology*, 26(2), 68-87.

Galanakis, C. M. (2020). The food systems-environmental-health-economy trilemma: Healthier diet and better world. Academic Press.

Ghisellini, P., Cialani, C., & Ulgiati, S. (2016). A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. *Journal of Cleaner Production*, 114, 11-32.

Ghorbani, F., Sanati, A. M., & Maleki, M. (2015). Production of silica nanostructure from agricultural waste: An optimization study. *Journal of Nanostructures*, 5(4), 341-347.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Handayani, H., Sriherfian, C., & Dharmadewi, A. I. S. (2016). The effect of material-to-solvent ratio and extraction time on yield and polyphenol content of avocado seed extract. *Journal of Agricultural Postharvest Research*, 13(3), 155-162.

Heeger, A., Cantergiani, S., Anklam, E., & Rawel, H. (2017). Contents of soluble dietary fibre, free sugars and organic acids in coffee cherry pulp (cascara) and tea infusions thereof. *Food Science and Technology International*, 23(1), 61-71.

Herbach, K. M., Rohe, M., Stintzing, F. C., & Carle, R. (2006). Structural and color changes during thermal processing of betacyanins from cactus pear and red beet juice. *Journal of Food Science*, 71(4), C193-C202.

Huda, N., Mulyadi, A. F., & Dewanti, B. S. D. (2022). Characteristics of rice husk bio-charcoal as a sustainable energy source. *Journal of Agro-industrial Technology and Management*, 10(2), 45-53.

Jamilah, B., Shu, C. E., Kharidah, M., Dzulkifly, M. A., & Noranizan, A. (2011). Physico-chemical characteristics of red dragon fruit (*Hylocereus polyrhizus*) peel. *International Food Research Journal*, 18(1), 279-286.

Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. *Resources, Conservation and Recycling*, 127, 221-232.

Lim, J. S., Abdul Manan, Z., Wan Alwi, S. R., & Hashim, H. (2012). A review on utilisation of biomass from rice industry as a source of renewable energy in Malaysia. *Renewable and Sustainable Energy Reviews*, 16(5), 3084-3094.

Liu, Z., Quek, A., Hoekman, S. K., & Balasubramanian, R. (2023). Production of solid bio-fuel from waste biomass by hydrothermal carbonization and pyrolysis. *Fuel*, 332, 126-135.

Lonare, M. K., Sharma, M., & Warne, S. S. (2014). Dragon fruit (*Hylocereus undatus*): A fruit with medicinal values. *International Journal of Research in Biological Sciences*, 4(1), 22-26.

Mandal, V., Mohan, Y., & Hemalatha, S. (2007). Microwave assisted extraction—An innovative and promising extraction tool for medicinal plant research. *Pharmacognosy Reviews*, 1(1), 7-18.

**CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR
SUSTAINABLE FOOD SYSTEMS**

Meyer, S., Glaser, B., & Quicker, P. (2011). Pyrolysis as a strategy for carbon sequestration: A review. *Environmental Science & Technology*, 45(22), 9471-9483.

Mirabella, N., Castellani, V., & Sala, S. (2014). Current options for the valorization of food manufacturing waste: A review. *Journal of Cleaner Production*, 65, 28-41.

Montgomery, D. C. (2017). *Design and analysis of experiments* (9th ed.). Wiley.

Moosavi, M. (2017). Bentonite clay as a natural remedy: A brief review. *Iranian Journal of Public Health*, 46(9), 1176-1183.

Navas, M. J., Jimenez-Moreno, A. M., Guzman-Chozas, M., & Asuero, A. G. (2012). Analysis of betalains: Cleaning up and chromatographic separation. *Journal of Separation Science*, 35(1), 1-13.

Pathak, P. D., Mandavgane, S. A., & Kulkarni, B. D. (2017). Valorization of fruit waste: A review. *Methodology*, 6(1), 31-51.

Piagentini, A. M., & Pirovani, M. E. (2017). Total phenols content, antioxidant capacity and color of fresh-cut apples (*Malus domestica*) as affected by cultivar and storage period. *Brazilian Journal of Food Technology*, 20, e2016063.

Piccolo, A., & Andreottola, G. (2023). Valorization of agro-industrial wastes: Technical and environmental challenges. *Waste Management*, 155, 312-325.

Picot-Allain, C., Mahomoodally, M. F., Ak, G., & Zengin, G. (2021). Conventional versus green extraction techniques—A comparative perspective. *Current Opinion in Food Science*, 40, 144-156.

Proksch, E. (2018). pH in nature, humidities and skin. *The Journal of Dermatology*, 45(9), 1044-1052.

Puri, M., Sharma, D., & Barrow, C. J. (2012). Enzyme-assisted extraction of bioactives from plants. *Trends in Biotechnology*, 30(1), 37-44.

Rana, M. S., Canter, C. E., & Wang, Z. (2021). Digitalization in waste management: A review of the state-of-the-art and future perspectives. *Journal of Cleaner Production*, 293, 126140.

Rebollo-Hernanz, M., Cañas, S., Taladrí, D., Segovia, A., Giusti, M. M., & Martín-Cabrejas, M. A. (2019). Extraction of phenolic compounds from

**CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR
SUSTAINABLE FOOD SYSTEMS**

coffee parchment: Optimization, physicochemical characterization, and biological properties. *Industrial Crops and Products*, 130, 460-471.

Roqieb, D. M., Mulyadi, A. F., & Dewanti, B. S. D. (2025). Optimization of temperature and time for pyrolysis of rice husk charcoal as a raw material for biobriquettes. *Industria: Jurnal Teknologi dan Manajemen Agroindustri*, 14(1).

Routray, W., & Orsat, V. (2012). Microwave-assisted extraction of phenolic compounds from microalgae and their skin care applications: A review. *Bacteriology & Mycology*, 2(1), 1-8.

Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: A review. *Bioresources and Bioprocessing*, 5(1), 1-15.

Siahaan, S., Prasetyo, T., & Sitorus, B. (2013). Pengaruh suhu dan waktu pirolisis terhadap kuantitas dan kualitas charcoal sekam padi. *Jurnal Teknik Kimia USU*, 2(3), 1-8.

Silveira, M. H. L., Moraes, A. R. C., da Costa Lopes, A. M., Olekszyszen, D. N., Bogel-Łukasik, R., Andreaus, J., & Pereira Ramos, L. (2015). Current precautionary measures and promising future directions for sugarcane bagasse biorefineries. *Green Chemistry*, 17(10), 4689-4710.

Stegmann, P., Londo, M., & Junginger, M. (2020). The circular bioeconomy: Its elements and role in European bioeconomy clusters. *Resources, Conservation and Recycling*: X, 6, 100029.

Sykes, G. P. (1998). The stability of betalains. In *Natural Food Colorants* (pp. 52-65). Springer.

United Nations. (2023). *The Sustainable Development Goals Report 2023*. United Nations Publications.

Varo, M. A., García-Espinosa, R., & Castro, P. J. (2021). Valorization of fruit and vegetable waste into high-value products: A review. *Sustainability*, 13(15), 8432.

Vilas-Boas, A. A., Oliveira, A. S., Sosnowska, D., Aubert, S., & Pintado, M. (2020). Valorization of fruit by-products as a strategy to enhance the sustainability of the food industry. *Foods*, 9(11), 1640.

Wiktor, A., Parniakov, O., Tolskikh, V., Rybak, K., Shotts, M., Lammerskitten, A., & Witrowa-Rajchert, D. (2016). Effect of pulsed electric field on the

***CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR
SUSTAINABLE FOOD SYSTEMS***

bioactive compounds of apple tissue. *Innovative Food Science & Emerging Technologies*, 38, 386-395.

Wolfe, K., Wu, X., & Liu, R. H. (2003). Antioxidant activity of apple peels. *Journal of Agricultural and Food Chemistry*, 51(3), 609-614.

Yahya, M. A., Al-Qodah, Z., & Ngah, C. W. Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. *Renewable and Sustainable Energy Reviews*, 46, 218-235.

Zeleny, M. (1982). *Multiple criteria decision making*. McGraw-Hill.

Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context of Industry 4.0: A review. *Engineering*, 3(5), 616-630.

Zhu, Z., Guan, Q., Tan, M. C., Truong, C., & Li, S. (2020). Green technologies for the extraction of betalains from plant sources: A review. *Trends in Food Science & Technology*, 98, 83-93.

Zuin, V. G., & Ramin, L. Z. (2018). Green and sustainable separation of natural products from agro-industrial waste: Challenges, potentialities, and perspectives on emerging approaches. *Topics in Current Chemistry*, 376(3), 1-52.

CHAPTER 2
HARNESSING MOBILE APPLICATIONS TO DEEPEN
FARMER PARTICIPATION IN EXTENSION
SERVICES

¹Prof. Dr. Umar, I. S.

²Muhammad, I. M.

¹Department of Agricultural Extension and Rural Development, Federal University of Technology, Minna, Niger State, Nigeria, umarsheshi@gmail.com, isah.umar@futminna.edu.ng, ORCID ID: 0009-0007-3354-5532

²Planning and Research Department, National Population Commission, Minna, Niger State, Nigeria,

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

INTRODUCTION

Extension is the transfer of research findings, improved technologies, and best agricultural practices to farmers through extension agents, with the aim of enhancing productivity, sustainability, and rural livelihoods. Historically, extension services in sub-Saharan Africa adopt a top-down model where farmers are at the receiving end of the chain. This approach has been criticized for not addressing the needs and challenges faced by farmers (Saini et al., 2023), while also neglecting local knowledge and contextual realities of smallholder farmers. Rolling (1988) aptly describes it as a “soak-it-to-them” model, which often results in adoption gaps, reduced effectiveness and lack of trust among farm families.

To address these challenges, participatory extension approaches were introduced. Otherwise known as farmer-initiated solutions or demand-driven models, these approaches prioritize the active involvement of farmers in the extension process, recognizing them as key contributors rather than passive recipients of information. They foster environments where farmers, extension workers, and researchers collaborate in problem identification, experimentation, and innovation (Prajapati et al., 2025). While impactful, traditional participatory approaches such as Farmer Field Schools (FFS), Participatory Rural Appraisal (PRA), Participatory Technology Development (PTD) and Farmer-Group approach face significant challenges. According to Saini et al. (2023), these include institutional barriers, financial constraints, and socio-cultural obstacles, alongside policy gaps and inadequate training of extension agents (Prajapati et al., 2025). As a result, Mapiye et al. (2023) called for integration of mobile-based advisory platforms to strengthen participatory extension services, thereby enabling real-time knowledge sharing as well as collaborative decision-making among farmers.

Mobile applications are software programmes developed to operate on smart phones, tablets and other electronic devices. These applications were initially designed as an alternative for the computer programmes and later it spread to cover other sectors such as marketing, commerce, banking, health, education, communication, gaming and informative services among others, and presently, it has replaced the personal computers.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Currently, in relation to other fields, the demand for the mobile apps in agricultural sector is small in scope and restricted, but it is emerging and expanding. Hence, there is the need for mobile applications in agricultural sector for providing technical extension services, location specific farming information, creating marketing platforms, diagnosing plant and animal diseases, management of livestock, and forecasting weather data, as well as providing day to day agricultural news to the stakeholders in agricultural sector (Aravindhkumar and Karthikeyan, 2019).

Statistics indicated that mobile phone penetration in Nigeria is unprecedented. As of August 2025, the country recorded 171.5 million active subscribers, of which 140.3 million had internet access, consuming 1,152,347 terabytes of data. In terms of network coverage, 51.22% of the population was connected to 4G services, while 3.27% had access to 5G mobile-cellular networks (Nigerian Communications Commission, 2025). This high level of mobile connectivity creates fertile ground for harnessing mobile applications to deepen farmer participation in extension services.

1. CONCEPTUAL FRAMEWORK

Mobile application is a self-contained software programme created to run on mobile devices like smartphones and tablets, providing users with specific functions (Amalfitano *et al.*, 2013). It serves as the centrepiece of the digital participatory extension approach structured in two interlinked phases: planning and implementation as shown in Figure 1.

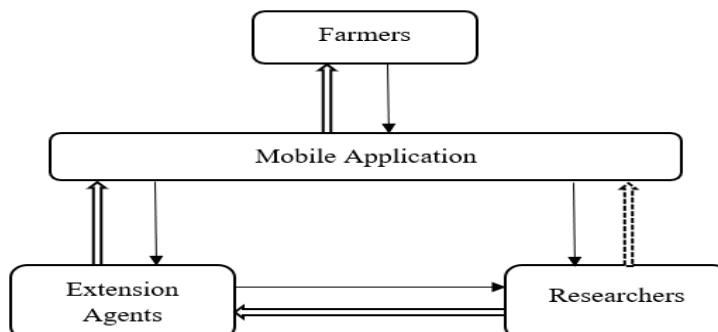
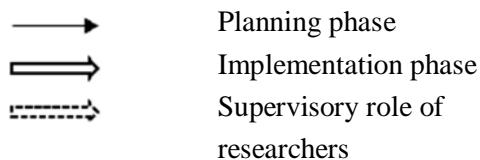


Figure 1. Conceptual framework of harnessing mobile applications to deepen farmer participation in extension services

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS



In the planning phase, the process begins with the farmers, who articulate their challenges, expectations, and indigenous knowledge through the application. Both extension agents and researchers gain access to these insights. Extension agents, drawing on their practical field experience, interpret and expand on farmer demands, channelling them through the existing Research-Extension Linkage. Researchers, in turn, analyse these inputs and develop context-specific solutions or adapt existing innovations.

The implementation phase follows, in which solutions generated by researchers are communicated back to the farmers through extension agents who actively engage with the mobile application by uploading tailored advisory content, training modules, and demonstration materials. At the same time, they collect and respond to farmer feedback, which allows them to identify adoption challenges and refine their services.

In this phase, the role of researchers is primarily supervisory, ensuring that recommended practices are technically sound and appropriately adapted to local contexts, while also collecting valuable farmer-generated data. Farmers, on their part, use the mobile application not only to access information provided by extension agents but also to benefit from additional services such as weather forecasts, market updates, and other decision-support tools that may be available in the application.

2. THEORETICAL FRAMEWORK

Participatory Communication Theory (PCT) provides a lens for showing how mobile applications can transform farmers from passive recipients into active participants in extension processes. According to Tufte and Mefalopulos (2009), it is an approach based on dialogue, which allows the sharing of information, perceptions and opinions among various stakeholders, thereby enabling their empowerment.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

The theory is rooted in Paulo Freire's concept of dialogical communication, which emphasizes empowerment, mutual exchange, and critical consciousness. Its central principle is that communication should be two-way and inclusive, enabling all actors to become active participants in generating and using knowledge rather than passive recipients (Enos, 2019).

Given that farmers, extension agents, and researchers are the major stakeholders in the agricultural innovation ecosystem, the relevance of this theory is that meaningful participation of each group in both the planning and implementation phases is crucial for achieving responsive, effective, and sustainable extension outcomes.

3. DIGITAL EXTENSION

One of the major challenges of agricultural extension service delivery is the high agent-to-farmer ratio which limits timely access to advisory support. The evolution of digital extension or e-extension is aimed at addressing this issue. Therefore, digital extension involves providing farmers, especially those in the rural areas with resources and technical assistance remotely leveraging available technology and digital platforms. This approach enables them to make informed decisions, enhance crop yields, reduce input expenditures, and promote more efficient farm management (Dauda, 2025).

Digital extension can be delivered through mobile or web-based applications that are accessible on smartphones, tablets, phablets, and computers. Unlike web-based applications that require internet browsers for access, mobile apps are specifically designed to operate on Android or iOS operating systems. They are generally preferred by farmers because of their ease of use and ability to integrate interactive features such as tutorials, videos, and discussion forums. These tools help farmers understand complex agricultural concepts, learn innovative techniques, and share experiences with other farmers in an engaging and practical way (Ik-Ugwoezuonu and Ezike, 2024).

4. FEATURES OF MOBILE APPLICATIONS THAT DEEPEN FARMERS' PARTICIPATION

In the design of mobile applications, developers integrate specific features based on the needs and requirements of end users. This flexibility ensures that applications can evolve and be updated as needs change over time. Thus, several features can be built into agricultural mobile applications to enhance farmer participation in extension services. These include:

Multi-Language Support

Language barrier has been recognised a major hindrance to effective agricultural extension communication. To deepen farmer participation, mobile applications should allow users to change the default language, which is usually English. This can be achieved by incorporating a language switcher as part of the application's internationalisation feature that adapts the app to the users' linguistic and cultural requirements (Liu et al., 2023). As a result, farmers can select their preferred language directly within the app without changing the language settings of their entire devices. However, while it may not be practical to support all of Nigeria's over 200 languages, including the three major ones (Hausa, Igbo and Yoruba) would provide a strong starting point for inclusivity. Varied input methods: Not all farmers are able to write effectively in order to express themselves even if they are literate. To accommodate this group as well as non-literate farmers, voice input should be enabled similar to what is obtainable in WhatsApp. According to Duggirala (2022), voice recognition and voice control technologies have become essential features in modern mobile applications, allowing users to interact with devices in a more intuitive and hands-free manner. In addition, video and picture uploads can make farmers describe issues more clearly and succinctly, thus enhancing the effectiveness of communication.

