

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

EDITOR

Baffa Bashari Ibrahim

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES- 2026

**ISBN: 978-625-93344-3-1
DOI: 10.5281/zenodo.18381552**

**Edited By
Baffa Bashari Ibrahim**

January/ 2026
İstanbul, Türkiye

Copyright © Haliç Yayınevi

Date: 27.01.2026

Halic Publishing House

İstanbul, Türkiye

www.halicyayinevi.com

All rights reserved no part of this book may be reproduced in any form, by photocopying or by any electronic or mechanical means, including information storage or retrieval systems, without permission in writing from both the copyright owner and the publisher of this book.

© Halic Publishers 2026

The Member of International Association of Publishers

The digital PDF version of this title is available Open Access and distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 license (<http://creativecommons.org/licenses/by-nc/4.0/>) which permits adaptation, alteration, reproduction and distribution for noncommercial use, without further permission provided the original work is attributed. The derivative works do not need to be licensed on the same terms.

adopted by ESRA KOÇAK

ISBN: 978-625-93344-3-1

Copyright © 2025 by Haliç Academic Publishers All rights reserved

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

EDITOR

AUTHORS

Arie Febrianto MULYADI

Ahmed ATTahiru

Yusuf HARUNA

Bashar ATTahiru

Ashraq Monir MAHMED

TABLE OF CONTENTS

PREFACE	i
CHAPTER 1	
PROCESS INTENSIFICATION OF BIOACTIVE COMPOUND	
EXTRACTION FROM BOTANICAL MATERIALS USING	
MAE, UAE, AND PULSED ELECTRIC FIELD	
TECHNOLOGIES: A CHEMICAL ENGINEERING	
PERSPECTIVE	
Arie Febrianto MULYADI	1
CHAPTER 2	
CHEMICAL ENGINEERING STRATEGIES FOR NATURAL	
PRODUCT DEVELOPMENT	
Ahmed ATTahiru	
Yusuf HARUNA	
Bashar ATTahiru	28
CHAPTER 3	
EDIBLE FILMS IN FOOD PACKAGING: ENGINEERING	
APPROACHES FOR SUSTAINABLE AND ACTIVE	
PACKAGING SYSTEMS	
Ashraq Monir MAHMED	67

PREFACE

This volume presents advanced research at the intersection of intelligent hardware, secure computing, and Internet of Things (IoT) systems. By addressing architectural innovation, cybersecurity, and practical implementation, the book reflects current efforts to build efficient, trustworthy, and sustainable digital infrastructures.

The chapter on cognitive microcontrollers introduces a hybrid neuromorphic–RISC architecture designed for ultra-low-power on-device intelligence, highlighting new directions in edge computing and embedded AI. Complementing this perspective, the discussion on trusted computing systems focuses on securing digital music production environments, emphasizing integrity, privacy, and rights management in creative digital workflows.

Security and sustainability challenges are examined through an analysis of malware threats in green IoT ecosystems over the 2020–2025 period. This contribution assesses attack trends, energy impacts, and the growing role of AI-driven defense mechanisms in protecting resource-constrained and environmentally conscious systems.

The volume concludes with a comprehensive overview of IoT system architecture and implementation, detailing the integration of ESP32 platforms, communication protocols, and supporting tools and frameworks. Collectively, the chapters provide theoretical insight and practical guidance for researchers and practitioners developing next-generation intelligent and secure IoT solutions.

Editorial Team
January 27, 2026
Türkiye

CHAPTER 1
**PROCESS INTENSIFICATION OF BIOACTIVE
COMPOUND EXTRACTION FROM BOTANICAL
MATERIALS USING MAE, UAE, AND PULSED
ELECTRIC FIELD TECHNOLOGIES: A CHEMICAL
ENGINEERING PERSPECTIVE**

Arie Febrianto MULYADI¹

¹Department of Agricultural Industrial Technology, Faculty of Agricultural Technology, Universitas Brawijaya, Indonesia, arie_febrianto@ub.ac.id, ORCID ID: 0000-0002-7193-7904.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

INTRODUCTION

The recovery of bioactive compounds from plant-based materials has become a central focus in food, nutraceutical, pharmaceutical, and cosmetic industries, driven by increasing demand for natural ingredients with health-promoting properties. Bioactive compounds such as phenolics, flavonoids, terpenoids, carotenoids, and essential oils are widely recognized for their antioxidant, antimicrobial, and anti-inflammatory activities (Chemat et al., 2012; Azmir et al., 2013). These compounds are commonly obtained through solid–liquid extraction processes, which represent a fundamental unit operation in chemical engineering. Conventional extraction techniques, including maceration, Soxhlet extraction, and hot solvent reflux, have long been utilized due to their simplicity and relatively low capital costs. However, such methods typically require extended extraction times, excessive solvent consumption, and high thermal energy input, often leading to degradation of heat-sensitive constituents and low selectivity (Zhang et al., 2018).

Within the framework of chemical engineering, the limitations of conventional extraction processes are closely associated with slow mass transfer rates, inefficient energy utilization, and insufficient interaction between the solvent and the solid cellular matrix. The diffusion of solutes from plant cells to the bulk solvent is hindered by intact cell walls, dense cellular structures, and limited solvent penetration (Chemat et al., 2020). These mass transfer barriers directly translate into reduced extraction efficiency and poor process economics. Consequently, the concept of process intensification has emerged as a strategic approach to enhance extraction performance by increasing driving forces for mass transfer, reducing process time, and minimizing resource consumption.

Process intensification aims to radically improve chemical processing efficiency through the integration of novel energy sources, equipment design, and hybrid technologies while maintaining or enhancing product quality (Stankiewicz & Moulijn, 2000). In recent years, several emerging extraction technologies have been developed to address the shortcomings of conventional methods. Among these, Microwave-Assisted Extraction (MAE), Ultrasonic-Assisted Extraction (UAE), and Pulsed Electric Field (PEF) processing have gained significant attention in both academic and industrial applications.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

These technologies represent modern strategies for intensifying solid–liquid extraction by introducing alternative physical phenomena to disrupt plant structures and enhance solvent–solute interactions. MAE employs microwave radiation to induce volumetric heating within plant tissues and extraction solvents through dipole rotation and ionic conduction mechanisms (Eskilsson & Björklund, 2000). Unlike conventional heating, which relies on thermal conduction and convection from the outside inward, microwave heating occurs simultaneously throughout the material. This results in rapid temperature elevation, selective heating of polar molecules, and internal pressure buildup that promotes cell rupture and accelerated release of intracellular compounds (Veggi et al., 2013).

Numerous studies have reported that MAE substantially reduces extraction time while improving extraction yield and bioactive compound recovery compared to traditional solvent extraction (Chemat et al., 2017). UAE intensifies extraction through the generation of acoustic cavitation. The collapse of microscopic bubbles produces localized high temperatures and pressures as well as microjets that disrupt cell walls and increase solvent penetration into plant matrices (Mason, Chemat, & Vinatoru, 2011). These mechanical effects enhance mass transfer by increasing the contact surface between the solvent and solid particles and facilitating the diffusion of target compounds into the solvent phase. UAE is particularly attractive due to its relatively low operational temperature, making it suitable for thermolabile compounds such as phenolics and flavonoids (Vinatoru et al., 2017).

In addition, ultrasound offers operational flexibility and can be easily incorporated into batch or continuous extraction systems. PEF technology, originally developed for microbial inactivation in liquid foods, has recently been adopted as a promising pretreatment strategy for botanical extraction. PEF involves the application of short, high-voltage электр pulses that induce electroporation in cell membranes, increasing membrane permeability and promoting the release of intracellular constituents (Barba et al., 2015). Unlike thermal treatments, PEF induces minimal temperature rise, thereby preserving chemical integrity of heat-sensitive bioactives.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Several studies have demonstrated that PEF pretreatment significantly enhances extraction kinetics and yields when combined with solvent extraction or other intensification techniques (Delsart et al., 2012; Bobinaitė et al., 2015). The integration of MAE, UAE, and PEF aligns well with the principles of sustainable chemical engineering, particularly in relation to reducing environmental impacts, solvent usage, and energy consumption. These technologies enable shorter extraction times, lower solvent-to-solid ratios, and reduced processing temperatures, which collectively contribute to greener separation processes (Chemat et al., 2012; Chemat et al., 2020). Moreover, when applied in hybrid or sequential configurations, these approaches offer synergistic effects, allowing further enhancement of mass transfer efficiency and product recovery.

Despite their advantages, challenges remain in transferring these technologies from laboratory-scale research to pilot or industrial production. Scale-up complexities arise from uneven microwave energy distribution, limitations in ultrasonic wave penetration, and high capital costs associated with industrial-scale PEF generators (Zhang et al., 2018; Vinatoru et al., 2017). Therefore, comprehensive assessments integrating extraction performance data with engineering fundamentals are necessary to determine the operational feasibility and economic viability of these emerging technologies.