Discussion Forums

These are platforms that allow farmers, extension agents and researchers to communicate in real time, similar to WhatsApp groups.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Questions raised can be addressed not only by extension agents or researchers but also by fellow farmers, thereby strengthening participatory problem-solving, exchange of ideas, sharing experiences, and peer support. Otherwise known as chat rooms, group chats, message boards, help forums, support communities, or feeds, Songa and Mupeta (2025) noted that this feature helps to bridge social barriers by providing a platform accessible to all segments of the society, from rural communities to urban dwellers.

Integration with Support Services

Agricultural support services such as input supply, loan facilities, and functional markets play a vital role in facilitating production and sustaining livelihoods of farmers (Maonga et al., 2017). Given that these are independent systems; they can be integrated into a mobile application using Application Programming Interfaces (APIs). These are standardized interfaces that allow different software applications to communicate with each other seamlessly (Malar, 2025). In this way, the mobile application becomes a one-stop platform, consolidating multiple agricultural services for greater accessibility and efficiency.

Push Notifications

These are messages that pop up on the home screen of a mobile device without requiring the user to be logged into an application or actively using the device. They are designed to grab attention and can convey reminders, updates, promotions, and other alerts (Balan and Sulekha, 2022). In the context of agriculture, push notifications can keep farmers informed in real time about important developments such as weather forecasts, pest and disease outbreaks, or market price changes. This ensures that they receive timely, actionable information that supports better decision-making and enhances farm productivity.

Offline Functionality

Malanin (2025) stated that applications designed with offline functionality continue to operate even when the network is lost.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Once internet connection is back, these applications automatically synchronize by uploading any offline files from the device to the server. Since internet access remains a challenge in many rural areas, offline capability is essential. Mobile applications with this feature will allow farmers to download and save content for later use. This will ensure continuity of learning and communication even in localities with low-connectivity.

5. MOBILE APPLICATION PRODUCT UTILITY

According to Senthilkumar et al. (2019), the product utility of mobile applications includes the following; (i) provision of remote accessibility to extension services to meet the urgent needs of the farmers as their production pattern and livelihood systems changes. (ii) mobile applications can be utilized by farming families anytime and at anyplace which will at long last save financial resources, time and effort in reaching large number of farmers, thereby improving efficiency of agricultural extension services. (iii) mobile applications' software assist in conveying knowledge to farming families in local languages at their level of understanding to improve production and reduce economic and farm loses. (iv) the mobile applications are developed to overcome literacy constraint for passing information to the end user farmers.

Also, Aravindhkumar and Karthikeyan (2019) argued that there is the need for designation of mobile applications for the agricultural professionals, students and farmers which should be location specific (information passed to the end user farmers must be specific to a farming locality), time bound (the information must get to the target farmers immediately i.e. timely), accurate and brief (the message to be delivered to the user farmers must be concise and clear for proper understanding and usage by the beneficiary farmers), easy entry and exit (the login and out should be easy, as well as easy steps for recovery of password), innovative and attractive (the mobile applications should be a novel and attractive), as well as grasp the outsiders (mobile applications must be supportive of newcomers by providing them with necessary information), and cover the uncover (mobile applications must also benefit the uncover farmers).

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

6. REVIEW OF MOBILE APPLICATIONS USED FOR AGRICULTURAL EXTENSION SERVICE DELIVERY

Access Agriculture (Belgium)

The Access Agriculture mobile application is an innovative learning platform that promotes sustainable and inclusive agricultural practices among smallholder farmers. It offers high-quality farmer-to-farmer training videos on agroecology, organic farming, and rural entrepreneurship, emphasizing practical, real-world knowledge exchange. The application supports multiple languages, namely Arabic, Bangla, English, French, Hindi, Spanish, and Portuguese, thereby making learning accessible across diverse regions. Users can easily download and share videos in their preferred language, fostering “south-south communication” and empowering farmers to adopt environmentally sound and economically viable farming methods (Access Agriculture, 2025).

AgroGrid (Nigeria)

AgroGrid aims to make farming digital, smarter, and more inclusive by connecting farmers to buyers, farmers to other farmers, and buyers directly to farms. The app was developed in response to the challenges faced by both customers and farmers in securing fair prices for agricultural produce and the broader need to establish a sustainable, efficient agricultural value chain that benefits all stakeholders. For buyers, AgroGrid offers the advantage of purchasing produce at farm-gate prices without intermediaries, while ensuring access to nearby, verified farms. Farmers, on the other hand, benefit from direct market access, a wider customer base, fair pricing, and guaranteed demand. The platform also promotes improved farming practices, knowledge sharing, and strong community support (AgroGrid, 2025).

FarmerLink (Netherlands)

The urge to connect thousands of farmers across Africa and other developing countries in cashew, rice, vegetables, maize, cowpeas, and sesame value chains through data-driven decision-making, financial access, and stronger market linkages led to the development of FarmerLink.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

It uses a structured step-by-step onboarding process to register farmers, plots, and surveys, which allows for continuous data collection throughout the production, harvesting, and sales stages. The app also provides tools for accessing finance, risk assessment, integrated loan applications, and transparent contract management, enabling farmers to make informed entrepreneurial decisions. In addition to farmers, cooperatives, processors, and traders can access synchronized and centralized information to reduce post-harvest losses and maximize profit (ExoLink, 2025).

FarmEx Agent and FarmEx Vendor (Nigeria)

Both applications are owned by Extension Africa, a private extension service provider whose mission is to “build Africa’s largest network of Extension Agents.” FarmEx Agent is a digital platform that integrates data on farming, markets, and finance to help farmers increase their yield and income by offering customized support for each farm throughout its production cycle. On the other hand, FarmEx Vendor functions as a marketplace that connects agro-dealers and input suppliers with extension agents, ensuring that farmers have access to quality and affordable agricultural products. The platform streamlines product listing, order management, and secure transactions, thereby creating a reliable supply chain for seeds, fertilizers, tools, and other essential inputs. While vendors benefit from increased market access and transparency, extension agents act as facilitators who ensure that farmers receive the right inputs at the right time (Google Play, 2025).

FarmSanta (India)

This mobile application functions as an intelligent “crop doctor” which provides personalized agronomic services to crop farmers, from seed selection to post-harvest handling. FarmSanta enables farmers to upload images and descriptions of crop-related issues for rapid diagnosis and solution delivery. Powered by artificial intelligence (AI) and machine learning (ML), the system is able to identify crop diseases/infections and provides treatment recommendations within minutes.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

The application also allows farmers to access real-time market prices of preferred crops within their selected geographical areas, ensuring that they receive accurate and up-to-date information to make informed marketing decisions. Furthermore, FarmSanta serves as a collaborative platform where farmers can engage directly with extension agents and fellow farmers to exchange ideas on innovative farming techniques, sustainable practices, and strategies for improving rural livelihoods and resource efficiency (FarmSanta, 2025).

Hello Tractor (Nigeria)

Hello Tractor is an innovative mobile application that connects smallholder farmers with tractor owners, bridging the gap in mechanization access across Africa. It is designed to make tractor services more convenient, affordable, and transparent by enabling tractor owners to list their tractors, while allowing farmers to compare prices, and book services based on their farm size and specific needs. Every tractor registered on the Hello Tractor is digitally connected and remotely monitored through an Internet of Things (IoT) device. This provides both farmers and tractor owners real-time data on tractor location, fuel levels, engine hours, and maintenance needs which helps to prevent fraud and machine misuse. Beyond connecting farmers and owners, Hello Tractor collaborates with financial institutions, equipment manufacturers, and governments to expand access to mechanization finance and data-driven agricultural policies. Headquartered in Abuja and Nairobi, the platform operates in 18 African countries, with over 3,000 tractors serving more than 500,000 smallholder farmers (Hello Tractor, 2025; Empower Africa, 2023).

iCow (Kenya)

Conceptualised in 2010, iCow was initially developed as a gestation calendar for dairy cows. Farmers were required to register individual cows onto the platform after which they begin to receive structured reminders on best practices related to breeding, nutrition, and health management. This improved productivity while reducing the risks associated with diseases and calving complications.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

The application later incorporated an ‘expert search’ function, enabling farmers to locate veterinary officers and artificial inseminators on a 24/7 basis, thereby expanding access to professional services in remote areas. Continuous feedback from new users shaped the development of iCow, with customer-centric design and rapid iterations, facilitating its expansion beyond dairy cows to include poultry and broader livestock management. Its broadcast messages cover a wide range of topics, including vaccination, spraying, mastitis control, deworming, hygiene, fodder management, feeding practices, feed quality, and record-keeping; equipping farmers with timely and practical knowledge. In 2016, iCow extended its services to Tanzania and Ethiopia (Marwa et al., 2020; iCow, 2021).

Kasuwa (Nigeria)

Translated as “market” in Hausa, Kasuwa is a mobile application that connects farmers directly with buyers to increase earnings, reduce post-harvest losses, and sustain livelihoods. The application offers tools for price discovery, secure payments, and efficient logistics. Through these services, farmers can identify reliable buyers, receive timely payments, and ensure safe delivery of their produce, consequently minimizing delays and transactional risks. In addition, Kasuwa provides real-time market data, enabling farmers to make informed decisions about when and where to sell their products (Agriarche, 2025).

mKrishi (India)

Launched in 2009, mKRISHI is a mobile application designed to deliver a wide range of personalized services to farmers, including agro-advisory, best practices, alerts, weather forecasts, and supply chain management. The application leverages predictive analytics to provide insights on crop acreage and yield, crop health, soil status, pest and weather forecasts, and resource quality assessment; helping farmers to make informed decisions and reduce potential losses. The platform surpassed one million users in 2017, reflecting its widespread adoption. A distinctive feature of mKRISHI is its provision of integrated services in local languages, which makes it accessible to farmers in remote areas.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Through this initiative, farmers are able to connect with stakeholders, access quality agricultural inputs, receive advice on farming practices, and obtain timely information on market prices and weather conditions (Inclusive Business, 2022).

ThriveAgric (Nigeria)

Founded in 2017, ThriveAgric is a data-driven mobile platform that, through its proprietary Agricultural Operating System (AOS) application, provides farmers with financing, training, and access to premium markets. The features of Thrive AOS include: digital profiling of farmers, farm mapping, input financing, field monitoring, harvest aggregation, digital marketplace, and inventory management. The company's business model is to unite multiple stakeholders across the agricultural value chain to create an integrated ecosystem serving the farmer at its centre. This enables it to underwrite and disburse input loans, offer index-based crop insurance, and link farmers directly to local and international buyers. ThriveAgric has since established operations and forged partnerships in Ghana and Kenya (Yahya, 2025).

Other notable mentions, though not yet fully developed into mobile applications, include:

- National Electronic Extension Platform (NEEP): In February 2025, the Federal Government of Nigeria “soft-launched” the National Electronic Extension Platform (NEEP) aimed at providing real-time access to agricultural information in collaboration with the National Agricultural Research and Extension System (NARES) and other relevant institutions like Agricultural Research Institutes and Universities (Akinyemi, 2025).
- Sarkin Noma AI: An innovative agricultural platform designed to empower farmers in Northern Nigeria by enabling them to make informed, smart farming decisions through real-time, intelligence-based insights powered by AI (GitHub, 2025). Its working principle is similar to that of FarmSanta, whereby farmers can upload images of crops or animals, and the system analyzes them to provide recommendations on pest and disease control, feeding, vaccination, breeding, and other farm management practices.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

7. CHALLENGES

Most mobile applications for digital extension service delivery are freely available for download on the Play Store or App Store. However, awareness among farmers remains very low, particularly among those accustomed to traditional face-to-face extension services. As a result, the number of app downloads and active users is often discouraging low.

Secondly, while mobile phone ownership is widespread, with virtually every farm family having at least one member who owns a phone, these are often basic feature phones that do not support application downloads. Therefore, transitioning to smartphones, which are required to run apps, demands additional financial investment that many smallholder farmers may be unwilling or unable to afford.

Next, mobile applications require reliable internet connectivity to function effectively. However, many remote farming communities still suffer from poor or unstable network coverage, which limits access to online advisory content and farmer-agent interactions. Although mobile network providers are gradually expanding their coverage to reach underserved areas as part of their market growth strategy, the high cost of internet subscriptions remains a major challenge, even in urban centres.

In addition, most digital agricultural initiatives are private-sector driven. This often creates a gap in service delivery, as the majority of extension agents in the country are public servants who may be reluctant to actively engage with privately managed platforms when such activities fall outside their official duties and are not financially compensated. Consequently, the absence of formal synergy between public extension systems and private digital platforms limits the effective integration and reach of these innovations among smallholder farmers.

Interestingly, even where strong partnerships with the private sector are established, such initiatives often struggle to survive beyond the political administrations that initiated them, which ultimately undermines their continuity, sustainability, and long-term impact. In Nigeria, agricultural policies and programmes are often influenced by short-term political priorities rather than long-term development goals.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

As a result, frequent changes in policy direction disrupt continuity and hinder the sustained use of mobile applications in extension service delivery.

Another significant barrier to the success of mobile-based extension systems is the limited digital literacy of both farmers and extension personnel. Many extension agents lack the technical skills to navigate mobile applications or respond effectively to farmers' inquiries through digital channels. Likewise, most farmers are unfamiliar with the technical operations of these applications, making it difficult for them to fully utilize the available features or engage actively. This shared skill gap limits the effectiveness of harnessing mobile applications for meaningful participation in extension activities.

CONCLUSION

Mobile applications have become powerful tools for transforming agricultural extension from a linear, top-down model into a more participatory, inclusive, and responsive system that empowers farmers as active contributors rather than passive recipients. They facilitate real-time information exchange, strengthen linkages among key stakeholders, and support knowledge co-creation. Their adaptable features make them suitable for addressing farmers' diverse needs, particularly in rural communities. Despite this potential, challenges such as poor network coverage, high data costs, limited smartphone ownership, weak digital literacy, low awareness, lack of institutional coordination, and policy instability continue to limit their impact and widespread use. Addressing these issues is essential not only for strengthening digital extension systems but also for fully harnessing the power of mobile applications to deepen farmer participation, bridge knowledge gaps, and drive inclusive agricultural transformation.

Recommendations

Awareness campaigns should be strategically implemented through agricultural cooperatives, farmer associations, local radio programmes, and community-based outreach initiatives to effectively communicate the relevance and benefits of mobile applications in agricultural extension. Such multi-channel sensitisation efforts will enhance farmers' understanding of digital tools, build trust in their usefulness, and ultimately increase adoption rates.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Agricultural development partners, mobile network operators and financial institutions should establish targeted financing mechanisms, subsidy programmes, and cooperative purchasing frameworks to facilitate affordable smartphone ownership among farmers. Such initiatives would ease farmers' financial burden while promoting digital inclusion and greater participation in mobile-based extension services.

The Federal and State governments, in collaboration with telecommunication companies, should prioritize the expansion and security of broadband and mobile network infrastructure in rural and agricultural communities. Furthermore, subsidized or zero-rated data plans dedicated to rural areas should be rolled out as a deliberate policy measure.

Stronger institutional partnerships between government extension agencies and private digital providers should be established to ensure coordinated, sustainable service delivery. These collaborations should be institutionalized and embedded in long-term national agricultural strategies to ensure continuity across political transitions and promote lasting impact.

Well-structured capacity-building programmes should be established and sustained to strengthen the digital competence of both farmers and extension personnel. These programmes should incorporate continuous training on the use of mobile applications, digital data collection, and online communication tools relevant to agricultural extension.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

REFERENCES

Access Agriculture (2025). Our story. <https://www.accessagriculture.org/our-story>

Agriarche (2025). The future of agriculture is here. <https://kasuwa.com/>

AgroGrid (2025). Our story: The AgroGrid journey. <https://agrogrid.com.ng/#our-story>

Akinyemi, F. (2025, February 26). FG launches digital extension platform to enhance agric productivity. Tribune online. <https://tribuneonlineng.com/fg-launches-digital-extension-platform-to-enhance-agric-productivity/>

Amalfitano, D., Fasolino, A. R., Tramontana, P., & Robbins, B. (2013). Testing android mobile applications: Challenges, strategies, and approaches. In Memon, A. (Ed.). *Advances in Computers*. (pp. 1-52). Elsevier.

Aravindhkumar, S. and Karthikeyan, C. (2019). Eminence of Mobile agricultural apps in the worldwide mobile network. In: P. Kumaravel, P. R. Nisha, T. Senthilkumar and D. Thirunavukkarasu (eds) *Innovative Extension Management for Uplifting Livelihood of Farmers-Status, Initiatives and Way Forward*. Compendium of International Seminar held at Tamil Nadu Veterinary and Animal Science University, Chennai, India. 27th – 28th June, 2019, pp 446-454.

Balan, Y. V., & Sulekha, A. (2022). Impact of push notifications on consumer buying behaviour. *International Journal of Commerce and Management Research*, 8(6), 82-84.

Dauda, M. (2025, September, 2). Digital extension services and agricultural productivity in Nigeria: A national overview. Sydani Group. <https://sydani.org/digital-extension-services-and-agricultural-productivity-in-nigeria-a-national-overview/>

Duggirala, J. (2022). Implementing voice recognition and voice control in android apps. *Journal of Software Engineering and Simulation*, 8(10), 14-18.

Empower Africa (2023, August 1). Hello Tractor: The agri-tech startup fuelling agricultural prosperity in Africa. <https://empowerafrica.com/hello-tractor-how-this-agritech-startup-is-fueling-agricultural-prosperity-in-africa/>

**CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR
SUSTAINABLE FOOD SYSTEMS**

Enos, S. (2019). Communication technologies. Inflibnet Center. <https://ebooks.inflibnet.ac.in/ae01/>

ExoLink (2025). FarmerLink. <https://www.exolink.eu/farmerlink>

FarmSanta (2025). FarmSanta: The smart farming tool. <https://www.farmsanta.com/about>

GitHub (2025). Sarkin Noma AI. <https://github.com/sarkin-noma-ai>

Google Play (2025). FarmEx – Vendors. <https://play.google.com/store/apps/details?id=com.farmex.vendor>

Hello Tractor (2025). Who we are. <https://hellotractor.com/about>

iCow (2021). iCow History. <https://icow.co.ke/icow-history/>

Ik-Ugwoezuonu, L., & Ezike, C. C. (2024). Assessing the Effectiveness of Mobile Apps in Enhancing Agricultural Extension Services Delivery in Nigeria. *African Journal of Sustainable Agricultural Development*, 5(2), 13-31.

Inclusive Business (2022). TCS mKrishi: Delivering services to farmers via mobile technology. <https://www.inclusivebusiness.net/page/project-profile-mkrishi-mobile-technology-for-farmers-in-india>

Liu, P., Xia, Q., Liu, K., Guo, J., Wang, X., Liu, J., Grundy, J., & Li, L. (2023). Towards automated Android app internationalisation: An exploratory study. *Journal of Systems and Software*, 197, 111559.

Malanin, V. (2025). Implementing offline-first web apps for remote healthcare monitoring. *International Journal of Research Publication and Reviews*, 6(5), 12351-12361.

Malar, M. K. (2025). The role of API integration in modern insurance platforms. *World Journal of Advanced Engineering Technology and Sciences*. 15(1), 2422-2433.

Mapiye, O., Makombe, G., Molotsi, A., Dzama, K., & Mapiye, C. (2023). Information and communication technologies (ICTs): The potential for enhancing the dissemination of agricultural information and services to smallholder farmers in sub-Saharan Africa. *Information Development*, 39(3), 638-658.

Maonga, B. B., Chilemba, J., & Maganga, A. M. (2017). Determinants of smallholder farm household decision to access agricultural support

**CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR
SUSTAINABLE FOOD SYSTEMS**

services in Malawi. *International Journal of Development and Sustainability*, 6(1), 16-32.

Marwa, M. E., Mburu, J., Oburu, R. E. J., Mwai, O., & Kahumbu, S. (2020). Impact of ICT based extension services on dairy production and household Welfare: The case of iCow service in Kenya. *Journal of Agricultural Science*, 12(3), 1-12.

Nigerian Communications Commission (2025). Industry Statistics. <https://ncc.gov.ng/market-data-reports/industry-statistics>

Prajapati, C. S., Priya, N. K., Bishnoi, S., Vishwakarma, S. K., Buvaneswari, K., Shastri, S., Tripathi, S., & Jadhav, A. (2025). The role of participatory approaches in modern agricultural extension: Bridging knowledge gaps for sustainable farming practices. *Journal of Experimental Agriculture International*, 47(2), 204-222.

Rolling, N. G. (1988). *Extension Science: Information systems in Agricultural development*. Cambridge.

Saini, S., Mallick, S., & Padhan, S. R. (2023). Participatory extension approach: Empowering farmers. *Biotica Research Today*, 5(4), 326-328.

Senthilkumar, S., Manivannan, C. and Sureshkannan, S. (2019). Mobile App. in Sheep and Goat Farming. In: P. Kumaravel, P. R. Nisha, T. Senthilkumar and D. Thirunavukkarasu (eds) *Innovative Extension Management for Uplifting Livelihood of Farmers-Status, Initiatives and Way Forward*. Compendium of International Seminar held at Tamil Nadu Veterinary and Animal Science University, Chennai, India. 27th – 28th June, 2019, pp 418-424.

Songa, S., & Mupeta, M. (2025). Design and implementation of a real time chat application system. *International Journal of Advanced Research*, 13(2), 1360-1373.

Tufte, T., & Mefalopulos, P. (2009). *Participatory communication: A practical guide*. World Bank, Washington, D.C.

Yahya, M. I. (2025, May 13). All you need to know about ThriveAgric, Nigeria's Agritech giant. <https://agritechdigest.com/all-you-need-to-know-about-thriveagric-nigerias-agritech-giant/>

**CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR
SUSTAINABLE FOOD SYSTEMS**

CHAPTER 3
**ARTIFICIAL INTELLIGENCE AND MACHINE
LEARNING APPLICATIONS IN VETERINARY
DIAGNOSTICS AND DISEASE PREDICTION**

¹Dr. Vikram CHANDU V.

²Abhinayan M.B.

³Meruva Nageswara S.K.P.

⁴Sri Vishnu Vardhan P.

⁵Gauri VINOD

⁶Arya Shyam NAMBIAR

¹Department of Veterinary Medicine, Rajiv Gandhi Institute of Veterinary Education and Research, Pondicherry University, vikramchanduvemulapalli00@gmail.com, ORCID ID: 0009-0006-3271-0172

²Rajiv Gandhi Institute of Veterinary Education and Research, Pondicherry University, abhinayan008@gmail.com, ORCID ID: 0009-0000-0356-7705

³Rajiv Gandhi Institute of Veterinary Education and Research, Pondicherry University, pranavmeruva@gmail.com, ORCID ID: 0009-0008-9337-711X

⁴Rajiv Gandhi Institute of Veterinary Education and Research, Pondicherry University, vishnuroyal2002@gmail.com, ORCID ID: 0009-0009-0391-5293

⁵Rajiv Gandhi Institute of Veterinary Education and Research, Pondicherry University, gaurivinod0906@gmail.com, ORCID ID: 0009-0006-7979-7324

⁶Rajiv Gandhi Institute of Veterinary Education and Research, Pondicherry University, aryasnambiar@gmail.com, ORCID ID: 0009-0006-7979-7324

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

INTRODUCTION

Artificial intelligence (A.I) has become a tangible reality, with rapid advances leading to its increasing integration across medicine and allied health sciences. Numerous A.I algorithms are now routinely employed for data analysis, pattern recognition and decision support. The veterinary field is no exception, as the adoption of A.I and machine learning (ML) applications has expanded steadily. Artificial intelligence refers to computer and algorithms based systems developed to mimic aspects of human intelligence, with machine learning and its associated algorithms constituting integral components of this technology. Machine learning systems improve performance by identifying patterns within complex datasets, enabling adaptation and predictive capability.

Despite its growing use, the application of A.I in medical and veterinary domains has raised concerns related to potential misdiagnosis, machine generated errors and the risk of work loss. As with any emerging technology, these challenges coexist with significant benefits. When appropriately implemented, A.I systems can assist in complex diagnostic tasks and reduce clinician workload. The effectiveness of A.I-driven tools depends strongly on their responsibility and contextual use. Excessive or uncritical reliance on automated systems may be detrimental; therefore, A.I should function as a decision-support and adjunct technology rather than a replacement for veterinary expertise. This chapter provides an overview of few A.I engineering technologies and their applications in veterinary diagnostics and disease prediction, with emphasis on their role in enhancing clinical decision-making, disease surveillance, and animal health management across diverse veterinary settings.

Applications

- A.I enabled diagnostic imaging
- Machine learning algorithms for early disease prediction in animals
- A.I-based haematology and clinical pathology analysers
- Predictive models for infectious disease outbreaks in veterinary populations
- Deep learning for dermatological and ophthalmic disease identification
- Wearable sensor data analytics for real-time health monitoring

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

- A.I for precision livestock farming and health surveillance
- Natural Language Processing (NLP) for automated clinical record analysis
- Ethical considerations and challenges of A.I in veterinary diagnostics.

1. A.I ENABLED DIAGNOSTIC IMAGING

Diagnostic imaging is a cornerstone of everyday veterinary practice. By allowing veterinarians to look inside the body without surgery, imaging techniques such as radiography, ultrasonography, computed tomography (CT), and magnetic resonance imaging (MRI) have greatly improved the way diseases are detected, treated, and monitored. These tools help clinicians identify problems earlier, locate lesions more accurately, and follow the progress of treatment over time (Najjar., 2023 and Islam et al., 2023). In recent years, artificial intelligence (A.I) has begun to play an important role in veterinary diagnostic imaging.

A.I-based tools are being introduced to assist veterinarians in interpreting images more quickly and consistently. Rather than replacing clinical expertise, A.I acts as a supportive aid often described as a “second set of eyes” that helps clinicians notice subtle changes, reduce errors, and manage increasing workloads (Shukla., 2025).

Principles of A.I Integration in Veterinary Diagnostic Imaging

A.I systems used in veterinary imaging mainly rely on machine learning and deep learning techniques. Among these, convolutional neural networks (CNNs) are especially useful for analysing images because they can recognize visual patterns such as shapes, textures, and edges. These systems are trained using large numbers of labelled veterinary images so that they can learn what normal anatomy looks like and how disease-related changes appear (Khalifa et al., 2024).

Once trained, A.I tools can examine new images and highlight areas that differ from expected patterns. They can be applied to a wide range of imaging methods, including X-rays, ultrasound, CT, and MRI. One of the most valuable features of A.I integration is automated anatomical segmentation.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

This means that the software can automatically outline organs, bones, or other structures within an image. Compared with manual outlining by specialists, A.I-based segmentation is faster, more consistent, and less dependent on individual experience (Pacheco et al., 2023). Accurate segmentation also supports further analysis, such as measuring lesion size, estimating organ volume, and creating three-dimensional (3D) models. These outputs help veterinarians better understand disease extent and improve communication during case discussions and referrals.

A.I-enhanced Diagnostic Accuracy and Clinical Usefulness

A major advantage of A.I enabled diagnostic imaging is its ability to improve diagnostic accuracy. A.I systems can rapidly scan images for common abnormalities, including fractures, lung pattern changes, enlarged organs, or soft tissue masses. By marking suspicious areas, A.I encourages clinicians to take a closer look and reduces the chance of missing early or subtle disease changes (Clark et al., 2018 and Vickram et al., 2025).

A.I also helps reduce inter-observer variability by applying the same evaluation criteria to every image. This is particularly helpful in general veterinary practice, where access to specialist radiologists may be limited. In this way, A.I supports more consistent and confident decision-making. While A.I-generated findings are not final diagnoses, they provide valuable guidance that supports clinical judgment and improves overall diagnostic reliability. Although most current applications focus on radiographs, AI is gradually being explored for advanced imaging modalities such as CT and MRI. As experience and data availability increase, these tools are expected to become more widely used in veterinary imaging workflows.

A.I-assisted Surgical Planning and Interventional Support

A.I-powered imaging tools also contribute to improved surgical planning and safer interventions. By processing imaging data, A.I systems can generate 3D reconstructions of anatomical regions, giving surgeons a clearer understanding of spatial relationships before surgery. This is particularly useful in orthopaedic, neurologic, and complex soft tissue procedures, where precision is essential (Paxton et al., 2023).

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Improved visualization helps surgeons anticipate potential risks, choose appropriate surgical approaches, and plan implant placement more accurately. A.I-assisted imaging also supports image-guided procedures such as biopsies and aspirations. By improving target localization, these tools help reduce tissue damage, shorten procedure time, and improve patient safety (Vickram et al., 2025).

Clinical Workflow Improvement through A.I

One of the most practical benefits of A.I in veterinary imaging is improved workflow efficiency. A.I systems can automatically rotate images, label anatomical regions, and assess image quality. If positioning or exposure is inadequate, the software can alert the user before interpretation begins. This reduces repeat imaging and improves overall study quality (Lovejoy et al., 2022). A.I-assisted analysis also shortens reporting time, allowing veterinarians to make decisions more quickly. Cloud-based platforms make it possible to upload images and receive A.I-supported feedback without investing in complex on-site systems. These efficiencies are especially valuable in emergency settings and busy practices, where time and resources are often limited.

Adoption Trends and Real-world Use

The use of A.I in veterinary diagnostic imaging has increased steadily, with radiographic interpretation being the most common application. A growing number of veterinarians now use A.I tools on a regular basis, reflecting increased trust in their clinical value (Shukla., 2025). In most cases, A.I is used as a decision-support tool that complements, rather than replaces, professional expertise. Several commercial platforms provide A.I-assisted image analysis, rapid preliminary reports, and integration with digital imaging systems. Models that combine automated analysis with specialist review are particularly effective in improving access to expert interpretation while maintaining diagnostic quality. Cloud-based and subscription-driven services have also made A.I tools more affordable and accessible for smaller veterinary clinics.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Challenges and Limitations

Despite its benefits, A.I in veterinary diagnostic imaging faces important challenges. One major limitation is the lack of large and diverse veterinary imaging datasets. Veterinary medicine involves multiple species and breeds, each with unique anatomical features, making it difficult to develop algorithms that perform equally well across all cases (Vickram et al., 2025). Other concerns include data privacy, potential algorithmic bias, and the need for proper training of veterinary staff. A.I outputs must always be interpreted in clinical context, and human oversight remains essential especially for unusual cases or rare conditions. Responsible use of A.I requires awareness of its limitations and regular validation of system performance (Lovejoy et al., 2022).

Future Directions and Emerging Trends

The future of A.I-enabled diagnostic imaging in veterinary medicine depends on continued digitalization and collaboration. As more clinics adopt digital and cloud-based imaging systems, the amount of available data will grow, supporting the development of more accurate and species-specific A.I models. Techniques such as transfer learning, which adapt knowledge from human imaging data, may further accelerate progress (Vickram et al., 2025). AI is also expected to contribute to more personalized veterinary care by combining imaging findings with clinical history and other diagnostic data. This integrated approach may help improve disease prediction, guide treatment planning, and enhance long-term patient monitoring.

A.I-enabled diagnostic imaging is steadily changing the way veterinary medicine is practiced. By supporting image interpretation, improving workflow efficiency, and assisting in surgical planning, A.I serves as a valuable extension of clinical expertise. Although challenges related to data availability, integration, and training remain, careful and responsible use of A.I can significantly enhance diagnostic confidence and patient care. As these technologies continue to evolve, A.I is likely to become an integral part of routine veterinary imaging practice.

2. MACHINE LEARNING ALGORITHMS FOR EARLY DISEASE PREDICTION IN ANIMALS

In veterinary medicine, the promise of artificial intelligence (A.I) lies in shifting from reactive diagnosis to proactive disease prediction. Shinde et al., 2025 noted that machine learning (ML) models can analyse routine health data to identify subtle trends that even experienced clinicians may overlook. By detecting these early deviations, A.I systems can flag animals at increased risk of disease well before overt clinical signs emerge. This transition toward predictive care is widely recognised as a central research priority in veterinary A.I.