This chapter aims to present an integrated chemical engineering perspective on the use of MAE, UAE, and PEF for botanical bioactive extraction. Based on original case studies involving ginger (*Zingiber officinale* var. *rubrum*) and ashitaba (*Angelica keiskei*), the chapter discusses extraction mechanisms, process optimization strategies, hybrid technology integration, and sustainability considerations. By synthesizing experimental findings and literature evidence, this work seeks to demonstrate the potential of emerging extraction technologies as practical tools for process intensification in modern botanical processing industries.

1. PRINCIPLES OF EMERGING EXTRACTION TECHNOLOGIES

1.1 Microwave-Assisted Extraction (MAE)

Microwave-Assisted Extraction (MAE) is a process intensification technique that utilizes microwave radiation (typically at frequencies of 2450 MHz) to rapidly heat extraction systems through dipole rotation and ionic conduction mechanisms (Eskilsson & Björklund, 2000). Unlike conventional heating, which relies on conduction and convection to transfer heat from external surfaces to the core of materials, microwave energy induces volumetric heating, allowing simultaneous temperature elevation throughout both solvent and plant matrices. This phenomenon generates high internal pressure within plant cells due to localized superheating of intracellular moisture, leading to cell wall rupture and enhanced solute release (Veggi et al., 2013). From a chemical engineering perspective, MAE significantly improves mass transfer rates by reducing boundary-layer resistance and shortening diffusion paths.

The volumetric heating effect causes faster solvent penetration into the plant tissues and increases the solubility of target bioactive compounds, thereby accelerating equilibrium attainment compared to traditional techniques (Chemat et al., 2017). Extraction efficiency is strongly influenced by several operating parameters, notably microwave power density, exposure time, solvent type, solvent-to-solid ratio, and particle size distribution. Solvent selection plays a critical role in MAE since microwave absorption capacity depends on dielectric properties, particularly the dielectric constant and dielectric loss factor.

Polar solvents such as water, ethanol, and methanol effectively couple with microwave radiation, leading to pronounced heating rates and higher extraction yields (Mason et al., 2011). Conversely, nonpolar solvents demonstrate low microwave absorptivity and often require co-solvents or hybrid heating strategies to achieve adequate process performance. Numerous studies have demonstrated that MAE can achieve comparable or higher extraction yields within minutes rather than the hours typically required by conventional methods. Vinatoru et al. (2017) reported significant acceleration in the recovery of phenolic compounds from botanical materials using MAE, accompanied by reductions in solvent consumption of up to 50%.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

These findings are attributable to enhanced solvent diffusivity and increased permeability of plant tissues resulting from microwave-induced thermal stress. Despite these advantages, MAE faces several technical challenges related to scale-up. The non-uniform distribution of microwave energy in large processing chambers can lead to hot spots, uneven heating, and potential degradation of thermolabile compounds. From an engineering standpoint, addressing these limitations requires careful reactor design, the use of continuous-flow microwave systems, stirring mechanisms, and temperature-controlled feedback loops to maintain uniform thermal profiles (Chemat et al., 2020). Furthermore, the economic feasibility of large-scale MAE operations depends on capital costs associated with industrial microwave generators and the complexity of their control systems.

1.2 Ultrasonic-Assisted Extraction (UAE)

Ultrasonic-Assisted Extraction (UAE) relies on the propagation of high-intensity ultrasound waves (usually in the frequency range of 20–40 kHz) through liquid media to induce acoustic cavitation. Cavitation involves the formation, growth, and violent collapse of microbubbles, producing localized high pressures, microjets, and shock waves capable of disrupting plant cell structures and enhancing solvent–solid interactions (Mason et al., 2011). The mechanical effects generated by collapsing cavitation bubbles promote fragmentation and erosion of cell walls, increasing particle surface area and enhancing the accessibility of intracellular compounds. In addition, microstreaming induced by ultrasonic waves reduces boundary-layer thickness around solid particles, facilitating solute diffusion from cells to the surrounding solvent (Vinotoru et al., 2017). This combination of effects directly increases mass transfer coefficients, which constitute a central process variable in chemical engineering separation systems. Compared with thermal-assisted methods, UAE can be effectively performed at relatively low operational temperatures, which makes it particularly suitable for the extraction of thermolabile compounds including phenolics, flavonoids, carotenoids, and certain essential oils (Azmir et al., 2013). Extraction parameters influencing UAE performance include ultrasonic power intensity, sonication time, solvent composition, temperature, solvent-to-solid ratio, and particle size.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

The scalability of ultrasound technologies presents advantages relative to MAE. Industrial ultrasonic reactors can be designed as batch tank systems equipped with probe or plate transducers or as continuous flow-through sonication units. These systems allow for uniform acoustic energy distribution when appropriately designed and can be integrated with conventional extraction lines (Mason et al., 2011). However, process efficiency may decrease with expanded reactor volumes due to attenuation of ultrasonic waves, requiring strategic placement of multiple transducers to ensure uniform cavitation activity (Vinotoru et al., 2017).

Several authors have reported that UAE effectively shortens extraction times while reducing solvent requirements. In a comprehensive review, Chemat et al. (2017) concluded that UAE belongs among the most cost-effective and scalable green extraction technologies due to its moderate energy consumption combined with high extraction yields. However, prolonged sonication or excessive ultrasonic power may induce free radical formation or localized heating, potentially leading to partial degradation of sensitive phytochemicals (Barba et al., 2015). Consequently, process optimization is essential to balance extraction efficiency with product stability.

1.3 Pulsed Electric Field (PEF)

Pulsed Electric Field (PEF) technology is classified as a non-thermal physical processing method involving the application of repetitive short-duration, high-voltage pulses across biological tissues, typically ranging from 0.5 to 50 kV/cm depending on treatment objectives. The primary effect of PEF treatment is electroporation, wherein the induced transmembrane potential exceeds critical thresholds (~ 1 V), resulting in the formation of reversible or irreversible pores within cell membranes (Barba et al., 2015). Electroporation enhances cell membrane permeability without causing extensive thermal damage or chemical alteration. Consequently, intracellular compounds become more accessible to solvent extraction processes. PEF has therefore emerged as a powerful pretreatment technology to intensify conventional and emerging extraction methods. Delsart et al. (2012) demonstrated that PEF pretreatment significantly increased polyphenol recovery from grape pomace by improving solvent penetration and reducing extraction resistance.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

From a chemical engineering standpoint, PEF reduces the solid-phase mass transfer resistance by eliminating the diffusional barrier imposed by intact cell membranes. This effectively increases the overall mass transfer coefficient during solid–liquid extraction operations. Process parameters governing PEF efficacy include electric field strength, pulse duration, pulse frequency, and total specific energy input (Parniakov et al., 2015; Barba et al., 2015; Bobinaitė et al., 2015). Treatment optimization must consider both extraction enhancement and energy consumption efficiency. Industrial-scale PEF systems generally consist of pulse generators, control units, and treatment chambers configured for either batch or continuous processing.

In botanical processing applications, plant materials can be treated as whole tissues or as particulate suspensions, depending on feedstock preparation methods. Continuous PEF treatment chambers combined with screw-press or solvent extraction units have been proposed for large-scale processing of herbal biomass and agro-industrial residues (Barba et al., 2015). Despite its promising potential, PEF implementation remains constrained by high initial investment costs and limited availability of large-scale equipment. Additionally, moisture content of plant tissues strongly influences PEF efficiency, as sufficient conductivity is necessary to facilitate electrical breakdown across membranes (Delsart et al., 2012). These technical factors necessitate integrated techno-economic evaluations prior to industrial deployment.

1.4 Hybrid Integration of MAE, UAE, and PEF

The integration of MAE, UAE, and PEF into hybrid extraction schemes offers synergistic advantages for process intensification. PEF pretreatment can be applied to disrupt cellular membranes, followed by MAE or UAE to enhance solvent penetration and solute diffusion. This sequential strategy amplifies extraction kinetics by simultaneously lowering internal mass transfer resistance and augmenting solvent–solid interactions (Chemat et al., 2017; Barba et al., 2015). Hybrid systems provide pathways for reducing solvent volume, extraction temperature, and processing time while increasing bioactive recovery yields. Such configurations adhere to the core principles of sustainable chemical engineering by minimizing energy input per unit of product extracted and decreasing waste generation.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

However, engineering design challenges remain in synchronizing unit operations, controlling energy inputs, and ensuring reproducible product quality at industrial scale.

2. CASE STUDY 1: MICROWAVE-ASSISTED EXTRACTION OF GINGER OLEORESIN

Ginger (*Zingiber officinale* var. *rubrum*) represents an economically important botanical source of bioactive compounds, including gingerols, shogaols, zingiberene, and other volatile terpenoids responsible for its antioxidant, antimicrobial, and pungent properties. Conventional ginger oleoresin extraction commonly relies on prolonged solvent reflux or Soxhlet techniques, which typically require several hours of operation, elevated solvent consumption, and substantial heat exposure. From a chemical engineering perspective, these approaches suffer from low energy efficiency, extended residence times, and limited mass transfer performance, resulting in unnecessary degradation of thermolabile compounds and suboptimal process sustainability (Azmir et al., 2013).