2.1 Companion Animals: From Check-ups to Forecasts

In small-animal practice, data collected during routine wellness examinations provide a valuable longitudinal perspective on patient health. By integrating laboratory values, vital parameters, and medical history over time, machine learning models can be trained to forecast disease onset rather than merely confirm established pathology. Das et al., 2024 identified chronic kidney disease (CKD) in cats as a representative example of how machine learning can enhance early diagnosis. CKD typically progresses silently, and conventional biomarkers such as serum creatinine or symmetric dimethyl arginine (SDMA) often increase only after substantial nephron loss has occurred. Machine learning fundamentally alters this diagnostic scenario. Longitudinal models analysing trends in creatinine, blood urea nitrogen, urine specific gravity, body weight, and age have demonstrated the ability to predict progression toward azotaemia up to two years before traditional diagnostic thresholds are crossed. This early warning enables timely dietary and therapeutic interventions, potentially slowing disease progression and improving quality-adjusted life expectancy. A similar predictive framework described by Shinde et al., 2025 applies to canine hypoadrenocorticism (Addison's disease). Often referred to as "the Great Pretender," Addison's disease presents with non-specific clinical signs such as vomiting, lethargy, and diarrhoea, frequently resulting in delayed diagnosis.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Recent studies have demonstrated that machine learning models trained on routine haematological and biochemical data including electrolyte ratios, liver enzyme patterns, and basal cortisol values can distinguish Addisonian dogs with approximately 96.3% sensitivity and 97.2% specificity. In clinical practice, such models could function as automated screening tools, flagging high-risk patients for confirmatory ACTH stimulation testing and reducing the likelihood of missed or delayed diagnoses.

2.2 Insurance Data and Breed-Specific Risk Profiling

Beyond individual clinical records, population-scale datasets offer a complementary perspective on disease prediction. Veterinary insurance databases, which track health information across large animal populations over extended periods, represent a particularly valuable resource. A landmark study by Hadar et al., 2025 analysed data from over 550,000 insured cats and applied random forest and logistic regression models to predict future disease development, including periodontal disease and cutaneous tumours. The analysis revealed that prior insurance claims for non-specific conditions such as digestive disorders, generalised illness, or dermatological complaints were strong predictors of subsequent periodontal disease. Notably, each additional digestive-related claim was associated with an approximately threefold increase in disease risk (odds ratio ≈ 2.9). The models also identified distinct breed-related predispositions. Maine Coon, Siamese, and Burmese cats demonstrated increased risk for periodontal disease, while Norwegian Forest Cats, Devon Rex, and Sphynx cats were more frequently associated with skin tumours. These findings support the development of individualised, data-driven risk stratification models. For example, an AI-based alert could prompt earlier dental prophylaxis in a young Siamese cat with a history of recurrent digestive complaints, potentially mitigating severe periodontal disease later in life.

2.3 Distinguishing Wellness from Illness

A critical methodological challenge in predictive modelling is ensuring that “healthy” reference populations are truly healthy. Misclassification of subclinical illness as wellness can significantly degrade model performance.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

To address this issue, researchers have developed machine learning models to classify veterinary visits as genuine wellness examinations or illness-related consultations. Szlosek et al., 2024 reported that gradient boosting machine models trained on appointment metadata, clinical notes, and billing information achieved approximately 94% specificity and 86% sensitivity in distinguishing wellness visits from non-wellness visits in dogs and cats. Automated filtering of datasets in this manner improves baseline data accuracy and strengthens downstream disease prediction models.

2.4 Early Alerts for Metabolic Disease

In production animal medicine, predictive analytics are often integrated directly into automated farm infrastructure. Robotic milking systems routinely analyse milk composition parameters such as fat-to-protein ratio, electrical conductivity, and pH, which can serve as early indicators of metabolic disorders. Pan et al., 2025 reported that, in dairy cattle, recurrent neural network models combining data from wearable sensors (activity and temperature) and milking systems demonstrated the ability to detect subclinical metabolic disorders, such as ketosis and ruminal acidosis, significantly earlier than conventional visual observation. Detection time was reduced by approximately two-thirds. Early identification enables prompt dietary adjustments or preventive interventions, thereby minimising production losses and reducing reliance on antimicrobials.

3. A.I BASED HAEMATOLOGY AND CLINICAL PATHOLOGY ANALYSERS

Haematology and clinical pathology form the keystone of veterinary diagnostics, providing valuable and rapid insights into systemic health, inflammatory responses, metabolic derangements, and organ dysfunction (Stockham & Scott, 2008 and Thrall et al., 2022). Conventionally, these routine investigations rely heavily on automated analysers and manual microscopic examination, which are time-consuming and may be subject to errors due to inter-observer variability (Rishniw & Pion., 2016 and Kass et al., 2018).

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

In recent years, there has been a steady rise in the integration of Artificial Intelligence (A.I) and Machine Learning (ML) tools into veterinary haematology, thereby significantly improving efficiency, analytical accuracy, and diagnostic capacity (Pesapane et al., 2022; Brazhnik et al., 2020).

3.1 Principles of A.I Integration in Veterinary Laboratory Diagnostics

A.I-enabled haematology and clinical pathology analysers employ several conventional analytical technologies including electrical impedance, flow cytometry, laser scanning, fluorescence staining, and digital imaging combined with advanced computational algorithms (Rishniw & Pion, 2016 and Thrall et al., 2022). Large collections of pre-labelled blood smears and biochemical profiles are used to train machine learning models, enabling them to recognise various cell populations, identify patterns, and flag cellular abnormalities (Brazhnik et al., 2020). Supervised learning techniques are commonly utilised for cell classification and anomaly detection, while deep learning approaches particularly Convolutional Neural Networks (CNNs) are increasingly applied in image-based cytological studies and interpretation (Goodfellow et al., 2016 and Esteva et al., 2019). Veterinary-specific AI models require additional standardisation to accommodate interspecies variations in cell morphology, reference haematological ranges, and staining characteristics. This adaptation improves the accuracy and reliability of A.I-based diagnostics across companion animals, livestock, and exotic or wildlife species (Pesapane et al., 2022 and Morita et al., 2020).

3.2 A.I-Enabled Haematology Analysers

Artificial intelligence-based haematology analysers are capable of providing Complete Blood Counts (CBCs), Total and Differential Leukocyte Counts (TLCs and DLCs), platelet indices, and the detection of immature or abnormal cell types, such as reticulocytes and nucleated red blood cells (Rishniw & Pion., 2016 and Wright et al., 2019). High-resolution digital images of blood cells are captured and subsequently interpreted by A.I-assisted algorithms.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

These systems can routinely identify and classify red blood cells, white blood cells, and platelets, while simultaneously detecting abnormalities such as anisocytosis, poikilocytosis, and platelet clumping (Weiss & Wardrop., 2010 and Thrall et al., 2022).

A major advantage of these analysers is the reduced reliance on manual smear evaluation while maintaining consistent diagnostic accuracy (Rishniw & Pion., 2016). Built-in flagging systems alert clinicians to samples that require microscopic review, thereby optimising laboratory workflow and resource utilisation (Wright et al., 2019).

3.3 AI in Clinical Pathology and Biochemistry Analysis

A.I algorithms assist in the analysis and interpretation of serum biochemistry profiles, electrolyte panels, and urinalysis results (Lippi & Plebani., 2020). Machine learning models, particularly those employing deep learning techniques, can detect subtle deviations suggestive of organ dysfunction. For example, elevated serum creatinine and blood urea nitrogen levels indicative of renal disease (Esteva et al., 2019 and Thrall et al., 2022). With continued use and training, A.I systems rely on pattern-recognition algorithms to integrate multiple parameters simultaneously, thereby enhancing diagnostic interpretation (Topol., 2019 and Lippi & Plebani., 2020). Additionally, A.I-based platforms can correlate laboratory findings with patient-specific data, such as signalment and anamnesis, enabling more context-specific and clinically relevant interpretations.

Notable Vendors

Several AI-enabled haematology and clinical pathology analysers are currently available and gaining popularity in veterinary practice. Notable examples include Zoetis VetScan OptiCell®, Sysmex XN-V® and XN-series® analysers, IDEXX ProCyte Dx® and ProCyte One® and Abaxis VetScan HM5® Emerging A.I-driven cytology platforms, such as InSight AI-Cytology® and Ozelle®, represent new entrants in this field. These products aim to deliver reference laboratory level diagnostic quality directly to veterinary clinics.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

3.4 Advantages of AI-Based Laboratory Diagnostics

The adoption of AI-based haematology and clinical pathology analysers offers several advantages:

- Improved diagnostic accuracy through standardised and reproducible analytical processes
- Reduction in inter-observer variability
- Faster turnaround times, facilitating rapid clinical decision-making
- Early disease detection through recognition of subtle patterns not easily identified by manual examination
- Enhanced laboratory workflow efficiency

These benefits are particularly valuable in emergency care settings, herd health management, and large-scale disease surveillance programmes.

3.5 Limitations and Challenges

Despite their numerous advantages, A.I-based diagnostic tools are associated with certain limitations. Performance variability may occur across different species and breeds, particularly in animals with atypical haematological profiles (Morita et al., 2020 and Pesapane et al., 2022). Diagnostic accuracy may also be compromised by pre-analytical errors, such as haemolysis, lipemia, or clotting (Kass et al., 2018). Furthermore, A.I systems may misclassify rare or atypical cells, necessitating confirmation through manual evaluation by a trained veterinary pathologist (Weiss & Wardrop., 2010 and Brazhnik et al., 2020). Another significant challenge is the limited availability of large, well-annotated veterinary datasets required for robust AI model training. Continuous validation, regular quality control, and routine recalibration are essential to maintain diagnostic reliability (Pesapane et al., 2022).

4. PREDICTIVE MODELS FOR INFECTIOUS DISEASE OUTBREAKS IN VETERINARY POPULATIONS

Infectious diseases remain one of the most persistent challenges confronting veterinary medicine, livestock production, and animal health governance worldwide.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Diseases such as Foot and mouth disease (FMD), avian influenza, rabies, brucellosis, bovine tuberculosis, African swine fever, and bluetongue virus continue to cause recurring outbreaks, resulting in major economic losses, production disruptions, and long-term impacts on animal health systems. Conventional veterinary surveillance relies heavily on clinical reporting, laboratory confirmation, and retrospective epidemiological investigations. While these approaches are indispensable, outbreaks are often identified only after transmission has already occurred at the farm or regional level, thereby limiting the effectiveness of control measures (Halasa et al., 2020). In response to these limitations, predictive modelling has emerged as a proactive approach aimed at anticipating disease occurrence before widespread transmission. Advances in artificial intelligence and machine learning have enabled the analysis of complex veterinary datasets, allowing earlier identification of outbreak risk patterns and improved decision-making for disease prevention and control. Predictive models are increasingly viewed as essential tools for strengthening veterinary surveillance, enhancing preparedness, and supporting evidence-based policy development (Punyapornwithaya et al., 2022 and Adewumi et al., 2025).

4.1 Role of Predictive Modelling in Veterinary Epidemiology

Veterinary disease dynamics are shaped by multiple interacting factors, including animal density, farm management practices, movement networks, wildlife interfaces, environmental conditions, and pathogen characteristics. Traditional statistical approaches, particularly logistic regression, have been widely applied to study disease risk factors. However, these methods are primarily explanatory in nature and are often constrained when relationships between variables are nonlinear or highly complex (Breiman, 2001 and Punyapornwithaya et al., 2022). Predictive modelling shifts the focus from identifying associations to forecasting disease occurrence. Machine learning algorithms are particularly suited to veterinary epidemiology because they can process large, heterogeneous datasets without strict assumptions regarding data distribution. By learning directly from observed data, these models can identify subtle patterns that may not be evident through conventional analytical methods (Halasa et al., 2020 and Adewumi et al., 2025).

4.2 Modelling Approaches Used in Veterinary Outbreak Prediction

Classical Epidemiological Models

Mathematical models based on ordinary differential equations have long been used to represent infectious disease transmission in animal populations. These models have been applied to several veterinary diseases to understand outbreak progression and evaluate control strategies. However, their limited ability to incorporate detailed farm-level heterogeneity and real-time decision-making has restricted their use in operational outbreak prediction (Halasa et al., 2020). Agent-based models represent an important advancement in veterinary disease modelling. By using farms or herds as individual agents, these models can simulate disease spread through direct animal movements, indirect contacts such as vehicles and veterinarians, vector-mediated transmission, and airborne dissemination. Agent-based models have played a crucial role in guiding control strategies for FMD outbreaks, African swine fever in wild boar populations, and bluetongue epidemics in Europe (Keeling et al., 2001; Szmaragd et al., 2009 and Halasa et al., 2020).

Machine Learning Models

Machine learning introduces a data-driven framework focused on predictive accuracy. Supervised learning algorithms such as classification trees, random forests, gradient boosting, support vector machines, and nearest neighbours have been increasingly applied to veterinary surveillance data (Uddin et al., 2019 and Punyapornwithaya et al., 2022). Among these approaches, ensemble methods particularly random forests have consistently demonstrated superior performance. Random forests combine multiple decision trees to improve stability and accuracy, making them especially suitable for veterinary datasets characterized by complex interactions and high dimensionality (Breiman, 2001b and Boulesteix et al., 2012).

4.3 Data Sources for Veterinary Predictive Modelling

Farm- and Herd-level Surveillance Data

Animal movement records, livestock density, and farm location data form the foundation of many veterinary outbreak prediction models.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Several countries maintain detailed livestock movement databases, enabling explicit modeling of disease spread between farms. These data sources are critical for predicting outbreaks of highly contagious diseases such as FMD and African swine fever (Hardstaff et al., 2015 and Halasa et al., 2020).

Clinical and Diagnostic Information

Veterinary clinical records, including clinical signs, vaccination status, and laboratory test results, provide direct indicators of disease risk. Machine learning models can integrate these variables to identify early deviations from normal health patterns, allowing earlier detection of potential outbreaks (Adewumi et al., 2025).

Environmental and Vector-related Data

Environmental factors play a key role in the transmission of several veterinary diseases. Meteorological variables such as temperature, rainfall, and wind patterns have been used to model airborne spread of FMD and vector dispersal in bluetongue outbreaks. Incorporating these variables enhances the ability of predictive models to capture seasonal and climate-driven disease dynamics (Donaldson & Alexandersen., 2002, Sedda et al., 2012 and Halasa et al., 2020).

Molecular and Host-related Indicators

Recent veterinary predictive models have incorporated serological markers, antimicrobial resistance indicators, and microbiome diversity indices. These variables provide insights into host susceptibility and pathogen behavior, strengthening outbreak risk classification and improving prediction accuracy (Adewumi et al., 2025).

4.4 Machine Learning Prediction of Foot-and-Mouth Disease

Foot-and-mouth disease remains one of the most economically significant livestock diseases worldwide. In an endemic setting in Thailand, machine learning models were developed using real outbreak data from cattle farms to predict the occurrence of FMD outbreaks.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Classification trees, random forests, and CHAID algorithms were applied to data from outbreak and non-outbreak farms (Punyapornwithaya et al., 2022). All models demonstrated acceptable to excellent predictive performance, with the random forest model achieving the highest accuracy and area under the receiver operating characteristic curve. These findings confirmed that machine learning approaches can reliably identify high-risk farms using routinely collected veterinary data, providing valuable decision-support tools for veterinary authorities (Punyapornwithaya et al., 2022).

4.5 Applications Across Multiple Veterinary Diseases

Beyond FMD, predictive machine learning models have been applied to a wide range of veterinary infectious diseases. Studies have demonstrated their usefulness in forecasting avian influenza outbreaks in poultry, identifying high-risk rabies transmission zones, and predicting brucellosis and bovine tuberculosis occurrence in cattle populations. Additionally, climate-driven models have been used to anticipate changes in vector distribution affecting livestock diseases (Adewumi et al., 2025). These applications highlight the adaptability of predictive modelling approaches across different disease systems, host species, and ecological contexts within veterinary medicine.

4.6 Model Validation and Performance Evaluation

Reliable outbreak prediction requires robust validation. Veterinary predictive models are commonly evaluated using independent validation datasets, with performance assessed through accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve. Ensemble models such as random forests and gradient boosting have consistently shown high predictive performance across multiple veterinary disease contexts (Goldstein et al., 2017 and Punyapornwithaya et al., 2022). However, challenges such as class imbalance where outbreak events are relatively rare can affect model calibration and must be addressed to ensure reliable predictions in real-world veterinary settings (Adewumi et al., 2025).

4.7 Implications for Veterinary Practice and Disease Control

Predictive models offer significant practical benefits for veterinary professionals and animal health authorities. By identifying farms, herds, or regions at elevated risk, these tools support targeted surveillance, optimized vaccination strategies, and efficient resource allocation. Importantly, predictive modelling complements rather than replaces veterinary expertise, functioning as a decision-support system that enhances situational awareness and outbreak preparedness (Halasa et al., 2020 and Adewumi et al., 2025). Explainable machine learning approaches further strengthen adoption by allowing veterinarians to understand the factors driving model predictions, thereby improving trust and facilitating integration into routine disease control workflows.

4.8 Challenges and Limitations

Despite their promise, predictive models face several limitations in veterinary medicine. Data availability and quality remain uneven across regions, particularly in low-resource settings. Models developed for specific diseases or regions may not generalize without local validation. Additionally, computational requirements and technical expertise can limit large-scale implementation (Halasa et al., 2020 and Adewumi et al., 2025). Ethical considerations related to data ownership, privacy, and regulatory oversight must also be addressed to ensure responsible deployment of predictive tools.

4.9 Future Perspectives

Future advances in veterinary outbreak prediction are expected to focus on real-time surveillance integration, federated learning frameworks that enable multi-institutional collaboration, and expanded use of molecular and environmental data streams. Emphasis on transparency, explainability, and veterinarian-friendly interfaces will be essential for translating predictive research into effective disease control tools (Adewumi et al., 2025).

Predictive modelling represents a significant advancement in veterinary infectious disease surveillance.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Evidence from veterinary-focused studies demonstrates that machine learning models particularly ensemble approaches can accurately forecast outbreak risk using farm-level, clinical, environmental, and molecular data. When responsibly implemented, these tools enhance early detection, improve disease preparedness, and strengthen veterinary public health systems. Predictive modelling is therefore poised to become an integral component of modern veterinary epidemiology and disease control strategies (Halasa et al., 2020, Punyapornwithaya et al., 2022 and Adewumi et al., 2025).

5. DEEP LEARNING FOR DERMATOLOGICAL AND OPHTHALMIC DISEASE IDENTIFICATION

Deep learning (DL), a subset of artificial intelligence, has emerged as a powerful tool for image-based diagnostics in veterinary medicine. Veterinary dermatology and ophthalmology are particularly well suited for DL applications because diagnosis in these disciplines relies heavily on visual pattern recognition. Recent advances in convolutional neural networks, transfer learning, and multimodal data integration have enabled automated identification of skin and ocular diseases across multiple animal species, with performance approaching that of experienced clinicians. This chapter provides a comprehensive overview of deep learning concepts relevant to veterinary professionals, reviews current applications in veterinary dermatology and ophthalmology, discusses model development workflows and validation strategies, highlights limitations and ethical considerations, and explores future directions for clinical adoption.

Scenario of Veterinary Dermatology

Veterinary clinicians frequently encounter dermatological and ophthalmic disorders, which constitute a substantial proportion of cases in both companion and food animals. Diagnosis traditionally depends on clinical expertise, visual inspection, and confirmatory laboratory tests. However, inter-observer variability, limited access to specialists, and increasing caseloads present significant challenges. Deep learning offers an opportunity to augment clinical decision-making by providing objective, reproducible, and scalable diagnostic support.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Fundamentals of Deep Learning for Veterinary Applications

Deep learning models, particularly convolutional neural networks (CNNs), are designed to automatically learn hierarchical features from image data. Lower network layers extract basic visual features such as edges and textures, while deeper layers' capture complex, disease-specific patterns. Transfer learning, wherein models pre-trained on large generic datasets are fine-tuned using veterinary images, is especially valuable given the limited size and availability of curated veterinary datasets.

Deep Learning in Veterinary Dermatology

Dermatological conditions such as allergic dermatitis, bacterial pyoderma, demodicosis, dermatophytosis, and viral skin diseases often present with overlapping clinical signs. Deep learning models have been developed to classify and localize skin lesions in dogs, cattle, and other species using clinical photographs. These tools support early disease detection, longitudinal monitoring, and tele-dermatology applications, particularly in field and resource-limited settings.

Deep Learning in Veterinary Ophthalmology

Ophthalmic diseases require timely and accurate diagnosis to prevent irreversible vision loss. Deep learning approaches have been applied to the detection of corneal ulcers, conjunctivitis, cataracts, retinal lesions, and dry eye disease using still images and video recordings. Several studies indicate that DL-based systems can achieve diagnostic performance comparable to that of veterinarians in image-based assessments, supporting their role in screening and clinical triage.

Model Development and Validation Workflow

The development of reliable deep learning systems involves careful problem definition, standardized image acquisition, expert annotation, model training, and rigorous validation. External validation using data from multiple clinics and diverse populations is essential to ensure generalizability.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Explainable AI techniques, such as saliency mapping, improve model transparency, enhance clinician trust, and facilitate responsible clinical adoption.

Challenges and Ethical Considerations

Despite promising outcomes, several challenges limit the widespread adoption of deep learning in veterinary practice. These include small and imbalanced datasets, domain shifts between clinical settings, limited interpretability, and evolving regulatory frameworks. Ethical considerations such as client consent, data privacy, and the appropriate positioning of AI as a decision-support tool rather than a replacement for clinical judgment must be addressed.

6. WEARABLE SENSOR DATA ANALYTICS FOR REAL-TIME HEALTH MONITORING

Wearable sensor technologies are emerging as a game-changing asset in veterinary medicine, enabling continuous, non-invasive monitoring of animal health. When combined with artificial intelligence (AI) and machine learning (ML) techniques, these devices allow assessment of physiological and behavioural patterns in animals, aiding in herd health monitoring, early disease detection, and overall improvement of animal welfare (Neethirajan., 2017 and Haladjian & Haug., 2020). Wearable sensors commonly include collars, harnesses, ear tags, leg and tail bands, and rumen boluses. These devices are designed to collect real-time physiological and behavioural parameters such as heart rate, respiratory rate, body temperature, and activity patterns. In farm animals, sensors are increasingly used for the detection of estrus-related activity, including pedometers and heat-mount detectors (Rutten et al., 2013). In companion animals, wearable devices are primarily used for activity tracking and monitoring of daily behavioural patterns. Owing to continuous data acquisition, longitudinal health information can be analysed, representing the animal's true physiological status under natural living conditions (Berckmans., 2017).

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Role of A.I and ML in Sensor Data Analytics

Manual analysis of raw data produced by wearable sensors is impractical due to the high volume and multi-dimensional nature of the data, which requires extensive pre-processing and filtration (Wolfert et al., 2017). A.I and machine learning algorithms play a critical role in efficient data processing and interpretation. These models can be trained to categorize physiological and behavioural patterns as normal or pathological and to identify deviations from baseline values indicative of disease or stress. Time-series analysis and deep learning models, such as recurrent neural networks (RNNs) and long short-term memory (LSTM) networks, are particularly effective in capturing temporal dependencies within sensor-generated data (Hammerla et al., 2016 and Topol., 2019).

Applications in Real-time Health Monitoring

Wearable sensor systems support a wide range of clinical and herd-level applications. In farm animals, they enable continuous monitoring of rumination, locomotion, vital parameters and oestrous cycle stages, facilitating early detection of diseases such as mastitis and lameness, often during subclinical stages. In companion animals, these devices aid in monitoring chronic disorders such as cardiac disease and obesity. Deviations in activity levels or vital signs can directly alert clinicians and owners, allowing timely intervention (Caja et al., 2016). In wildlife and conservation medicine, wearable sensors enable remote health monitoring without the need for frequent physical handling, thereby minimizing stress and risk to animals (Haladjian & Haug, 2020).

Integration with Clinical Decision Support Systems

Modern wearable devices integrate sensor-derived data with cloud-based A.I analytics and clinical decision support systems. These platforms link physiological trends with electronic medical records, environmental conditions, and management practices, providing actionable insights for veterinarians and caretakers. Automated alerts facilitate rapid response to health emergencies at individual, herd, or population levels.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Furthermore, wearable sensor data can be integrated with other diagnostic modalities, such as laboratory findings and imaging data, enabling a comprehensive and holistic approach to veterinary healthcare (Van Hertem et al., 2017).

Advantages of Wearable Sensor-based Monitoring

- AI-driven wearable sensor analytics offer several advantages, including:
- Continuous, real-time health monitoring
- Early disease detection leading to improved animal welfare
- Reduced dependence on manpower and subjective observation
- Scalable health surveillance for large herds or animal populations (Berckmans, 2017 and Pezzuolo et al., 2018)

Challenges and Limitations

Despite their advantages, wearable sensor systems face several challenges. Data quality may be compromised due to sensor displacement, environmental interference, or device malfunction. Additionally, interspecies and breed-specific variations must be carefully considered during algorithm development. Challenges related to data management, privacy, cost-effectiveness, and infrastructure availability also persist. Successful implementation requires robust hardware, stable internet connectivity, and consistent owner compliance. AI models must be regularly validated, standardized, and updated to maintain accuracy and reliability (Neethirajan et al., 2021).

7. A.I FOR PRECISION LIVESTOCK FARMING AND HEALTH SURVEILLANCE

Precision livestock farming aims to manage and monitor individual animals continuously to improve productivity, health, welfare, and environmental sustainability. Traditional herd management relies largely on periodic observation and aggregated performance metrics.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Artificial intelligence (A.I) and machine learning (ML) are driving a significant transformation in precision livestock farming (PLF) and animal health surveillance. By integrating sensor networks, computer vision, wearable devices, and advanced data analytics, A.I enables continuous, individual-level monitoring of animal behaviour, physiology, and production metrics. This chapter reviews foundational A.I methods applied in PLF, summarizes key applications across species including dairy, beef, swine, poultry, and small ruminants, discusses data sources and integration strategies, outlines model development and validation workflows, addresses challenges related to data quality and ethical considerations, and highlights future directions such as federated learning, edge A.I, and multimodal predictive systems. In contrast, A.I-driven PLF provides real-time insights, allowing earlier detection of disease, optimized feeding strategies, improved reproductive management, and precise interventions that reduce antimicrobial use and enhance economic outcomes.

Core AI and Data Technologies

A.I systems used in PLF include supervised and unsupervised machine learning approaches, deep learning techniques such as convolutional neural networks for computer vision, recurrent and transformer-based models for time-series analysis, and probabilistic models for anomaly detection. Key enabling technologies include low-cost sensors (accelerometers, microphones, RFID), imaging modalities (RGB, thermal, hyperspectral), and data platforms for storage and real-time streaming. Edge computing allows on-farm inference with reduced latency, lower bandwidth requirements, and improved data privacy.

Sensors and Data Sources

Primary data sources in PLF include:

- Wearable sensors: Accelerometers, gyroscopes, GPS units, and heart-rate monitors used for activity tracking, rumination analysis, and spatial behaviour.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

- Vision systems: Fixed cameras, drone-based imagery, and thermal cameras applied for body condition scoring, gait analysis, and heat-stress detection.
- Acoustic data: Microphones used for cough detection in pigs and poultry, as well as vocalization analysis for welfare assessment.
- Environmental sensors: Sensors measuring temperature, humidity, and gas concentrations (ammonia, CO₂) to contextualize animal-level data.
- Farm management and production data: Feed intake records, milk yield, breeding history, and veterinary treatment logs.

7.1 Key Applications

Disease Detection and Early Warning

A.I models enable early detection of respiratory diseases, mastitis, lameness, and digestive disorders by identifying deviations in behaviour, rumination patterns, gait, or vocalization. Early detection reduces morbidity, treatment costs, and production losses.

Reproductive Management

Oestrus detection, conception prediction, and parturition forecasting are enhanced through time-series analysis of activity levels, body temperature, and proximity sensor data.

Precision Feeding And Nutrition

Individualized feeding strategies informed by weight estimation, body condition scoring, and real-time intake monitoring improve feed efficiency, reduce wastage, and support optimal growth and production.

Welfare And Behaviour Monitoring

Automated assessment of lameness, social interactions, aggression, and thermal comfort supports welfare audits and facilitates improvements in housing design and management practices.

Production Optimization And Environmental Monitoring

AI-based models forecast milk yield, growth rates, and greenhouse gas emissions at both herd and individual levels, enabling targeted mitigation and sustainability strategies.

7.2 Model Development and Deployment Workflow

A robust model development pipeline includes problem definition, representative data collection across seasons and production systems, annotation and ground-truthing using veterinary diagnoses and calibrated sensors, pre-processing, feature engineering, model selection, and performance evaluation. Validation should include cross-validation and external testing on independent farms. Deployment considerations include model interpretability, user-friendly interfaces for farmers and veterinarians, real-time alert thresholds, and continuous monitoring to address concept drift.

7.3 Case Studies and Representative Results

Several studies demonstrate tangible benefits of A.I-enabled PLF systems:

- Automated mastitis detection using milk electrical conductivity combined with activity sensors and machine learning classifiers improved early detection compared to routine on-farm checks.
- Vision-based body condition scoring in dairy cattle using convolutional neural networks achieved near-human performance, enabling automated herd-level monitoring.
- Acoustic cough detection in swine housing using deep learning achieved high sensitivity for early respiratory outbreak detection, allowing targeted vaccination and treatment strategies.
- These case studies highlight both economic and welfare benefits when A.I tools are integrated into clinical and management decision-support systems.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Challenges, Biases, and Limitations

Common challenges include sensor malfunction, missing or noisy data, variability across breeds and housing systems, and false-positive alerts leading to alarm fatigue. Data bias may arise when training datasets over-represent specific farm types or breeds, reducing generalizability. Additionally, concerns related to data privacy, ownership, and the lack of well-defined regulatory frameworks for A.I in animal agriculture remain significant barriers to widespread adoption.

Ethical, Legal, and Social Considerations

Ethical considerations include ensuring that animal welfare remains the primary objective, transparent communication regarding system limitations, and avoiding excessive reliance on automated decision-making. Data governance frameworks must address owner consent, anonymization, and fair benefit-sharing. Social implications include workforce changes on farms and the need for adequate training and acceptance among farmers and veterinary professionals.

Future Directions

Future developments include federated learning approaches that enable model training across farms without sharing raw data, multimodal models integrating vision, sound, and sensor data for improved accuracy, and edge, A.I hardware enabling low-latency, low-bandwidth inference. Integration with precision agriculture systems will support whole-farm sustainability analytics. Advances in explainable A.I are expected to improve user trust and facilitate regulatory acceptance.

Recommendations for Researchers and Practitioners

Researchers and practitioners should prioritize multi-site collaborations to build diverse datasets, adopt open data standards to ensure interoperability, report model performance with confidence intervals and external validation, and co-design user interfaces with farmers and veterinarians. Pilot deployments should include both economic and animal welfare impact assessments. A.I-powered precision livestock farming offers a pathway toward sustainable,

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

welfare-oriented, and economically viable livestock production systems. Successful implementation depends on rigorous scientific validation, stakeholder engagement, responsible data governance, and scalable technologies adapted to diverse farming contexts.

8. NATURAL LANGUAGE PROCESSING (NLP) FOR AUTOMATED CLINICAL RECORD ANALYSIS

Veterinary clinical records represent one of the richest yet most underutilised sources of medical information. Daily veterinary practice generates vast quantities of unstructured text, including case histories, SOAP notes, discharge summaries, pathology reports, and referral letters. While these narratives capture sophisticated clinical reasoning and contextual detail, their free-text format makes large-scale analysis challenging. Natural Language Processing (NLP), a subfield of artificial intelligence focused on enabling computers to interpret human language, offers a powerful solution by transforming unstructured veterinary records into structured, analysable data. Historically, veterinary data analytics relied primarily on structured fields such as laboratory values, billing codes, or diagnostic checklists. However, studies estimate that over 70% of clinically relevant information in medical records is embedded exclusively within free-text narratives rather than coded fields (Wang et al., 2018). In veterinary medicine, this proportion is likely even higher due to variability in record-keeping practices across clinics and species (Christ Brandt et al., 2024). NLP enables the systematic extraction of this latent information, allowing clinical narratives to contribute meaningfully to diagnostic support, disease surveillance, and predictive modelling.

8.1 Core NLP Techniques in Veterinary Records

Early NLP applications in medicine relied on rule-based systems and keyword matching, which were limited by vocabulary variability and contextual ambiguity. Contemporary veterinary NLP systems increasingly employ machine learning and deep learning approaches, including conditional random fields, recurrent neural networks (RNNs), and transformer-based architectures such as Bidirectional Encoder Representations from Transformers (BERT).

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

These models are capable of capturing semantic relationships, contextual dependencies, and negation features that are essential for accurate interpretation of clinical language (Devlin et al., 2019). In veterinary clinical records, NLP is commonly applied to tasks such as named entity recognition (NER), clinical concept normalisation, and document classification. NER enables automated identification of entities such as diseases, clinical signs, medications, anatomical structures, and diagnostic tests within narrative text. For example, NLP models can distinguish between phrases such as “polyuria present” and “no evidence of polyuria,” a distinction critical for accurate phenotyping. Advanced systems further incorporate negation detection and temporal reasoning to determine whether findings are current, historical, or explicitly ruled out (Wu et al., 2020).