Microwave-Assisted Extraction (MAE) offers a viable route toward extraction process intensification by enabling volumetric dielectric heating directly within the plant matrix and solvent system. The integrated MAE optimization studies conducted on dried red ginger particles demonstrated the critical influence of operational parameters—namely microwave power intensity and extraction duration—on extraction yield and bioactive compound preservation. These parameters govern primary transport drivers, including internal heating rates, solvent diffusivity, concentration gradients, and effective mass-transfer coefficients (Chan et al., 2011).

Experimental modeling using a Central Composite Design (CCD) and Response Surface Methodology (RSM) revealed that increasing microwave power accelerated intracellular water vaporization and promoted cell wall rupture, thereby reducing internal solid-phase diffusion resistance and increasing solute release into the extraction solvent. This mechanism supports previously reported theories of microwave-enhanced permeabilization and ionic rotation-induced tissue breakdown (Veggi et al., 2013; Vinatoru et al., 2017).

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

As a result, oleoresin extraction kinetic profiles were shortened dramatically: optimal recovery was achieved within minutes rather than hours, confirming MAE's strong intensification capability. Similar kinetic acceleration has been extensively reported for other botanical matrices including rosemary, clove buds, and citrus peels (Chemat et al., 2017).

Quantitative optimization demonstrated positive correlations between extraction yield and both microwave power and processing time, with experimental yields reaching above 10% under high-power conditions. However, bioactive quality metrics—total phenolic content and flavonoid concentration—exhibited inverse trends at elevated power and prolonged exposure, signifying thermal susceptibility of phenolic compounds. Multi-response optimization identified an optimal operating compromise at moderate microwave power (~120–130 W) coupled with short extraction duration (~4 minutes), producing balanced output characterized by high oleoresin yield (~8.4%) while maintaining phenolic content near 90 mg GAE g⁻¹ and flavonoid concentration above 44 mg QE g⁻¹. These results illustrate an inherent engineering trade-off between extraction rate enhancement and compound quality retention, highlighting the need for controlled energy input rather than excessive thermal driving force.

Optimization of solvent-to-solid ratio further emphasized fundamental mass-transfer principles: increasing solvent volumes beyond threshold levels failed to proportionally enhance yield due to dilution of concentration gradients and reduced diffusion driving forces (Zhang et al., 2018). Moderate solvent ratios proved sufficient to sustain high solute activity gradients while minimizing solvent consumption per unit product—significantly improving process sustainability compared with conventional reflux techniques.

Antioxidant assay responses demonstrated substantial improvement under optimized MAE conditions, attributable to the efficient recovery of phenolic structures and gingerol derivatives together with limited thermal decomposition owing to short residence times. This convergence of high extraction efficiency with quality preservation substantiates early comparative reviews which identified MAE as a superior green extraction platform relative to conventional solvent extraction (Chemat et al., 2012; Azmir et al., 2013).

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

From an industrial scale-up perspective, challenges remain related to homogenous microwave field distribution, temperature uniformity, and reactor design for continuous operation. Nonetheless, the strong laboratory-scale performance and relatively low processing times support the feasibility of MAE as an intensified unit operation for ginger oleoresin manufacturing when paired with engineered microwave applicator systems, flow-through extraction reactors, and closed-loop temperature regulation for quality assurance (Chemat et al., 2020).

3. CASE STUDY 2: ULTRASONIC-ASSISTED EXTRACTION OF ASHITABA (*ANGELICA KEISKEI*) LEAVES

Ashitaba (*Angelica keiskei*) leaves are rich in chalcones, flavonoids, and diverse phenolic antioxidants, making them attractive feedstocks for functional ingredients in food and nutraceutical applications. Conventional solvent heating risks degradation of sensitive phytochemicals; therefore, Ultrasonic-Assisted Extraction (UAE) is an appropriate process-intensification route because acoustic cavitation mechanically disrupts tissues and accelerates mass transfer at relatively low bulk temperatures (Mason, Chemat, & Vinatoru, 2011; Vinatoru, Mason, & Calinescu, 2017). The following integrated case study synthesizes the general literature with the controlled experimental program performed on dried ashitaba leaves (RBD; temperature 30–45 °C, time 20–30 min), producing a data-driven engineering narrative suitable for a Chemical Engineering chapter.

Experimental Evidence and Engineering Interpretation

The published experimental program employed a Randomized Block Design (RBD) with two factors—temperature (30, 35, 45 °C) and sonication time (20, 25, 30 min)—and analyzed yield, antioxidant capacity (DPPH IC₅₀), total phenolic content (TPC), total flavonoid content (TFC), and antibacterial activity against *Streptococcus* sp. (disk diffusion).

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

The multi-attribute optimization (Zeleny MADM) selected 35 °C for 20 minutes as the best compromise, yielding 7.67% crude extract, $IC_{50} = 45.27$ ppm, $TPC = 3917.03$ mg GAE/100 g, $TFC = 428.31$ mg QE/100 g, and inhibition zone ≈ 27.67 mm (Rank 1). These empirical values indicate that moderate temperature combined with short sonication produces high bioactive retention while achieving practical extraction efficiency. Mechanistically, cavitation collapse during sonication generates localized microjets and shock waves which disrupt cell walls, increase surface area, and produce intense micro-mixing at the solvent–solid interface—thereby increasing the external mass transfer coefficient and reducing boundary-layer resistance (Mason et al., 2011).

The experimental results demonstrate that temperature is a dominant control variable for phenolic recovery and functional activity (significant effect on TPC, TFC, and IC_{50}), whereas sonication time within the tested window had lesser or selective influence (significant for TPC/TFC but not for yield or antibacterial activity). This suggests that in ashitaba, effective cavitation release occurs rapidly and that extending sonication beyond the effective window yields diminishing returns and may risk localized heating or radical-mediated degradation (Barba et al., 2015; Pingret et al., 2013).

Process-Level Implications and Operational Window

From a process-engineering viewpoint, the optimal operating window (35 °C, 20 min) balances two competing drivers:

- Mass transfer enhancement cavitation at moderate temperature maximizes solvent penetration and desorption of bound phenolics and flavonoids, raising TPC and TFC to the observed levels (up to $\sim 4,765$ mg GAE/100 g at some conditions for TPC, though the multi-attribute optimum favors preservation).
- Quality preservation limiting temperature and exposure time minimizes thermal and oxidative degradation of labile chalcones and flavonoid structures, reflected in the low IC_{50} (strong antioxidant activity) at the chosen operating point.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

The statistical analyses (two-way ANOVA) confirmed significant main effects and interactions for temperature and time on phenolic and flavonoid responses, underscoring the need for simultaneous optimization rather than single-factor tuning. In practice, this translates to implementing temperature control and precise residence-time management in scaled reactors to maintain product quality while achieving acceptable throughput.

Scale-Up Considerations and Reactor Design

UAE scale-up is generally more tractable than MAE because ultrasonic energy can be distributed by arrays of transducers and continuous flow cells, yet acoustic energy attenuates with distance and heterogeneous cavitation zones can form in larger tanks (Vinotoru et al., 2017). For industrial implementation of the ashitaba process, recommended engineering measures include:

- Flow-through sonication modules with multiple, phased transducer arrays to ensure uniform cavitation and avoid dead zones;
- Temperature control loops and heat exchangers to maintain 30–40 °C bulk temperature and dissipate localized hotspots;
- Short residence-time, high-throughput staging so that extraction remains within the empirically validated 20 min window while enabling continuous operation;
- Solvent recovery and ethanol recycling to reduce operating costs and environmental impact given the use of 96% ethanol.

Implementing these design features should enable retention of the lab-scale performance (high TPC/TFC and low IC₅₀) while achieving industrially relevant throughput.

Integration With Hybrid Intensification Routes

The ashitaba data reinforce a common chemical-engineering insight: mechanical pretreatments that reduce internal diffusion resistance (e.g., PEF, milling) combined with energy-efficient extraction (UAE at controlled temperature) can further enhance yield or reduce solvent load.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

For instance, a mild PEF pretreatment prior to UAE may allow even shorter sonication times or lower temperatures while maintaining the same TPC/TFC profile—thereby improving energy economy and minimizing potential degradation mechanisms observed at higher temperatures (Barba et al., 2015). This integrated strategy aligns with green separation principles and offers a pathway for process intensification across botanical feedstocks.

4. CASE STUDY 3: PULSED ELECTRIC FIELD PRETREATMENT FOR GINGER EXTRACTION ENHANCEMENT

Pulsed Electric Field (PEF) pretreatment is an effective non-thermal strategy to intensify solvent extraction from plant tissues by inducing electroporation and thus dramatically reducing membrane mass-transfer resistance. For ginger (*Zingiber officinale* var. *rubrum*), whose rhizomes contain valuable oleoresin and phenolic constituents sequestered within parenchymal cells, PEF addresses the principal kinetic bottleneck of solid–liquid extraction: limited solvent access to intracellular solutes. The experimental program performed on red ginger explicitly quantifies these effects and provides robust engineering guidance for applying PEF as a viable pretreatment in an integrated extraction process.