8.2 Automated Phenotyping and Disease Surveillance

One of the most impactful applications of NLP in veterinary medicine is automated phenotyping, the process of assigning clinical labels based on textual descriptions rather than explicit diagnostic codes. This approach is particularly valuable for conditions that are under-coded or inconsistently diagnosed. NLP models applied to veterinary electronic medical records have demonstrated the ability to identify animals with chronic diseases such as chronic kidney disease, dermatological disorders, and gastrointestinal syndromes based solely on narrative patterns, even in the absence of a formally recorded diagnosis (Sneha Das et al., 2024). At the population level, NLP enables real-time disease surveillance by continuously analysing clinical notes for emerging patterns of syndromic presentations. This capability is especially valuable in livestock and shelter medicine. NLP-based monitoring systems can detect increases in respiratory, gastrointestinal, or neurological symptom clusters before laboratory confirmation is available, thereby supporting early outbreak alerts and targeted interventions (O V Shinde et al., 2025). Such systems align closely with One Health objectives by strengthening preparedness for zoonotic diseases.

8.3 Clinical Decision Support and Workflow Optimisation

Beyond surveillance, NLP contributes directly to clinical decision support. By extracting relevant historical information from previous visits, NLP systems can summarise patient trajectories and highlight clinically significant trends for veterinarians at the point of care. For instance, automated identification of repeated mentions of “increased thirst,” “weight loss,” and “lethargy” across multiple visits may prompt earlier investigation for endocrine or renal disorders. NLP also plays an increasingly important role in administrative efficiency. Automated summarisation of clinical encounters and voice-to-text documentation tools have been shown to reduce documentation time by 20–30% in human healthcare settings, with similar efficiency gains anticipated in veterinary practice as these systems mature (Topaz et al., 2020 and Jaime Bast., 2024). Reducing documentation burden is particularly relevant given the high prevalence of professional burnout reported among veterinarians.

8.4 Integration with Predictive Analytics

The true potential of NLP emerges when unstructured text is integrated with structured clinical data. Extracted narrative features such as symptom frequency, clinician concern language, or descriptors of disease progression can be incorporated into machine learning models for early disease prediction. Studies integrating NLP-derived features with laboratory and sensor data have demonstrated superior predictive performance compared to models relying solely on structured data (Shickel et al., 2018). For example, NLP-enhanced models have shown improved accuracy in distinguishing wellness visits from illness visits, achieving specificity values approaching 0.94 and sensitivity of approximately 0.86 when clinical notes were analysed alongside appointment metadata (Szlosk D et al., 2024). This capability enhances dataset quality for downstream analytics and reduces misclassification bias in predictive modelling.

8.5 Challenges and Ethical Considerations

Despite its significant promise, veterinary NLP faces several challenges. Clinical language varies widely across practitioners, regions, and species, complicating model generalisability. Abbreviations, misspellings, and informal phrasing are common in veterinary records, increasing pre-processing complexity. Furthermore, most large language models are pre-trained on human medical or general-language corpora, necessitating domain adaptation for accurate veterinary applications (Christ Brandt et al., 2024). Ethical considerations include data privacy, transparency, and algorithmic bias. NLP systems trained primarily on referral hospital data may over-represent severe disease cases and underperform in general practice settings. Additionally, automated text analysis raises concerns regarding client consent and secondary use of medical records. Robust governance frameworks, data anonymization protocols, and regulatory oversight are therefore essential for responsible deployment (Bellamy JEC., 2023).

8.6 Future Directions

Future advances in veterinary NLP are likely to be driven by domain-specific language models trained on large and diverse veterinary corpora. Multilingual NLP capabilities will become increasingly important for global disease surveillance, while integration with imaging, genomics, and sensor-derived data will enable more comprehensive clinical intelligence platforms. Importantly, NLP should be regarded not as a replacement for clinical judgement, but as a cognitive augmentation tool that enhances information accessibility and supports evidence-based decision-making.

Natural Language Processing represents a critical bridge between narrative clinical expertise and data-driven veterinary medicine. By unlocking the diagnostic and epidemiological value of free-text clinical records, NLP enhances disease surveillance, supports early diagnosis, improves workflow efficiency, and strengthens predictive modelling. When implemented with appropriate validation, transparency, and ethical oversight, NLP has the potential to become a foundational component of intelligent veterinary health information systems.

9. ETHICAL CONSIDERATIONS AND CHALLENGES OF A.I IN VETERINARY DIAGNOSTICS.

As artificial intelligence (A.I) tools become increasingly embedded in veterinary diagnostics, a parallel set of ethical, legal, and professional challenges has emerged. Addressing these concerns is essential to ensure that A.I enhances, rather than undermines, veterinary practice.

9.1 Opacity and Trust

One of the foremost ethical issues is the “black box” nature of many A.I systems. Deep learning models used in diagnostic imaging do not interpret images as humans do; instead, they identify statistical patterns of pixel intensity and texture. This opacity raises a fundamental question: if clinicians cannot understand how a model arrives at a diagnosis, can they ethically rely on its output? The consequences of error are substantial. A false-positive result may lead to unnecessary invasive procedures or euthanasia, while a false-negative result could delay potentially life-saving treatment. To address this concern, there is growing emphasis on Explainable Artificial Intelligence (X.A.I). Techniques such as saliency mapping, where heat maps highlight image regions that influenced model predictions—allow veterinarians to assess whether A.I-generated decisions align with anatomical and clinical expectations (Bellamy JEC, 2023 and Christ Brandt et al., 2024).

9.2 Algorithmic Bias

Algorithmic bias represents another significant ethical challenge. AI models inherently reflect the data on which they are trained, and veterinary datasets often over-represent specific breeds, species, or referral-hospital populations. For instance, an imaging algorithm trained primarily on tertiary referral cases may overestimate disease prevalence when applied in general practice settings. Biological bias is equally relevant. Dermatological AI tools trained predominantly on lightly pigmented animals may underperform in darker-coated breeds, while facial-recognition systems optimised for Holstein cattle may struggle with solid-coloured breeds such as Angus or Jersey.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Ensuring diversity and representativeness in training datasets is therefore an ethical imperative to prevent inequitable diagnostic performance (Christ Brandt et al., 2024).

9.3 Liability and Standard of Care

The integration of A.I also challenges existing legal and regulatory frameworks. At present, A.I systems are classified as decision-support tools, and ultimate responsibility for clinical decisions rests with the veterinarian. However, as A.I diagnostic accuracy continues to improve, the professional standard of care may evolve. Failure to utilise validated A.I tools could eventually be interpreted as a deviation from best clinical practice (AAVSB., 2025). This evolving landscape underscores the importance of informed consent. Veterinarians may have an ethical and professional obligation to disclose the use of A.I in diagnostic decision-making, ensuring that clients understand both its potential benefits and inherent limitations.

9.4 Data Ownership and Power Asymmetry

In livestock production systems, ethical concerns extend to data governance and ownership. Modern farms generate vast quantities of health and production data through sensors, robotic equipment, and cloud-based platforms. Frequently, this data is controlled by large AgTech corporations rather than the farmers who generate it, creating power asymmetries and uncertainty regarding ownership and control. Raw agricultural data often lack clear legal protection, resulting in a regulatory vacuum. Increasing calls for formalised “data rights” frameworks aim to recognise farmers as legitimate data owners, ensuring transparency, portability, and fair use of farm-generated information.

9.5 Workforce Impact: Skills and Burnout

A.I also presents a dual impact on the veterinary workforce. Automation of administrative tasks and diagnostic triage has the potential to reduce cognitive load and mitigate professional burnout.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Conversely, excessive reliance on A.I systems carries the risk of professional deskilling, particularly among early-career veterinarians who may not fully develop foundational diagnostic competencies. Veterinary education and continuing professional development must therefore balance A.I literacy with reinforcement of core clinical reasoning and diagnostic skills.

CONCLUSION

The ethical integration of AI into veterinary diagnostics requires transparency, representative and unbiased datasets, clear regulatory frameworks, and sustained professional oversight. By proactively addressing these challenges, the veterinary profession can ensure that A.I functions as a trustworthy clinical partner enhancing diagnostic accuracy, improving animal welfare, and supporting veterinarians rather than replacing them.

**CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR
SUSTAINABLE FOOD SYSTEMS**

REFERENCES

Adewumi, I. O., Oyekunle, V. B., & Sodamola, M. O. (2025). Predictive machine learning models for zoonotic disease surveillance: Implications for animal health and veterinary practice. *Preprints.org*. <https://doi.org/10.20944/preprints202509.0658.v1>

American Association of Veterinary State Boards. (2025). Regulatory considerations of the use of artificial intelligence in veterinary medicine (White paper). American Association of Veterinary State Boards.

Banzato, T., et al. (2024). Applications of artificial intelligence in veterinary diagnostics. *Frontiers in Veterinary Science*, 11, 1298765.

Bellamy, J. E. C. (2023). Artificial intelligence in veterinary medicine requires regulation. *Canadian Veterinary Journal*, 64(10), 968–970.

Berckmans, D. (2017). General introduction to precision livestock farming. *Animal Frontiers*.

Berckmans, D. (2017). General introduction to precision livestock farming. In D. Berckmans (Ed.), *Precision livestock farming: Opportunities, challenges and applications* (pp. 1–20). Wageningen Academic Publishers.

Brandt, C., Keller, S. M., Reagan, K. L., Zwingenberger, A. L., & Brown, C. T. (2024). Adopting artificial intelligence in veterinary diagnostics: A scoping review of key challenges. *Veterinary Sciences*, 11(2), 85–101. <https://doi.org/10.3390/vetsci11020085>

Brazhnik, K., Costa, M., Riond, B., & Hofmann-Lehmann, R. (2020). Artificial intelligence in clinical pathology: Current applications and future directions. *Veterinary Clinical Pathology*.

Breiman, L. (2001). Statistical modeling: The two cultures. *Statistical Science*, 16, 199–231.

Burti, S., Banzato, T., Coghlan, S., Wodzinski, M., Bendazzoli, M., & Zotti, A. (2024). Artificial intelligence in veterinary diagnostic imaging: Perspectives and limitations. *Research in Veterinary Science*, 175, 105317.

Caja, G., Castro-Costa, A., & Knight, C. H. (2016). Engineering to support wellbeing of dairy animals. *Journal of Dairy Research*.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Choudhary, S., Yitbarek, M., & Dagnaw, B. (2023). Imaging-based monitoring of treatment response in veterinary patients. *Veterinary Radiology & Ultrasound*.

Clark, B. W., Greco, A., & Lovejoy, C. A. (2018). Diagnostic errors and the bedside clinical examination. *Medical Clinics of North America*.

Das, S., Roy, R., & Bezboruah, T. (2024). Machine learning in animal healthcare: A comprehensive review. *International Journal of Recent Engineering Science*, 11, 89–93.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. *Proceedings of NAACL-HLT*, 4171–4186.

Donaldson, A. I., & Alexandersen, S. (2002). Predicting the spread of foot and mouth disease by airborne virus. *Revue Scientifique et Technique (OIE)*, 21, 569–575.

Esteva, A., Robicquet, A., Ramsundar, B., et al. (2019). A guide to deep learning in healthcare. *Nature Medicine*.

Giger, M. L. (2018). Machine learning in medical imaging and diagnostic radiology. *Journal of the American College of Radiology*.

Goldstein, B. A., Navar, A. M., & Pencina, M. J. (2017). Opportunities and challenges in developing risk prediction models. *American Journal of Epidemiology*, 185, 809–818.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Greco, A., Higgins, R. M., & Abusalah, M. A. H. (2023). Imaging techniques in veterinary medicine: Part II. *European Journal of Radiology Open*.

Hadar, B. N., Poljak, Z., Bonnett, B., et al. (2025). Machine learning predicts selected cat diseases using insurance data. *American Journal of Veterinary Research*, 86(S1), S52–S62.

Haladjian, J., & Haug, J. (2020). Wearable devices for animal health monitoring.

Halasa, T., Græsbøll, K., Denwood, M., et al. (2020). Prediction models in veterinary epidemiology. *Frontiers in Veterinary Science*, 7, 513.

Hammerla, N. Y., Halloran, S., & Plötz, T. (2016). Deep learning models for activity recognition using wearables.

**CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR
SUSTAINABLE FOOD SYSTEMS**

Hardstaff, J. L., Häslér, B., & Rushton, J. R. (2015). Livestock trade networks for surveillance. *BMC Veterinary Research*, 11, 82.

Hassan, F. A. M., Moawed, S. A., El-Araby, I. E., & Gouda, H. F. (2022). Machine learning prediction in veterinary data. *Journal of Advanced Veterinary Research*, 12(6), 798–802.

Higgins, R. M., Sadeghnejad, S., & Paxton, E. W. (2023). Advanced imaging and robotics in surgery. *Medical and Healthcare Robotics*.

Islam, M. S., Choudhary, S., & Yitbarek, M. (2023). Advances in veterinary diagnostic imaging. *Journal of Veterinary Science*.

Jones, B. A., & Smith, L. M. (2021). Machine learning for livestock disease surveillance. *Veterinary Research*, 52(1), 24.

Kass, P. H., Rishniw, M., & Pion, P. D. (2018). Variability in veterinary laboratory testing. *Veterinary Clinical Pathology*.

Keeling, M. J., Woolhouse, M. E. J., et al. (2001). Dynamics of the UK foot and mouth disease epidemic. *Science*, 294, 813–817.

Khalifa, M., Khanna, A. K., & Lovejoy, C. A. (2024). AI in clinical decision support. *Computers in Methods and Programs in Biomedicine: Update*.

Li, L., Zhang, Q., & Huang, D. (2021). Imaging techniques for animal phenotyping.

Li, X., Zhao, Y., & Wang, H. (2023). Computer vision for cattle lameness detection. *Computers and Electronics in Agriculture*, 199, 107131.

Lippi, G., & Plebani, M. (2020). Integrated diagnostics. *Clinical Chemistry and Laboratory Medicine*.

Lovejoy, C. A., Pacheco, B. M., & Clark, B. W. (2022). Digital technology in healthcare. *Future Healthcare Journal*.

Martinez, V., & Perez, J. (2022). Acoustic monitoring for respiratory disease detection. *Sensors*, 22(9), 3456.

Morita, T., Imai, S., & Suzuki, K. (2020). Machine learning in veterinary pathology. *Journal of Veterinary Medical Science*.

Najjar, M. (2023). Anatomical imaging in veterinary diagnostics. *Veterinary Medicine and Science*.

Neethirajan, S. (2017). Wearable sensors for animal health management.

Pan, L., Chen, X., Han, D., et al. (2025). ML-based mastitis detection. *Frontiers in Veterinary Science*, 12, 1671186.

**CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR
SUSTAINABLE FOOD SYSTEMS**

Paxton, E. W., Higgins, R. M., & Greco, A. (2023). 3D imaging and surgical planning. *Journal of Orthopaedic Research*.

Pesapane, R., Voltersen, L. S., Olsen, A., & Mathis, A. (2022). AI in veterinary medicine: A scoping review. *The Veterinary Journal*.

Punyapornwithaya, V., Klaharn, K., Arjkumpa, O., & Sansamur, C. (2022). ML prediction of FMD outbreaks. *Preventive Veterinary Medicine*, 207, 105706.

Rishniw, M., & Pion, P. D. (2016). Automated hematology analyzers. *Veterinary Clinical Pathology*.

Sedda, L., Brown, H. E., Purse, B. V., et al. (2012). Algorithmic modeling of bluetongue spread. *Proceedings of the Royal Society B*, 279, 2354–2362.

Sharma, A., et al. (2023). Deep learning for animal skin disease detection. *Computers and Electronics in Agriculture*, 205, 107590.

Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep learning for EHR analysis. *IEEE Journal of Biomedical and Health Informatics*, 22(5), 1589–1604.

Shinde, O. V., Sankpal, S. S., Kandalkar, Y. B., et al. (2025). AI in animal disease surveillance. *Veterinary World*, 18(1), 1–12.

Stockham, S. L., & Scott, M. A. (2008). Fundamentals of veterinary clinical pathology.

Szlosek, D., Coyne, M., Riggott, J., et al. (2024). ML for wellness visit classification. *Frontiers in Veterinary Science*, 11, 1348162.

Szmaragd, C., Wilson, A. J., Carpenter, S., et al. (2009). Bluetongue transmission modeling. *PLoS ONE*, 4, e7741.

Thrall, M. A., Weiser, G., Allison, R. W., & Campbell, T. W. (2022). Veterinary hematology and clinical chemistry.

Topol, E. J. (2019). High-performance medicine. *Nature Medicine*.

Topaz, M., Murga, L., Gaddis, K. M., et al. (2020). Mining clinical notes. *Journal of Biomedical Informatics*, 90, 103103.

Uddin, S., Khan, A., Hossain, M. E., & Moni, M. A. (2019). Supervised ML for disease prediction. *BMC Medical Informatics and Decision Making*, 19, 281.

Van den Broek, J., & Thompson, R. (2024). Federated learning for on-farm models. *Frontiers in Artificial Intelligence*, 7, 112.

***CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR
SUSTAINABLE FOOD SYSTEMS***

Van Hertem, T., Rooijackers, L., Peña Fernández, A., Norton, T., & Vranken, E. (2017). Data visualization in precision livestock farming.

Vickram, A. S., Infant, S. S., Priyanka, & Chopra, H. (2025). AI-powered anatomical imaging. *Annals of Anatomy*, 258, 152355.

Wang, Y., Wang, L., Rastegar-Mojarad, M., et al. (2018). Clinical information extraction. *Journal of Biomedical Informatics*, 77, 34–49.

Wang, Y., et al. (2025). Multimodal deep learning for diagnostics. *JMIR AI*, 4(1), e51234.

Wathes, C. M., Kristensen, H. H., Aerts, J. M., & Berckmans, D. (2008). Precision livestock farming and welfare. *Journal of Agricultural and Environmental Ethics*, 21(6), 547–566.

Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming.

Wright, I., Bellamy, J., & McLaughlin, M. (2019). Automated hematology analyzers in practice. *Journal of Small Animal Practice*.

CHAPTER 4
CLIMATE CHANGE AND THE GLOBAL FOOD
SYSTEM: IMPACTS, VULNERABILITIES AND
PATHWAYS TO RESILIENCE

¹Masudul Islam KHAN

¹Daffodil International University, Bangladesh, khan34-698@s.diu.edu.bd, ORCID ID: 0000-0002-4769-0147

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

INTRODUCTION

Climate change represents one of the most significant threats to global food security and agricultural sustainability in the 21st century (Vermeulen et al., 2012). Rising global temperatures, shifting precipitation patterns, increased frequency of extreme weather events, and changing pest and disease dynamics are fundamentally altering the conditions under which food is produced, processed, transported, and consumed (Porter et al., 2014). Simultaneously, the food system itself contributes substantially to anthropogenic climate change through greenhouse gas emissions from agricultural production, land use change, food processing, transportation, and waste, creating a bidirectional relationship of mutual influence and risk (Garnett, 2011; Smith et al., 2014).

The interconnections between climate change and food systems are complex and multifaceted, affecting crop yields, livestock productivity, aquatic ecosystems, food quality, nutritional composition, and ultimately human health and livelihoods across all regions of the world (Wheeler & von Braun, 2013). Developing countries and smallholder farmers, who are often most dependent on agriculture and least equipped to adapt, face disproportionate vulnerability (Lobell et al., 2008). This chapter examines the mechanisms through which climate change impacts food systems, identifies key vulnerabilities and risks, explores regional variations in impact, and discusses evidence-based pathways toward enhanced resilience and sustainability (Thornton & Herrero, 2015).

1. CLIMATE CHANGE IMPACTS ON AGRICULTURAL PRODUCTION

Temperature Changes and Crop Performance

Rising mean global temperatures directly affect crop growth, development, and yield through multiple physiological pathways (Lobell & Field, 2007). Most staple crops including wheat, rice, maize, and pulses have narrowly defined thermal optima for photosynthesis, reproductive development, and grain-filling (Asseng et al., 2015). Even modest increases in growing season temperature can reduce yields in regions already near the upper thermal tolerance of cultivated varieties (Lobell et al., 2011).

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

For instance, each 1°C increase above the optimum temperature reduces wheat yields by approximately 6%, rice yields by 3.2%, and maize yields by 7.4% (Asseng et al., 2015).

Heat stress during critical phenological stages flowering, grain-filling, and seed maturation is particularly damaging, often resulting in reduced grain number, kernel weight, and overall marketable yield (Barnabás et al., 2008). Heat waves during the growing season can trigger premature senescence, limit pollination, and accelerate maturation, leaving crops with insufficient time to accumulate biomass and grain reserves (Challinor et al., 2014). Moreover, elevated temperatures increase crop water demand while potentially reducing water availability, compounding physiological stress and productivity losses (Lobell & Burke, 2010).

Precipitation Variability and Water Stress

Changes in precipitation patterns characterized by increased variability, more intense but less frequent rainfall, and altered seasonal distribution present severe challenges for rain-fed agriculture, which supplies the majority of global food production (Christensen et al., 2013). Extended droughts deplete soil moisture, restrict plant water uptake, and trigger stomatal closure, leading to reduced photosynthesis and stunted growth (Lobell & Field, 2007). Conversely, excessive rainfall and flooding damage crops, cause waterlogging, trigger soil erosion, promote disease development, and contaminate fields with saline water in low-lying areas (Porter et al., 2014).

The increased rainfall variability also complicates irrigation scheduling, groundwater recharge, and reservoir management, threatening water security for both irrigated agriculture and human consumption (Schewe et al., 2014). In water-scarce regions, competition between agricultural, industrial, and domestic water demands intensifies, with agriculture often bearing the burden of scarcity (Rockström et al., 2009). The 2012 drought in the United States Corn Belt and the 2010 Russian drought exemplify how precipitation extremes can cause rapid, substantial yield losses with global ramifications for food prices and food security (Lobell et al., 2011).

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Extreme Weather Events and Crop Losses

Increased frequency and intensity of extreme weather events including hurricanes, typhoons, hailstorms, unseasonal frosts, and intense heat waves inflict acute damage to crops, soil, and agricultural infrastructure (IPCC, 2014). Severe storms destroy crops in the field, damage post-harvest storage facilities, and disrupt transportation networks, directly reducing food availability (Porter et al., 2014). Untimely frosts kill flowering crops and young seedlings, while hail destroys leaves and fruits, requiring costly replanting or accepting reduced yields (Lobell & Field, 2007).

The probability of concurrent crop failures across multiple production regions referred to as compound failures increases with climate change, amplifying global supply disruptions and food price volatility (Gaupp et al., 2020). Such synchronized shocks can rapidly trigger food insecurity in import-dependent nations and destabilize global food markets, as observed during the 2010–2012 global food price crisis (Headey & Fan, 2010).

Pest, Disease, and Weed Dynamics

Warmer temperatures and altered precipitation patterns expand the geographic range and lengthen the active season of agricultural pests, diseases, and weeds (Chakraborty & Newton, 2011). Pest development rates accelerate under elevated temperatures, enabling multiple generations per season in previously single-generation regions, increasing pest pressure and crop losses (Porter et al., 2014). Fungal, bacterial, and viral crop diseases expand into previously unsuitable climatic zones, establishing new endemic regions and complicating pest management strategies (Coakley et al., 1999). Invasive weeds similarly expand their ranges and become more competitive under higher CO₂ concentrations and altered water availability (Baker et al., 2000).

Paradoxically, warmer winters reduce overwintering mortality of pests and pathogens, allowing larger populations to survive and initiate earlier spring infestations, further intensifying crop losses (Deutsch et al., 2018). Simultaneously, many of the pesticides and fungicides used to control these organisms become less effective under changing environmental conditions or may accumulate in food chains, raising food safety and environmental concerns (Chakraborty & Newton, 2011).

2. IMPACTS ON LIVESTOCK AND AQUATIC FOOD SYSTEMS

Heat Stress and Animal Productivity

Livestock production systems are highly sensitive to thermal stress, with productivity and welfare declines occurring when ambient temperatures exceed species-specific thermal comfort ranges (Thornton & Herrero, 2015). Heat stress reduces feed intake, impairs nutrient digestion and metabolism, decreases milk yield and meat quality, and triggers reproductive failures and increased disease susceptibility (St-Pierre et al., 2003). Dairy cattle exposed to prolonged heat can experience yield reductions of 10–30%, while poultry and swine also show substantial productivity losses under heat stress (Nardone et al., 2010).

The geographic distribution and suitability of livestock production zones are shifting poleward and upward in elevation as tropical and subtropical regions become too hot for conventional livestock production (Thornton & Herrero, 2015). Smallholder pastoralists in Africa and Asia face mounting challenges as grazing lands become more arid, forage productivity declines, and livestock mortality increases during droughts (Herrero & Thornton, 2013).

Water Stress and Grazing Land Degradation

Livestock production depends critically on water availability and forage production from rangelands, pastures, and feed crop cultivation (Steinfeld et al., 2006). Climate-induced reductions in precipitation, increased evapotranspiration, and groundwater depletion stress both livestock and their forage base, particularly in arid and semi-arid regions where many pastoral and agropastoral systems operate (Thornton & Herrero, 2015). Extended droughts force herd reductions, migrations, and sometimes catastrophic livestock losses, destroying pastoral livelihoods and threatening food security for dependent populations (Herrero & Thornton, 2013).

Overgrazing during droughts and competition for limited water intensify land degradation, soil carbon loss, and desertification, reducing the future productive capacity of rangelands and creating persistent vulnerabilities (Okonkwo & Nsude, 2014).

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Fisheries and Aquatic Ecosystems

Marine and freshwater fisheries, which provide protein to over 3 billion people globally, face significant climate-driven threats including ocean warming, acidification, deoxygenation, and altered ocean currents (Barange et al., 2014). These changes shift fish distribution ranges, alter recruitment and survival rates, disrupt food webs, and reduce productivity of many economically important stocks (Cheung et al., 2013). Range shifts toward poles and deeper waters impose new competitive pressures on fishing communities and create transboundary conflicts over resource access (Pinsky & Fogarty, 2012).

Coral bleaching events triggered by sustained warming of tropical ocean waters destroy nursery habitats critical to reef fish recruitment, reducing future productive capacity (Hughes et al., 2018). Freshwater fisheries face threats from altered river flow regimes, changed water temperatures, habitat loss, and invasive species establishment (Ficke et al., 2007).

Inland aquaculture, which produces nearly half of global aquatic food, requires substantial freshwater inputs and is vulnerable to water scarcity, warming, and disease outbreaks, particularly in tropical regions (Barange et al., 2014).

3. DISRUPTIONS TO FOOD SUPPLY CHAINS AND INFRASTRUCTURE

Transportation and Market Access

Climate impacts on food systems extend beyond production to encompassing storage, processing, transportation, and distribution networks that are themselves vulnerable to extreme weather, temperature changes, and infrastructure degradation (Panagopoulos et al., 2011). Flooding damages roads, bridges, ports, and storage facilities, disrupting food movement from production regions to markets and consumers (Konings & Thijs, 2009). Heat waves accelerate food spoilage during transport and storage, particularly for perishable items like fresh produce, dairy, and seafood (Jedlicka et al., 2019).

In developing countries where cold chains are inadequate, post-harvest losses already reach 30–40% for fruits and vegetables; climate-driven temperature increases exacerbate these losses (Kader, 2005).

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Coastal infrastructure including ports, fishing harbors, and aquaculture facilities faces inundation and storm damage from sea level rise and intensified tropical cyclones (Nurse et al., 2014).

Market Volatility and Price Shocks

Production shortfalls resulting from climate shocks propagate through global commodity markets, triggering rapid food price increases that disproportionately harm food-insecure populations in low-income countries (Headey & Fan, 2010). The 2010–2012 global food price crisis, partly driven by severe droughts and heat waves in major producing regions, resulted in widespread food insecurity, malnutrition, and social unrest (Lobell et al., 2011). Increased frequency of such price spikes creates chronic vulnerability and unpredictability for vulnerable populations dependent on market purchases (Vermeulen et al., 2012).

4. REGIONAL VULNERABILITIES AND DIFFERENTIAL IMPACTS

Sub-Saharan Africa

Sub-Saharan Africa faces acute vulnerability to climate change due to high dependence on rain-fed agriculture, limited adaptive capacity, poverty, and existing food insecurity affecting hundreds of millions (Thornton et al., 2011). Projections indicate that suitable growing zones for major staples will shift, with some regions experiencing 20–30% yield reductions by 2050 even under moderate warming scenarios (Knox et al., 2012). Increased aridity in the Sahel and southern Africa threatens pastoral and agropastoral livelihoods, while East African systems face intensified rainfall variability and recurrent drought cycles (Herrero & Thornton, 2013).

South Asia

South Asia, home to nearly 2 billion people, depends heavily on monsoon rainfall and river systems originating from the Himalayan glaciers, both of which are being fundamentally altered by climate change (Immerzeel et al., 2010).

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Glacier recession threatens dry-season water availability for irrigation, affecting millions of hectares of productive agricultural land in India, Pakistan, and Bangladesh (Kaser et al., 2010). Rising temperatures are already reducing yields of wheat, rice, and pulses—dietary staples for the region—while increasing flood and drought frequency (Knox et al., 2012).

Small Island Developing States

Small island developing states face existential threats from sea level rise, increased storm intensity, saltwater intrusion of freshwater aquifers and agricultural lands, and coral bleaching that threatens both fisheries and tourism (Nurse et al., 2014). These nations have minimal agricultural land suitable for alternative production systems and limited capacity to rely on domestic food production, making them highly dependent on food imports and vulnerable to global supply disruptions (Bizikova et al., 2014).

5. FOOD INSECURITY AND NUTRITIONAL IMPACTS

Mechanisms Linking Climate Change to Hunger

Climate impacts on food systems translate into food insecurity and malnutrition through multiple interconnected pathways: reduced food availability from production losses, diminished household incomes and purchasing power when agricultural productivity declines, restricted market access due to infrastructure damage, and compromised food utilization when contamination, spoilage, or disease reduce nutritional value (Wheeler & von Braun, 2013). Vulnerable populations including smallholder farmers, agricultural laborers, pastoralists, and the urban poor are disproportionately affected because they lack resources to purchase food during shortages or to adapt production systems (Barrett, 2010).

Nutritional Quality and Food Composition

Rising atmospheric CO₂ concentrations directly reduce the micronutrient concentration including iron, zinc, and protein in staple cereals and legumes, a phenomenon termed "hidden hunger" (Myers et al., 2014).

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Modeling studies indicate that by 2050, hundreds of millions of additional people could be at risk of micronutrient deficiency due to CO₂-driven compositional changes alone (Smith & Myers, 2018). Simultaneously, climate-driven reductions in crop diversity and loss of traditional food systems narrow dietary diversity, reducing intake of micronutrient-rich vegetables, pulses, and locally adapted species (Remans et al., 2011).

Health Consequences and Disease Burden

Undernutrition triggered by climate-driven food insecurity increases susceptibility to infectious diseases, impairs child development, reduces labor productivity, and perpetuates intergenerational poverty and vulnerability (Camacho & Conover, 2013). Foodborne disease risk increases when warm temperatures promote pathogen growth and when disrupted water and sanitation infrastructure contaminates food and water supplies during floods (Lake et al., 2009).

6. PATHWAYS TO ENHANCED RESILIENCE AND ADAPTATION

Climate-Smart Agriculture and Production Innovations

Climate-smart agriculture (CSA) characterized by practices that simultaneously increase productivity, enhance adaptive capacity, and reduce greenhouse gas emissions offers a framework for sustainable intensification under climate change (FAO, 2013). CSA practices include conservation agriculture with minimal soil disturbance and crop residue retention to improve water retention and soil carbon; diversified cropping systems including intercropping and agroforestry to spread risk and enhance soil health; improved water management through rainwater harvesting, drip irrigation, and soil moisture conservation; and breeding and adopting crop varieties with enhanced heat and drought tolerance (Lipper et al., 2014).

Agroecological approaches emphasizing ecosystem services including biological pest control, pollinator support, and nutrient cycling can reduce input costs and enhance productivity resilience in smallholder systems (Altieri & Toledo, 2011).

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Crop diversification including millets, sorghum, and pulses often more drought- and heat-tolerant than wheat and rice can enhance nutrition and livelihood resilience while reducing vulnerability to single-crop failures (Remans et al., 2011).

Livestock System Transformation

Sustainable intensification of livestock production through improved feed efficiency, rotational grazing, manure management, and selective breeding for heat-tolerant animals can enhance productivity while reducing emissions and land pressure (Thornton & Herrero, 2015). Transitioning toward mixed crop-livestock systems that integrate animals with crop production improves nutrient cycling, reduces feed-crop competition, and enhances system resilience (Herrero & Thornton, 2013). In pastoral regions, improved rangeland management, supplementary feeding during droughts, and early warning systems for climate variability enable herd protection and livelihood preservation (Thornton & Herrero, 2015).