Experimental Design and Key Outcomes (Summary for Process Engineers)

The study used a factorial randomized complete design (3×3) manipulating electric field strength (3, 4, 5 kV/cm) and pulse frequency (3, 4, 5 kHz) with three replications. Response variables included cell disintegration index (Z, derived from total soluble solids measurements), oleoresin yield (% w/w, on dry basis), refractive index, density, moisture content, and LC-HRMS profiling of the optimized extract. A multi-attribute decision method (Zeleny) selected the best treatment considering yield, density, refractive index, and disintegration index. The optimal PEF condition identified was 5 kV/cm at 3 kHz, which produced the highest measured disintegration index ($Z = 0.496$), the highest oleoresin yield (11.03%), refractive index 1.4960, and density 0.9529.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Across treatments, yields ranged from 8.32% to 11.03% compared with the control (no PEF) at 7.16%, indicating a clear and reproducible benefit of PEF pretreatment on extractability. These numerical results demonstrate that, within the tested domain, increased field strength strongly correlates with greater membrane permeabilization and enhanced mass release; conversely, increasing frequency tended to reduce disintegration and yield, suggesting a non-trivial interaction between pulse energy distribution and tissue response. LC-HRMS analysis of the optimal sample revealed a complex chemical profile (≈ 200 detected components), with the largest relative areas assigned to 6-gingerol ($\approx 28.9\%$), 1-naphthol, 4-methoxybenzaldehyde, shogaol, and choline. The presence and relative abundances of thermolabile gingerols versus their dehydration products (shogaols) provide an internal marker of treatment gentleness: because PEF is non-thermal, it favors preservation of gingerol species while facilitating their release—an advantage over extended high-temperature processes that promote gingerol \rightarrow shogaol conversion.

Mechanistic Interpretation and Mass-Transfer Implications

From a chemical-engineering viewpoint, PEF decreases the internal resistance term of the overall mass-transfer coefficient by creating pores in the plasma membrane and weakening cell wall integrity. The measured disintegration index (Z) quantifies this effect: values approaching 0.5 indicate substantial membrane disruption facilitating rapid solvent ingress and solute egress. The experimental correlation between higher Z and increased yield operationalizes the theoretical expectation that mass flux ($J = k \cdot (C_s - C_b)$) will increase when the interfacial resistance component of (k) is reduced. Thus, PEF functions analogously to increasing effective surface area or reducing particle size—but without mechanical comminution—retaining more intact intracellular compounds and avoiding thermal damage.

Energy, Efficiency, And Solvent Reuse Considerations

The study also evaluated solvent reuse (95% ethanol recycled) and reported a process-efficiency figure of $\sim 56.21\%$ compared with non-reused 96% ethanol.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

This demonstrates realistic process economics implications: PEF can boost extraction yields sufficiently to justify solvent recycling schemes, but solvent quality and recovery efficiency must be engineered to avoid quality degradation or accumulation of undesired solubles. Regarding energy, the data show that increases in applied field (kV/cm) are more effective for permeabilization than increasing pulse frequency, suggesting that optimizing field strength per unit specific energy is a priority to maximize cost-effectiveness. Engineers should therefore evaluate specific energy consumption (kJ/kg) as a central metric when projecting industrial OPEX and ROI for PEF units.

Product Quality and Selectivity: LC-HRMS Insights

The chemical profiling under optimal PEF conditions confirms selective extraction of key ginger biomarkers (6-gingerol predominating). Because PEF does not substantially raise bulk temperature, it minimizes thermally induced transformations (e.g., gingerol to shogaol), preserving the desired bioactive profile. The refractive index and density shifts observed across treatments further corroborate increased total dissolved solids and oleoresin concentration at higher PEF intensity—useful quick QC parameters for inline process monitoring.

Integration With Downstream MAE/UAE And Process Intensification Strategy

PEF's principal value is as an upstream permeability enhancer. When combined with downstream MAE (volumetric heating) or UAE (cavitation), PEF pretreatment can enable similar yields at lower microwave power or shorter sonication times, thereby preserving heat-sensitive constituents while maintaining throughput. Specifically, the RSM results from MAE studies (see Case Study 1) suggested a trade-off between power/time and phenolic retention; integrating PEF permits shifting that trade-off toward lower thermal input for equivalent yield—improving energy efficiency and product quality simultaneously. This hybrid sequencing (PEF → MAE/UAE → solvent recovery) embodies process intensification and aligns with green separation goals.

Scale-Up and Practical Recommendations for Engineers

- PEF module design: adopt continuous-flow treatment chambers sized for target throughput with electrode geometry optimized to achieve homogeneous field distribution and avoid arcing.
- Control strategy: monitor conductivity and moisture content of feedstock to ensure consistent energy coupling; use specific energy (kJ/kg) setpoints rather than raw voltage to normalize across batch variability.
- Hybrid operation: evaluate experimentally PEF parameter sets that permit at least 20–30% reduction in downstream MAE power or UAE time while reaching target yield and TPC profiles.
- Solvent management: implement ethanol recovery and polishing (distillation + adsorption) to maintain solvent quality—process simulations should include solvent recycle impact on extraction efficiency (as observed: ~56% efficiency with reused 95% ethanol).
- Economic assessment: perform techno-economic analysis that balances PEF capital cost versus OPEX savings from reduced downstream energy and increased product value (higher phenolic retention).

The experimental evidence demonstrates that PEF pretreatment at 5 kV/cm and 3 kHz meaningfully enhances oleoresin extraction from red ginger, producing up to ~11% yield and substantially improved extract quality (LC-HRMS profile, refractive index, density) versus untreated material. As a non-thermal upstream intervention, PEF is particularly valuable when integrated into hybrid MAE/UAE extraction trains to achieve intensified, energy-efficient, and quality-preserving botanical processing suitable for industrial deployment.

4.1 Comparative and Integrated Analysis

When comparing MAE, UAE, and PEF-based extraction strategies, clear distinctions and complementarities emerge:

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Table 1. Comparison of MAE, UAE, and PEF Extraction Mechanisms

Technology	Primary Mechanism	Engineering Role
MAE	Volumetric heating	Accelerates diffusion and solvent penetration
UAE	Cavitation disruption	Enhances cell rupture and boundary-layer mass transfer
PEF	Electroporation	Reduces intracellular diffusion resistance

Collectively, these techniques serve as complementary intensification tools targeting different components of the extraction transport resistance network. PEF primarily acts on cell membrane resistance, MAE accelerates internal heating and solvent diffusion, while UAE intensifies external convection and boundary-layer transport. Hybrid integration of these methods enables the reduction of operational temperatures, solvent volumes, and processing time—key sustainability targets in modern chemical engineering separations (Chemat et al., 2017; Chemat et al., 2020). The case studies presented confirm that combined technology strategies outperform single-method approaches when properly optimized.

Transitioning emerging intensification technologies — Microwave-Assisted Extraction (MAE), Ultrasonic-Assisted Extraction (UAE), and Pulsed Electric Field (PEF) pretreatment — from laboratory proof-of-concept to continuous industrial production is a chemical-engineering problem in the broadest sense: it requires reconciling heat/mass transfer and reaction-kinetics insights with reactor design, energy delivery systems, equipment economics, process control, solvent management and environmental accounting. The two technical reports analysed here — Toepfl’s PEF scale-up overview and the comprehensive review on large-scale extraction and purification — converge on three key messages: (1) scale introduces physical non-idealities (field inhomogeneity, acoustic attenuation, thermal gradients) that change process performance; (2) energy and solvent flows (and their recovery) dominate environmental impact and operating cost; and (3) hybrid sequencing and modular, continuous design are the most promising routes to industrial viability.

5. CORE SCALE-UP CONSTRAINTS AND PHYSICAL LIMITS

At bench scale the dominant mechanisms that deliver intensified extraction are obvious: volumetric dielectric heating (MAE), cavitation-driven micro-mixing (UAE), and membrane permeabilization/electroporation (PEF). However, when throughput scales up by orders of magnitude, the same mechanism becomes susceptible to geometric and electromagnetic/acoustic constraints.

For MAE the central engineering challenge is microwave field uniformity. Large cavities develop standing-wave patterns and hot/cold zones; these produce localized overheating (promoting degradation of thermolabile phenolics) and under-processed volumes that reduce average yield and selectivity. Reactor engineering solutions include continuous flow, thin-channel reactors (short electromagnetic penetration distances), multimode cavities, dynamic mechanical mixing, and distributed applicators that reduce path lengths and even out the specific absorbed power across the slurry. Temperature sensor arrays and closed-loop PID control are essential to avoid thermal runaway in hot spots and to keep processing within the experimentally determined optimal window for bioactivity retention. The review stresses that energy audits and pilot-scale thermal mapping must be part of any MAE scale-up plan because lab power densities do not translate linearly to large vessels.

For UAE the fundamental limitation is acoustic attenuation: cavitation intensity decays with propagation distance and is influenced by medium composition, dissolved gases and temperature. Single-probe, bath-type designs that work well in the laboratory lose cavitation intensity when scaled. Industrial solutions are multiple transducer arrays (phased if necessary), flow-through sonication cells (short path, high residence-time control), and reactor geometries that avoid dead volumes. These design choices maintain a high effective mass-transfer coefficient across the packed bed or slurry and allow continuous operation with predictable residence-time distributions. The comprehensive review notes that UAE has a favorable capital-cost profile compared with MAE, which explains its earlier industrial adoption for certain botanical extractions; nonetheless, pilot verification of spatial cavitation maps is mandatory.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

PEF scale-up follows a different pathway: it is intrinsically an electrical-engineering challenge. Toepfl documents that pulse-generator topology (solid-state pulse transformer designs), electrode material selection, chamber geometry and flow pattern are the gating elements for scale (20–10,000 L/h systems have been prototyped). Specific energy density and field strength are the process knobs; for plant tissue permeabilization the practical specific energy range is roughly 5–10 kJ/kg, with field strengths commonly from 2 up to 30 kV/cm depending on target severity (permeabilization vs microbial inactivation). Electrode erosion and field concentration near edges (risking arcing) are real issues — titanium-based electrodes and co-linear chamber geometries with static mixers were found to minimize erosion and improve field homogeneity in industrial designs. Toepfl also shows that when energy input and flow pattern are kept constant, inactivation/permeabilization performance scales reliably from 20 L/h to multi-m³/h systems, provided chamber geometry and pulse generator scaling are correctly engineered.

5.1 Mass-Transfer, Throughput and Quality Trade-Offs

Scale-up always exposes the trade-offs between throughput, energy per unit product, and product quality. For botanical phenolics and ginger/ashitaba extracts (our feedstocks), quality is often measured by compound-specific markers (e.g., gingerols, shogaols, chalcones) rather than aggregate TPC; these compounds are sensitive to excess thermal and oxidative exposure. The engineering objective therefore is to maximize mass flux $J=k_{eff}(Cs-Cb)$ while keeping k_{eff} increase driven by non-thermal mechanisms (PEF, cavitation) or by highly localized energy (MAE) that avoids bulk overheating.

Practically, a hybrid sequencing approach yields the best economics and quality: mild PEF pretreatment to raise membrane permeability (thereby increasing effective k_{eff} , followed by short MAE pulses or short-residence UAE to desorb and solubilize target phenolics rapidly. The comprehensive review emphasizes that hybrid systems often unlock lower total specific energy and solvent volumes than single-method approaches because each stage operates in its most efficient regime (PEF for permeability, UAE/MAE for desorption) and together shorten residence times sufficiently to preserve labile compounds.

Quantitative pilot data referenced in both documents point to yield improvements of 20–50% and solvent reductions of 25–40% in hybrid sequences for many matrices — results that must be confirmed at pilot scale for each feedstock.

5.2 Energy, Solvent Management and LCA Drivers

Life Cycle Assessment (LCA) analyses and the broader sustainability accounting in the review identify three dominant contributors to environmental impact and operating costs: (1) solvent production and losses, (2) process energy (kJ/kg extract), and (3) waste effluent treatment / valorization. Conventional reflux or Soxhlet systems lose on all three counts; intensified systems can reduce each metric substantially when designed with solvent recovery and heat integration.

Key engineering imperatives:

- Closed-loop solvent recovery: distillation and membrane polishing (e.g., pervaporation or membrane distillation) reduce fresh solvent demand and fugitive emissions. The review insists on explicit solvent-to-product ratios and solvent recovery rates in techno-economic models because solvent costs and environmental burdens dominate OPEX and LCA results.
- Specific energy benchmarking: measure and report kJ/kg extract for every candidate sequence. Toepfl provides useful baselines for PEF (5–10 kJ/kg for permeabilization; 50–200 kJ/kg for microbial inactivation), and the review collects comparative data showing MAE energy savings up to 30–60% versus reflux in many systems — but warns that these savings depend on reactor design and scale. Use these baselines to build LCA scenarios.
- Heat integration and renewables: recover exhaust heat from solvent condensers for pre-heating feeds; where possible, integrate solar-thermal or waste-heat streams to lower grid electricity consumption and carbon footprints. The review advocates including energy source scenarios (grid mix vs renewables) in LCA to identify where process electrification or heat substitution delivers the biggest gains.

5.3 Process Control, Monitoring and Quality Assurance

Large-scale implementations require inline sensors for temperature, dielectric properties (for MAE), acoustic intensity (for UAE), and conductivity/impedance (for PEF) to maintain product specifications. The review highlights the nascent but promising role of model-based control and machine learning to correct for feedstock variability (seasonal or batch heterogeneity) in real time; this reduces over-processing and protects bioactivity. The PEF paper demonstrates that field homogeneity and flow pattern control maintain consistent permeabilization across flow rates — an operational prerequisite for predictable downstream extraction.

Techno-Economic Considerations and Deployment Strategy

PEF units present higher capital intensity (high-voltage generators, robust electrodes) but low incremental downstream energy demand because they reduce required MAE/UAE intensity. UAE units are lower CAPEX and relatively straightforward to install for retrofit; MAE often requires purpose-built applicators and careful chamber design, increasing CAPEX and regulatory review if solvents are flammable. A pragmatic deployment route is modular pilot plants: (1) demonstrate PEF pretreatment module with solvent-feed compatibility and electrode longevity; (2) couple to a flow MAE or flow-through UAE module sized for target throughput; (3) implement solvent recovery and membrane polishing; (4) execute an LCA + TEA using real pilot energy and solvent metrics. Both documents recommend reporting cost per gram of purified target (not only % yield) as the industry-relevant KPI.

Policy, Regulation and Circular Economy Opportunities

Regulatory constraints (solvent residues, material-contact safety for electrodes, and food-grade equipment hygienic design) must be incorporated early. The comprehensive review accentuates circular economy opportunities: valorizing agro-residues, integrating extraction into existing processing lines (e.g., coupling to juice or oil mills), and designing closed-loop solvent systems all improve margins and lower net environmental impact.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Demonstrating solvent recycling rates, metal leaching limits (e.g., electrode titanium content below detection limits as reported by Toepfl), and stable extract profiles under continuous operation will accelerate regulatory acceptance.

Practical Engineering Recommendations (Summary)

- Adopt modular pilot-scale validation before full scale: test PEF → MAE/UAE modules at increasing capacities while measuring energy (kJ/kg), solvent consumption (L/kg extract), and compound-specific retention.
- Engineer for field/homogeneity: co-linear PEF chambers with static mixers and titanium electrodes; multimode or flow-through MAE cavities with temperature mapping; multi-transducer UAE arrays.
- Design solvent recovery and membrane polishing in early flowsheets; quantify solvent-to-product ratio and recovery efficiency for TEA and LCA.
- Report industrial KPIs: kJ/kg extract, €/kg purified phenolic, solvent-to-product ratio, electrode lifetime (cycles), and emissions per kg product. These metrics enable meaningful comparison and decision making.
- Plan hybrid sequencing (PEF pretreatment + MAE or UAE + solvent recovery) for highest likelihood of meeting both quality and sustainability goals.

CONCLUSIONS

This chapter has presented an integrated chemical engineering analysis of bioactive compound extraction from botanical materials using Microwave-Assisted Extraction (MAE), Ultrasonic-Assisted Extraction (UAE), and Pulsed Electric Field (PEF) technologies. Through experimental case studies involving ginger (*Zingiber officinale* var. *rubrum*) and ashitaba (*Angelica keiskei*), these methods were shown to substantially enhance extraction kinetics, improve recovery yields, and maintain functional compound quality compared to conventional extraction techniques. MAE was confirmed as an effective volumetric heating approach that dramatically accelerates extraction while reducing solvent usage.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

UAE demonstrated strong mechanical disruption capabilities, enabling efficient extraction at reduced temperatures suitable for thermolabile compounds. PEF proved particularly valuable as a pretreatment technology that permeabilizes cellular membranes through electroporation, minimizing internal diffusion resistance and significantly intensifying subsequent solvent extraction. Collectively, these techniques target complementary components of the extraction transport network, validating the process intensification concept at both mechanistic and applied levels.

The hybrid application of these technologies represents a promising pathway for maximizing extraction performance while minimizing environmental impact. Integration strategies combining PEF pretreatment with MAE or UAE extraction stages can achieve synergistic benefits, including reduced specific energy inputs, lower solvent requirements, and shorter total processing time. This multi-stage intensification approach supports key sustainability objectives within modern chemical engineering practices.

Future research directions should prioritize continuous-flow reactor development, improved microwave field modeling for uniform heating distribution, advanced transducer configurations for scalable UAE systems, and cost-effective designs of industrial PEF units. In addition, comprehensive techno-economic evaluations and life cycle assessments are required to quantify long-term commercial and environmental advantages across multiple botanical feedstocks and production scales. Integration with downstream processes such as vacuum drying, solvent recovery units, and chromatographic purification further represents important avenues for full process optimization.

In conclusion, MAE, UAE, and PEF technologies collectively provide a technically robust and sustainable platform for botanical bioactive extraction. Their continued development and integration into industrial processing lines are expected to significantly reshape green separation technologies within food, nutraceutical, and bioprocess manufacturing sectors.