Infrastructure and Market Development

Strengthening food system infrastructure—including cold chains, storage facilities, processing capacity, and market access—reduces post-harvest losses and buffers against climate volatility (Kader, 2005). Investment in rural roads, irrigation systems, and reliable electricity enables faster, safer food movement and supports diversified agricultural production (Pingali et al., 2019). Early warning systems and climate information services, when integrated with agricultural extension, enable farmers to make timely, informed decisions about planting dates, variety selection, and water management (Hansen & Indeje, 2004).

Dietary Shifts and Consumption Patterns

Reducing consumption of resource-intensive animal products particularly in high-income countries where per capita consumption far exceeds nutritional needs—would reduce pressure on land, water, and feed-crop systems while improving health outcomes (Tilman & Clark, 2014).

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Plant-based diets requiring fewer agricultural inputs could support larger populations while reducing food system greenhouse gas emissions by 50–80% (Springmann et al., 2018). Simultaneously, reducing food waste—currently 30–40% of food supply in many countries—would enhance food availability and reduce resource consumption across the food system (Gustavsson et al., 2011).

7. MITIGATION STRATEGIES AND FOOD SYSTEM GREENHOUSE GAS REDUCTION

Production-Side Emissions Reductions

Substantial opportunities exist to reduce food system greenhouse gas emissions across production stages. Improved livestock feeding and manure management can reduce enteric methane emissions by 20–30%; precision application of nitrogen fertilizers reduces nitrous oxide emissions; and conservation agriculture with crop residue retention and agroforestry integration sequesters carbon in soils (Smith et al., 2014). Transitioning toward lower-emission food production systems emphasizing plant-based proteins, reducing ruminant livestock, and improving production efficiency can substantially lower the food system's climate footprint (Hedenus et al., 2016).

Sustainable intensification of cropland and reduced deforestation for agricultural expansion preserve carbon stocks in forests and soil, directly reducing cumulative emissions (Searchinger et al., 2015). These production changes also enhance adaptive capacity through improved soil health, water retention, and system diversity (Lipper et al., 2014).

Consumption-Side and System Changes

Reducing food waste through improved supply chain efficiency, consumer awareness, and technology can reduce emissions and enhance food availability simultaneously (Gustavsson et al., 2011). Dietary shifts toward lower-impact foods particularly reducing red meat consumption in high-income populations can contribute substantial emissions reductions while improving public health outcomes (Springmann et al., 2018). Supporting local and regional food systems can reduce transportation emissions and enhance community resilience, though context-specific assessment is important as local production may not always be most efficient (Pirog & Larson, 2007).

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

CONCLUSION

Climate change poses fundamental threats to global food security, agricultural productivity, and human nutrition through direct impacts on crop and livestock production, disruptions to supply chains, and altered pest and disease dynamics. Regional vulnerabilities are acute in Sub-Saharan Africa, South Asia, small island states, and other regions already facing food insecurity and limited adaptive capacity. Simultaneously, food system transformation is essential for climate mitigation, as the sector contributes substantially to anthropogenic greenhouse gas emissions.

However, substantial evidence demonstrates that enhanced resilience and reduced emissions are achievable through coordinated action on multiple fronts. Climate-smart agricultural practices, infrastructure investment, dietary shifts, and food waste reduction can simultaneously enhance productivity, improve adaptation, reduce emissions, and support sustainable development. Success requires integration of climate considerations into agricultural policy; investment in rural infrastructure and extension services; support for smallholder farmers and vulnerable populations; international cooperation on food trade and knowledge sharing; and sustained commitment to both mitigation and adaptation across the coming decades. The window for action is narrowing, but evidence-based pathways toward a food-secure, sustainable future remain feasible with urgent, coordinated global commitment.

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

REFERENCES

Altieri, M. A., & Toledo, V. M. (2011). The agroecological revolution in Latin America: Rescuing nature, ensuring food sovereignty and empowering peasants. *Journal of Peasant Studies*, 38(3), 587–612. <https://doi.org/10.1080/03066150.2011.582947>

Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., ... & Zhu, Y. (2015). Rising temperatures reduce global wheat production. *Nature Climate Change*, 5(2), 143–147. <https://doi.org/10.1038/nclimate2470>

Baker, L. A., Allen, D. E., Qazi, M., & Hirsch, R. P. (2000). Climate change and invasive species in the Pacific. In T. K. Karl, N. Nicholls, & A. Ghazi (Eds.), *Weather and climate extremes: Changes, variations and a perspective from the insurance industry* (pp. 123–145). Springer.

Barange, M., Merino, G., Blanchard, J. L., Scholtens, J., Harle, J., Allison, E. H., ... & Weeratunge, C. (2014). Impacts of climate change on fisheries and aquaculture: Synthesis of current knowledge, adaptation and mitigation options. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, ... & L. L. White (Eds.), *Climate change 2014: Impacts, adaptation, and vulnerability* (pp. 981–1037). Cambridge University Press.

Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. *Plant, Cell and Environment*, 31(1), 11–38. <https://doi.org/10.1111/j.1365-3040.2007.01727.x>

Barrett, C. B. (2010). Measuring food insecurity. *Science*, 327(5967), 825–828. <https://doi.org/10.1126/science.1182768>

Bizikova, L., Neale, A., & Burton, I. (Eds.). (2014). Caribbean community climate change centre: Linking climate change and food security in the Caribbean. International Institute for Sustainable Development.

Camacho, A., & Conover, E. (2013). Manipulation of social program eligibility. *American Economic Journal: Economic Policy*, 5(4), 127–161.

Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security: An overview. *Plant Pathology*, 60(1), 2–14. <https://doi.org/10.1111/j.1365-3059.2010.02411.x>

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. *Nature Climate Change*, 4(4), 287–291. <https://doi.org/10.1038/nclimate2153>

Cheung, W. W., Sarmiento, J. L., Dunne, J., Frölicher, T. L., Lam, V. W., Deng Palomares, M. L., ... & Pauly, D. (2013). Shrinking of fishes exacerbates impacts of global ocean changes on fisheries. *Nature Climate Change*, 3(3), 254–258. <https://doi.org/10.1038/nclimate1691>

Christensen, J. H., Krishna Kumar, K., Aldrian, E., An, S. I., Cavalcanti, I. F., de Castro, M., ... & Zhou, T. (2013). Climate phenomena and their relevance for future regional climate change. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, ... & P. M. Midgley (Eds.), *Climate change 2013: The physical science basis* (pp. 1217–1308). Cambridge University Press.

Coakley, S. M., Scherm, H., & Chakraborty, S. (1999). Climate change and disease management. *Annual Review of Phytopathology*, 37(1), 399–426. <https://doi.org/10.1146/annurev.phyto.37.1.399>

Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2018). Impacts of climate warming on terrestrial ectotherms across latitude. *Proceedings of the National Academy of Sciences*, 105(18), 6668–6672.

Ficke, A. D., Myrick, C. A., & Hansen, L. J. (2007). Potential impacts of global climate change on freshwater fisheries. *Reviews in Fish Biology and Fisheries*, 17(4), 581–613. <https://doi.org/10.1007/s11160-007-9059-5>

FAO. (2013). *Climate-smart agriculture sourcebook*. Food and Agriculture Organization of the United Nations.

Garnett, T. (2011). Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? *Food Policy*, 36(Suppl. 1), S23–S32. <https://doi.org/10.1016/j.foodpol.2010.10.010>

Gaupp, F., Hall, J., Hochrainer-Stigler, S., & Dadson, S. (2020). Changing risks of simultaneous global breadbasket failure. *Nature Climate Change*, 10(1), 54–57. <https://doi.org/10.1038/s41558-019-0600-z>

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., & Meybeck, A. (2011). Global food losses and food waste: Extent, causes and prevention. Food and Agriculture Organization of the United Nations.

Hansen, J. W., & Indeje, M. (2004). Linking seasonal rainfall forecasts to agricultural production in East Africa. *Lanchester Review*, 27(2), 44–53.

Headey, D., & Fan, S. (2010). Reflections on the global food crisis. *Food Policy*, 35(1), 1–11. <https://doi.org/10.1016/j.foodpol.2009.11.001>

Hedenus, F., Wirsénus, S., & Johansson, D. J. (2016). The importance of reduced meat and dairy consumption for meeting stringent climate change targets. *Climatic Change*, 124(1), 79–91. <https://doi.org/10.1007/s10584-014-1104-5>

Herrero, M., & Thornton, P. K. (2013). Livestock and global change: Emerging issues for sustainable food systems. *Proceedings of the National Academy of Sciences*, 110(52), 20878–20884.

Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., Álvarez-Romero, J. G., Anderson, K. D., Baird, A. H., ... & Skirving, W. (2018). Global warming and recurrent mass bleaching of corals. *Nature*, 543(7645), 373–377. <https://doi.org/10.1038/nature21707>

Immerzeel, W. W., van Beek, L. P., & Bierkens, M. F. (2010). Climate change will affect the Asian water towers. *Science*, 328(5984), 1382–1385. <https://doi.org/10.1126/science.1183188>

IPCC. (2014). Climate change 2014: Impacts, adaptation, and vulnerability (Part A: Global and sectoral aspects). Cambridge University Press.

Jedlicka, J., Hanson, R., Lobell, D., & Vogt, B. A. (2019). Cooling aggregated agricultural products in the era of climate change. *Nature Sustainability*, 2(3), 224–232.

Kader, A. A. (2005). Increase in food availability by reducing postharvest losses of fresh produce. *Acta Horticulturae*, 682, 2169–2176.

Kaser, G., Großhauser, M., & Marzeion, B. (2010). Contribution potential of glaciers to water availability in different climate regimes. *Proceedings of the National Academy of Sciences*, 107(47), 20223–20227. <https://doi.org/10.1073/pnas.1008162107>

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

Knox, J., Hess, T., Daccache, A., & Wheeler, T. (2012). Climate change impacts on crop productivity in Africa and South Asia. *Environmental Research Letters*, 7(3), 034032. <https://doi.org/10.1088/1748-9326/7/3/034032>

Konings, R., & Thijs, R. (2009). Integrated network design of intermodal transport networks in Europe. *Transportation Research Record*, 2087(1), 62–70.

Lake, I. R., Barrero-Gajewski, G., Crook, B., Mylott, A. J., & Hunter, P. R. (2009). Climate change and infectious diseases in Europe. *Lancet Infectious Diseases*, 9(6), 365–375. [https://doi.org/10.1016/S1473-3099\(09\)70104-4](https://doi.org/10.1016/S1473-3099(09)70104-4)

Lipper, L., Thornton, P., Campbell, B. M., Braimoh, T., Bwalya, M., Caron, P., ... & Westermann, O. (2014). Climate-smart agriculture for food security. *Nature Climate Change*, 4(12), 1068–1072.

Lobell, D. B., & Burke, M. B. (2010). On the use of statistical models to predict crop yield from climate data. *Agricultural and Forest Meteorology*, 150(12), 1443–1452. <https://doi.org/10.1016/j.agrformet.2010.07.008>

Lobell, D. B., & Field, C. B. (2007). Global scale climate–crop yield relationships and adaptation options for climate change. *Global Change Biology*, 13(10), 1860–1872. <https://doi.org/10.1111/j.1365-2486.2007.01375.x>

Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. *Science*, 333(6042), 616–620. <https://doi.org/10.1126/science.1204531>

Lobell, D. B., Sibley, A., & Ortiz-Monasterio, J. I. (2008). Extreme heat effects on wheat at the grain-filling stage. *Environmental Research Letters*, 3(1), 014003. <https://doi.org/10.1088/1748-9326/3/1/014003>

Myers, S. S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A. D., Bloom, A. J., ... & Usui, Y. (2014). Increasing CO₂ reduces the nutritional quality of rice grains. *Science Advances*, 4(5), e1670. <https://doi.org/10.1126/sciadv.aaq1012>

Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S., & Bernabucci, U. (2010). Effects of climate change on animal production and sustainability of livestock systems. *Livestock Science*, 130(1–3), 57–69. <https://doi.org/10.1016/j.livsci.2010.02.011>

**CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR
SUSTAINABLE FOOD SYSTEMS**

Nurse, L. A., McLean, R. F., Agard, J., Briguglio, L. P., Duvat-Magnan, V., Pelesikoti, N., ... & Webb, A. (2014). Small islands. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, ... & L. L. White (Eds.), *Climate change 2014: Impacts, adaptation, and vulnerability* (pp. 1613–1654). Cambridge University Press.

Okonkwo, C. I., & Nsude, N. U. (2014). Desertification in Africa: Current issues and challenges. *International Journal of Multidisciplinary and Current Research*, 2(4), 487–493.

Panagopoulos, T., Duque, J. A. G., & Dan-Jumbo, M. M. (2011). Spatial and temporal topsoil moisture distribution in the Alentejo region (Portugal). *Hydrological Processes*, 25(15), 2327–2336.

Pingali, P. L., Raney, T., & Wiebe, K. (2019). The global food system and adaptation to climate change. *Global Food Security*, 13, 77–83. <https://doi.org/10.1016/j.gfs.2017.02.001>

Pinsky, M. L., & Fogarty, M. (2012). Lagged social-ecological responses to climate and range shifts in fisheries. *Climatic Change*, 115(3–4), 883–891. <https://doi.org/10.1007/s10584-012-0599-x>

Pirog, R., & Larson, A. (2007). Consumer perceptions of the safety, health, and environmental impacts of different food production methods. Food Policy Institute, Rutgers University.

Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M., Iqbal, M. M., ... & Travasso, M. I. (2014). Food security and food production systems. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, ... & L. L. White (Eds.), *Climate change 2014: Impacts, adaptation, and vulnerability* (pp. 485–533). Cambridge University Press.

Remans, R., Wood, S. A., Saha, N., Anderman, T. L., & DeFries, R. S. (2011). Measuring nutritional diversity of national food supplies. *Global Food Security*, 4(3), 146–152. <https://doi.org/10.1016/j.gfs.2014.12.004>

Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F., ... & Foley, J. A. (2009). A safe operating space for humanity. *Nature*, 461(7263), 472–475. <https://doi.org/10.1038/461472a>

Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., ... & Kabat, P. (2014). Multimodel assessment of water scarcity under

CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR SUSTAINABLE FOOD SYSTEMS

climate change. *Proceedings of the National Academy of Sciences*, 111(9), 3245–3250. <https://doi.org/10.1073/pnas.1222460110>

Searchinger, T. D., Beringer, T., & Holtsmark, B. (2015). Quantifying the role of forest carbon for climate change mitigation. *Nature Climate Change*, 5(12), 992–996. <https://doi.org/10.1038/nclimate2870>

Smith, L. C., & Myers, R. J. (2018). Impact of agricultural investment on nutrition in Sub-Saharan Africa. *Global Food Security*, 8(1), 37–45. <https://doi.org/10.1016/j.gfs.2016.02.001>

Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., ... & Tubiello, F. (2014). Agriculture, forestry and other land use (AFOLU). In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, ... & J. C. Minx (Eds.), *Climate change 2014: Mitigation of climate change* (pp. 811–922). Cambridge University Press.

Springmann, M., Clark, M., Mason-D'Croz, D., Fox, E., Gandy, J., Goldberg, R., ... & Scarborough, P. (2018). Options for keeping the food system within environmental limits. *Nature*, 562(7728), 519–525. <https://doi.org/10.1038/s41586-018-0594-0>

St-Pierre, N. R., Cobanov, B., & Schnitkey, G. (2003). Economic losses from heat stress by US livestock industries. *Journal of Dairy Science*, 86(Supplement 1), E52–E77. [https://doi.org/10.3168/jds.S0022-0302\(03\)74040-6](https://doi.org/10.3168/jds.S0022-0302(03)74040-6)

Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., & de Haan, C. (2006). Livestock's long shadow: Environmental issues and options. Food and Agriculture Organization of the United Nations.

Thornton, P. K., Boone, R. B., Rajaratnam, J. A., Kruska, R. L., Reid, R. S., & Herrero, M. (2011). Livestock and climate change in Kenya and East Africa. Nairobi: ILRI, 14(4), 12–18.

Thornton, P. K., & Herrero, M. (2015). Adapting to climate change in the agricultural and livestock sectors. *Nature Climate Change*, 5(9), 830–836. <https://doi.org/10.1038/nclimate2417>

Tilman, D., & Clark, M. (2014). Global diets link environmental sustainability and human health. *Nature*, 515(7528), 518–522.

*CIRCULAR BIOECONOMY AND SMART AGRICULTURE FOR
SUSTAINABLE FOOD SYSTEMS*

Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. (2012). Climate change and food systems. *Annual Review of Environment and Resources*, 37(1), 195–222. <https://doi.org/10.1146/annurev-environ-020411-130608>

Wheeler, T., & von Braun, J. (2013). Climate change impacts on global food security. *Science*, 341(6145), 508–513.

ISBN: 978-625-93129-0-3