REFERENCES

Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., ... Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. *Journal of Food Engineering*, 117(4), 426–436. <https://doi.org/10.1016/j.jfoodeng.2013.01.014>

Barba, F. J., Parniakov, O., Pereira, S. A., Wiktor, A., Grimi, N., Boussetta, N., ... Vorobiev, E. (2015). Current applications and new opportunities for the use of pulsed electric fields in food science and industry. *Food Research International*, 77, 773–798. <https://doi.org/10.1016/j.foodres.2015.08.004>

Bobinaitė, R., Pataro, G., Lamanauskas, N., Šatkauskas, S., Viškelis, P., & Ferrari, G. (2015). Application of pulsed electric field to improve the extraction of juice and bioactive compounds from blueberry fruits and their by-products. *Journal of Food Engineering*, 158, 1–7. <https://doi.org/10.1016/j.jfoodeng.2015.01.026>

Chan, C. H., Yusoff, R., Ngoh, G. C., & Kung, F. W. L. (2011). Microwave-assisted extraction of active ingredients from plants. *Journal of Chromatography A*, 1218(37), 6213–6225. <https://doi.org/10.1016/j.chroma.2011.07.040>

Chemat, F., Abert Vian, M., Fabiano-Tixier, A. S., Nutrizio, M., Jambrak, A. R., Munekata, P. E. S., ... Barba, F. J. (2017). A review of sustainable and intensified techniques for extraction of food and natural products. *Green Chemistry*, 19(23), 4937–4953. <https://doi.org/10.1039/C7GC02160H>

Chemat, F., Fabiano-Tixier, A. S., Lobier, M., & Abert-Vian, M. (2020). Green extraction of natural products: Toward sustainable development. *Trends in Analytical Chemistry*, 118, 546–555. <https://doi.org/10.1016/j.trac.2019.115646>

Chemat, F., Vian, M. A., & Cravotto, G. (2012). Green extraction of natural products: Concept and principles. *International Journal of Molecular Sciences*, 13(7), 8615–8627. <https://doi.org/10.3390/ijms13078615>

Dahmoune, F., Bachari, F. H., Chibane, M., Aissou, C. A., Guegan, J. P., Vives, T., ... Ferrieres, V. (2021). Microwave-assisted extraction of bioactive

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

compounds: Optimization by response surface methodology and comparison with ultrasound and conventional solvent extraction. *Chemical Engineering and Processing: Process Intensification*, 163, Article 108246. <https://doi.org/10.1016/j.cep.2021.108246>

Delsart, C., Grimi, N., Boussetta, N., Miot-Sertier, C., Vorobiev, E., & Parniakov, O. (2012). Pulsed electric field pretreatment enhances extraction of valuable compounds from grape pomace. *Innovative Food Science & Emerging Technologies*, 14, 55–61. <https://doi.org/10.1016/j.ifset.2012.07.003>

Eskilsson, C. S., & Björklund, E. (2000). Analytical-scale microwave-assisted extraction. *Journal of Chromatography A*, 902(1), 227–250. [https://doi.org/10.1016/S0021-9673\(00\)00949-8](https://doi.org/10.1016/S0021-9673(00)00949-8)

Loginova, I., Lebovka, N., & Vorobiev, E. (2011). Cell disintegration index based on the data of mixing and conductivity measurements: Application to food tissues. *Food and Bioproducts Processing*, 89(4), 305–313. <https://doi.org/10.1016/j.fbp.2011.02.004>

Mason, T. J., Chemat, F., & Vinatoru, M. (2011). The extraction of natural products using ultrasound or microwaves. *Current Organic Chemistry*, 15(2), 237–247. <https://doi.org/10.2174/138527211795564390>

Mulyadi, A. F., Tri Maryanti, Sukardi, & Nurlaila Abdullah. (2025). *Aplikasi pre-treatment pulsed electric field (PEF) pada ekstraksi jahe merah (Zingiber officinale var. rubrum): Kajian tegangan dan frekuensi PEF* [Unpublished manuscript / journal submission]. Departemen Teknologi Industri Pertanian, Universitas Brawijaya.

Pingret, D., Fabiano-Tixier, A. S., & Chemat, F. (2013). Degradation during application of ultrasound in food processing: A review. *Food Control*, 31(2), 593–606. <https://doi.org/10.1016/j.foodcont.2012.11.039>

Shawky, E., Nahar, L., Nassief, S., Sarker, S. D., & Ibrahim, R. S. (2025). A comprehensive review of large-scale extraction and purification of food-derived bioactive phenolic components. *Process Biochemistry*, 154, 196–219.

Stankiewicz, A. I., & Moulijn, J. A. (2000). Process intensification: Transforming chemical engineering. *Chemical Engineering Progress*, 96(1), 22–34.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Toepfl, S. (2011). Pulsed Electric Field food treatment — scale up from lab to industrial. *Procedia Food Science*, 1, 776–779.

Tzima, K., Krokida, M. K., & Katsanidis, E. (2021). Effects of pulsed electric fields on the disintegration of plant tissues: A review. *Journal of Food Engineering*, 300, 110522. <https://doi.org/10.1016/j.jfoodeng.2021.110522>

Veggi, P. C., Martinez, J., & Meireles, M. A. A. (2013). Fundamentals of microwave extraction. In F. Chemat & G. Cravotto (Eds.), *Microwave-assisted extraction for bioactive compounds* (pp. 15–52). Springer. https://doi.org/10.1007/978-94-007-4747-4_2

Vinatoru, M., Mason, T. J., & Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. *Ultrasonics Sonochemistry*, 35, 2–20. <https://doi.org/10.1016/j.ultsonch.2016.03.035>

Vorobiev, E., & Lebovka, N. (2008). Pulsed electric fields in food processing: Fundamentals and applications. In *Advances in Food and Nutrition Research* (Vol. 52, pp. 135–169). Academic Press.

Zhang, Q.-W., Lin, L.-G., & Ye, W.-C. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. *Chinese Medicine*, 13, Article 20. <https://doi.org/10.1186/s13020-018-0177-x>

CHAPTER 2
CHEMICAL ENGINEERING STRATEGIES FOR
NATURAL PRODUCT DEVELOPMENT

Ahmed ATTAHIRU¹

Yusuf HARUNA²

Bashar ATTAHIRU³

¹Abdullahi Fodio University of Science and Technology, Aliero, Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, ahmadattahiru02@gmail.com, ORCID ID: 0009-0009-3437-2287.

²Kampala International University, Western Campus, Department of Pharmacology.

³Federal College of Education (Technical), Yauri, Science Education Department.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

INTRODUCTION

In modern education, the introduction of smart classrooms is a significant step towards the modernization of the teaching process. Smart classrooms use advanced technology to create interactive, efficient, and accessible learning environments. These classrooms are equipped with a variety of technological equipment, including interactive whiteboards, smart devices, audio/visual equipment, and e-learning software. Smart classrooms allow for a combination of traditional teaching methods with advanced technological solutions. E-learning, as part of the broader concept of smart classrooms, allows students to access educational materials online, facilitating distance learning and a more flexible schedule. This approach not only increases the accessibility of education, but also improves the quality of the educational experience through the use of multimedia content and interactive teaching methods (Andreson and Dron, 2011; Salomon, 2011).

Natural products have long supported human civilization, serving as sources of food, medicine, dyes, fragrances, agrochemicals, and industrial materials. Produced by plants, microorganisms, and marine organisms, these metabolites exhibit immense structural diversity, ranging from simple terpenoids to complex alkaloids, phenolics, glycosides, and polyketides (Harvey et al., 2015). Their structural richness has made them indispensable templates for medicinal chemistry, pharmacognosy, and drug discovery. Many modern therapeutics, including paclitaxel, artemisinin, quinine, and lovastatin, originated from natural sources (Atanasov et al., 2021). Despite their potential, traditional methods of extracting and processing natural products often face drawbacks such as low efficiency, product degradation, limited selectivity, and inconsistent quality.

Chemical engineering provides the tools needed to overcome these limitations by introducing systematic process design, optimization, scale-up strategies, and robust quality control systems. Advances in process intensification, green extraction, membrane separations, and computational optimization have substantially improved natural product development over the last three decades. Chemical engineering principles guide each stage of production, from raw material handling to extraction, purification, formulation, and manufacturing.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Extraction efficiency depends on solvent characteristics, diffusion, and mass transfer behavior (Chemat et al., 2012), while purification often requires chromatographic or membrane operations governed by transport phenomena. Reactor design for fermentation or biotransformation integrates biochemical pathways with engineering principles of mixing, aeration, and heat transfer (Panda et al., 2017). Today, the field is increasingly shaped by continuous-flow systems, biorefineries, membrane bioreactors, and data-driven optimization. Growing global demand for herbal medicines, nutraceuticals, essential oils, and natural therapeutics (Ekor, 2014) underscores the need for robust engineering systems capable of delivering high quality and environmentally sustainable natural products.

1. PHYSICOCHEMICAL PROPERTIES OF PLANT DERIVED COMPOUNDS

Understanding physicochemical properties of plant compounds is essential for designing efficient extraction, purification, and formulation processes, as these characteristics guide solubility, diffusion, stability, solvent choice, mass transfer modeling, and overall process optimization.

Solubility and Polarity

Solubility strongly affects extraction efficiency. Polar compounds like phenolic acids, flavonoid glycosides, and alkaloid salts dissolve in water, ethanol, or methanol, whereas nonpolar terpenoids, sterols, fatty acids, and coumarins require hexane or petroleum ether (Sasidharan et al., 2011). Solvent polarity and pH-dependent solubility guide selective fractionation and maximize recovery.

Stability Considerations

Plant metabolites vary in stability; polyphenols, anthocyanins, carotenoids, and essential oils are sensitive to heat, oxygen, light, enzymes, and pH. Thermal degradation occurs with boiling or Soxhlet extraction, necessitating low-temperature or rapid methods (Chemat & Abert Vian, 2014). Oxidation and photodegradation are mitigated using antioxidants, inert atmospheres, and light protection.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Thermal Behavior

Melting point, boiling point, flash point, and decomposition temperature influence extraction and drying. Many compounds decompose before boiling, limiting distillation for alkaloids or glycosides, while essential oils allow steam distillation. Differential scanning calorimetry and thermogravimetric analysis provide critical data for process design and scaling (Burt, 2004).

pKa and Ionization Behavior

Ionization constants affect solubility across pH ranges. Alkaloids are protonated salts in acidic conditions (water-soluble) and free bases in organic solvents. pKa values guide acid-base fractionation, solvent selection, pH adjustment, and multistage liquid-liquid extraction (Williamson et al., 2013).

Partition Coefficients

Partition coefficients reflect solute distribution between immiscible phases. Hydrophobic compounds favor organic phases; hydrophilic compounds favor aqueous phases. Partitioning influences liquid-liquid extraction, membrane separation, and chromatographic retention (Sangster, 1997).

Implications for Downstream Processing

Physicochemical properties guide extraction, purification, and drying: solubility informs solvent choice, stability sets temperature limits, polarity and partitioning influence chromatography, pKa affects ionization, and thermal data constrain drying. Integrating these into simulations, mass balances, and equipment design improves yield, energy efficiency, and product quality.

2. EXTRACTION TECHNOLOGIES IN NATURAL PRODUCT CHEMISTRY

Extraction is the initial stage in natural product processing, transferring bioactive compounds into solvents. Technique selection influences yield, selectivity, and quality, with chemical engineering enabling intensified, energy efficient, and green methods.

2.1 Conventional Extraction Methods

Maceration

Maceration involves soaking plant materials in a solvent at room temperature for an extended period. Although simple and cost effective, maceration is limited by slow diffusion, long extraction times, and low efficiency. Chemical engineers enhance maceration by optimizing agitation, temperature, and solvent to solid ratios to improve mass transfer.

Percolation

Percolation allows continuous solvent flow through a bed of plant material. Compared to maceration, it offers improved mass transfer and higher throughput. Adjustable flow rates and proper bed packing improve diffusion gradients. Percolation units are scalable for industrial operations producing tinctures, herbal extracts, and nutraceutical ingredients.

Soxhlet Extraction

Soxhlet extraction is widely used for laboratory scale isolation of lipophilic compounds. It employs repeated solvent reflux and percolation, enabling exhaustive extraction without large solvent volumes. However, high temperatures and long extraction times can degrade thermolabile metabolites (Luque de Castro & Priego Capote, 2010). Engineers evaluate alternatives during scale up because Soxhlet extraction is impractical for large scale production due to high energy and time demands.

2.2 Modern Extraction Techniques

Ultrasound Assisted Extraction

Ultrasound creates cavitation bubbles that disrupt plant cell walls, improving solvent penetration and mass transfer. Ultrasound assisted extraction significantly reduces extraction time and solvent usage while preserving thermosensitive compounds (Chemat & Abert Vian, 2014). Industrial ultrasonic reactors now enable large scale extraction of essential oils, polyphenols, and pigments.

Microwave Assisted Extraction

Microwave heating rapidly increases internal temperature and pressure within plant tissues, causing cell rupture and enhanced metabolite release. Microwave assisted extraction offers rapid kinetics, high extraction efficiency, and reduced solvent consumption (Eskilsson & Björklund, 2000). Engineers optimize parameters such as microwave power, solvent type, moisture content, and temperature.

Supercritical Fluid Extraction

Supercritical carbon dioxide extraction is a leading green extraction technology. Carbon dioxide above its critical point of 31 degrees Celsius and 73 bar acts as a tunable solvent with gas like diffusivity and liquid like solvating power. Supercritical fluid extraction produces solvent free extracts and is ideal for thermolabile compounds, essential oils, and lipophilic metabolites (Herrero et al., 2010). Co solvents such as ethanol enhance extraction of moderately polar compounds. Advantages of supercritical fluid extraction include high selectivity, low operating temperatures, minimal solvent residues, and environmentally friendly operation.

Pressurized Liquid Extraction

Also known as accelerated solvent extraction, pressurized liquid extraction uses elevated pressures to keep solvents in the liquid phase at high temperatures. This increases solubility and diffusion rates and reduces extraction time. Pressurized liquid extraction is effective for polyphenols, alkaloids, and saponins (Richter et al., 1996). Engineers optimize pressure, temperature, solvent composition, and static or dynamic cycles.

2.3 Scale Up Considerations and Process Intensification

Industrial scale extraction requires optimizing mass transfer, solvent flow, particle size, heat transfer, and equipment design. Continuous, intensified methods like countercurrent, microwave, or hybrid extraction enhance productivity, reduce energy and solvent use, and integrate with downstream purification while ensuring economic, environmental, and regulatory compliance.

3. SOLVENT SELECTION AND GREEN CHEMISTRY PRINCIPLES

Solvent selection is crucial for extracting, purifying, and formulating natural products, as solvent properties affect solubility, selectivity, and yield, with chemical engineering optimizing efficiency, safety, and sustainability (Chemat et al., 2017).

Solvent Properties, Polarity, and Selectivity

Solvent polarity critically influences the extraction of phytochemicals. Polar solvents like water, methanol, and ethanol efficiently dissolve flavonoids, alkaloids, and glycosides, whereas nonpolar solvents such as hexane and petroleum ether favor lipophilic compounds including terpenoids, fatty acids, and essential oils. Selectivity depends on intermolecular interactions, including hydrogen bonding, dipole-dipole, and van der Waals forces (Sasidharan et al., 2011). Sequential or mixed solvent systems enhance target compound recovery while minimizing co-extraction. Additional solvent properties viscosity, dielectric constant, boiling point, and density affect matrix penetration, mass transfer, and compatibility with thermal processes like reflux or pressurized extraction (Luque de Castro & García Ayuso, 1998).

Replacement of Toxic Solvents with Sustainable Alternatives

Conventional organic solvents such as chloroform, dichloromethane, and benzene pose toxicity and environmental hazards. Green chemistry has therefore driven the adoption of safer alternatives including bioethanol, supercritical carbon dioxide, ionic liquids, and deep eutectic solvents. These emerging solvents offer high selectivity for polyphenols, alkaloids, and terpenoids while reducing ecological burden and facilitating regulatory approval for herbal, nutraceutical, and pharmaceutical products (Chemat et al., 2017).

Solvent Recovery and Recycling in Industrial Operations

At industrial scale, solvent consumption and waste generation significantly affect cost and sustainability.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Recovery techniques such as distillation, membrane filtration, and adsorption enable repeated solvent reuse, reducing energy demand and minimizing environmental impact (Herrero et al., 2010). Effective recovery requires precise control of temperature and pressure to prevent degradation of thermolabile phytochemicals. Continuous processes increasingly integrate in-line solvent recycling to enhance operational efficiency.

Implications for Process Design

The integration of solvent selection, green alternatives, and recycling strategies directly shapes extraction and purification system design. Supercritical CO₂ coupled with ethanol as a co-solvent exemplifies a sustainable, selective, and scalable extraction platform. Such engineered processes ensure high-quality natural product manufacturing while meeting economic and regulatory expectations.

4. CHROMATOGRAPHIC AND MEMBRANE BASED PURIFICATION TECHNIQUES

Purification isolates bioactive compounds at high purity, using chromatography and membrane separation, optimized by chemical engineering for selectivity, yield, and scalability (Sarker & Nahar, 2012).

4.1 Chromatographic Techniques

Chromatography relies on differential distribution of compounds between stationary and mobile phases, exploiting polarity, size, or chemical affinity for separation.

Column Chromatography

Column chromatography is widely used for initial fractionation of plant extracts. Compounds are separated as they migrate through a column packed with a stationary phase, typically silica gel or alumina, using a suitable solvent or solvent gradient. Process parameters such as particle size, column dimensions, flow rate, and solvent polarity are optimized to maximize resolution and recovery (Stalikas, 2007).

High Performance Liquid Chromatography (HPLC)

High performance liquid chromatography (HPLC) provides higher resolution, reproducibility, and sensitivity compared to conventional column chromatography. Analytical HPLC is used for compound identification and quantification, while preparative HPLC allows isolation of gram to kilogram quantities of bioactive metabolites. Selection of stationary phases (e.g., C18, phenyl, or ion-exchange resins) and mobile phase composition is critical for effective separation. Gradient elution and flow rate adjustments improve selectivity and reduce processing time (Sarker & Nahar, 2012).

Preparative Thin Layer Chromatography (TLC)

Preparative thin layer chromatography is suitable for rapid purification of small quantities of natural products. Compounds are separated on planar stationary phases and recovered by scraping and elution. Preparative TLC is particularly useful for isolating minor components or verifying solvent systems for larger scale chromatographic separation (Sasidharan et al., 2011).

4.2 Membrane-Based Separation

Membrane separation offers energy-efficient alternatives to conventional chromatography, particularly for thermolabile and high molecular weight compounds.

Ultrafiltration

Ultrafiltration separates compounds based on size exclusion, removing macromolecules such as proteins, polysaccharides, and pigments from plant extracts. Membranes with specific molecular weight cut-offs allow selective retention of target metabolites while concentrating the product. Ultrafiltration is commonly applied prior to chromatography to reduce column fouling and improve downstream processing efficiency (Chemat et al., 2017).

Nanofiltration

Nanofiltration provides finer separation, retaining secondary metabolites including flavonoids, alkaloids, and phenolics, while allowing passage of smaller solvent molecules.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Nanofiltration can be operated continuously and integrated directly with extraction processes, reducing solvent use and improving process intensification.

Industrial Scale Considerations and Continuous Separation

Scaling purification to industrial levels poses challenges in flow, pressure, and equipment. Continuous chromatography and membrane filtration enhance throughput, reduce solvent use, and integrate with extraction, drying, and formulation, ensuring efficiency, reproducibility, and sustainable, high-quality production (Stalikas, 2007).

Implications for Process Design

The integration of chromatographic and membrane-based purification techniques into chemical engineering workflows ensures high-purity product isolation. Critical design considerations include:

- Choice of separation method based on compound properties (polarity, molecular weight, thermal stability)
- Optimization of flow rates, pressure, and temperature
- Minimization of solvent usage and incorporation of solvent recycling
- Compatibility with upstream extraction and downstream drying or encapsulation

Effective implementation of these techniques ensures that industrial natural product processes are efficient, reproducible, and environmentally sustainable.

5. PROCESS ENGINEERING FOR ISOLATION OF BIOACTIVE COMPOUNDS

Isolating bioactive compounds requires chemical engineering principles, optimizing mass transfer, kinetics, and process control to ensure high yield, purity, and industrial scalability (Luque de Castro & García Ayuso, 1998).

Mass Transfer and Kinetics in Extraction and Purification

Mass transfer governs the rate at which bioactive compounds migrate from plant matrices into solvents.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Diffusion through cell walls, capillaries, and boundary layers depends on concentration gradients, solvent viscosity, particle size, and agitation (Chemat et al., 2017). Understanding mass transfer kinetics allows chemical engineers to:

- Optimize solvent-to-solid ratios
- Control extraction time and temperature
- Minimize energy consumption while maintaining yield

Fick's law-based models predict extraction kinetics, guiding the design of continuous, countercurrent, and multistage separation processes for maximum efficiency (Luque de Castro & García Ayuso, 1998).

Reactor Design for Enzymatic Modifications and Biotransformations

Beyond conventional extraction, process engineering extends to enzymatic modifications and biotransformations of natural products. Enzymes are frequently used to:

- Convert precursor molecules into more potent or stable metabolites
- Modify structural features to improve solubility, bioavailability, or stability

Enzymatic reactor design optimizes temperature, pH, substrate, mixing, and residence time, using batch, fed-batch, or continuous systems for consistent metabolite production (Panda et al., 2017).

Optimization of Yield and Purity at Laboratory and Pilot Scale

Maximizing yield and purity requires iterative optimization. At the laboratory scale, chemical engineers screen:

- Solvent type and polarity
- Extraction method (e.g., ultrasound-assisted, microwave-assisted)
- Purification strategies (chromatography, membrane filtration)

Optimized processes scale to pilot plants, addressing equipment, transfer limitations, and energy, with DOE and RSM refining parameters before industrial implementation (Eskilsson & Björklund, 2000).

Pilot-scale trials provide critical feedback for:

- Adjusting flow rates, residence times, and agitation

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

- Ensuring reproducibility of product concentration and purity
- Assessing solvent recovery and energy consumption

The integration of mass transfer models, kinetic data, and process control allows chemical engineers to design robust operations that produce bioactive compounds consistently at commercial scale (Herrero et al., 2010).

Integration with Upstream and Downstream Operations

Isolation of bioactive compounds does not occur in isolation. Effective process engineering requires seamless integration with upstream extraction and downstream formulation. For example:

- Solvent extraction and purification methods must align to minimize compound degradation
- Membrane separation or chromatography is designed to handle extract concentrations and viscosities from upstream units
- Drying, encapsulation, or crystallization processes downstream are influenced by the purity, particle size, and solvent residuals

This holistic approach ensures high yield, reproducibility, and quality control throughout the production chain.

Implications for Industrial Production

Chemical engineering strategies for isolation of bioactive compounds enable:

- Scalable production from laboratory to industrial levels
- Efficient utilization of solvents and energy
- Enhanced reproducibility and compliance with quality standards
- Reduced product loss and degradation of thermolabile metabolites

The application of these principles is particularly important for high-value plant metabolites, including alkaloids, flavonoids, terpenoids, and glycosides, where both yield and bioactivity directly influence commercial viability.

6. CRYSTALLIZATION AND PRECIPITATION OF NATURAL PRODUCTS

Crystallization and precipitation purify natural products, exploiting solubility and molecular interactions, with controlled parameters ensuring high purity, reproducibility, and optimal product properties. (Myerson, 2002).

Principles of Nucleation, Crystal Growth, and Polymorphism

Crystallization begins with nucleation, where stable clusters of solute molecules form in a supersaturated solution, either spontaneously (primary) or induced by existing crystals (secondary). Crystal growth then determines particle size, shape, and quality, influencing processing efficiency and bioavailability (Davey et al., 2013). Polymorphism, the existence of different crystalline forms of the same compound, affects solubility, stability, and dissolution. In natural products such as alkaloids, flavonoids, and terpenoids, controlling polymorph formation is essential for ensuring consistent therapeutic performance (Brittain, 2009).

Solvent Choice, Temperature Control, and Process Scale-Up

Solvent choice strongly affects solubility, supersaturation, and crystallization behavior. Polar solvents are suited for flavonoids and alkaloids, while nonpolar solvents extract terpenoids and other lipophilic compounds. Mixed solvents or the use of anti-solvent techniques help improve selectivity and control nucleation (Myerson, 2002). Temperature regulation is equally important, as slow cooling produces uniform crystals and rapid cooling yields smaller particles (Davey et al., 2013). Scaling up introduces challenges in heat transfer, mixing, and uniformity, often addressed through computational fluid dynamics and pilot studies (Rawlings et al., 2001).

Applications for Alkaloids, Flavonoids, and Terpenoids

Crystallization and precipitation are widely applied for the purification of bioactive natural products:

- **Alkaloids:** Quinine, berberine, and vincristine are purified through controlled crystallization to enhance stability and bioactivity.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Acid-base fractionation followed by selective crystallization ensures high purity (Williamson et al., 2013).

- **Flavonoids:** Compounds such as quercetin, rutin, and kaempferol are often crystallized from alcoholic or aqueous solutions for nutraceutical formulations. Crystallization improves shelf life and facilitates downstream encapsulation or tableting (Sasidharan et al., 2011).
- **Terpenoids:** Carotenoids, essential oil constituents, and saponins are typically precipitated using anti-solvent techniques or co-crystallization to achieve desired purity and particle morphology (Burt, 2004).

Process Integration and Optimization

Process engineers integrate crystallization with upstream extraction and downstream drying or formulation steps. Key considerations include:

- Compatibility of solvent systems with extraction and purification methods
- Minimization of compound degradation during supersaturation or solvent removal
- Optimization of crystal size and morphology for drying, encapsulation, or tableting

Advanced strategies such as continuous crystallization, coupled precipitation, and hybrid solvent-antisolvent systems are increasingly used to enhance throughput, reproducibility, and product quality in industrial operations (Myerson, 2002).

Industrial Considerations

Industrial crystallization processes prioritize:

- High purity and reproducibility
- Control of polymorphism and particle size distribution
- Scalability and energy efficiency
- Integration with quality control and regulatory requirements

By controlling nucleation, growth, and solvent parameters, chemical engineers can reliably produce crystalline natural products suitable for pharmaceutical, nutraceutical, and functional food applications.

7. BIOREACTORS AND FERMENTATION FOR SECONDARY METABOLITE PRODUCTION

Biotechnological production using microbial and plant cell cultures enables sustainable, scalable, and reproducible synthesis of secondary metabolites, overcoming low abundance and overharvesting challenges (Cragg & Newman, 2013).

Microbial and Plant Cell Cultures for Metabolite Synthesis

Microbial fermentation and plant cell cultures produce natural products, with genetic optimization enhancing yield and selectivity from rare or slow-growing species (Verpoorte et al., 2002).

Cell cultures offer advantages including:

- Controlled growth conditions (temperature, pH, nutrient availability)
- Reproducibility and scalability
- Reduced dependency on climate and geographical location
- Lower risk of contamination with environmental toxins

Through biotransformation, precursor molecules can be converted into high-value bioactive compounds with higher yield than conventional extraction methods (Panda et al., 2017).

Reactor Design: Batch, Fed-Batch, and Continuous Systems

The design of bioreactors significantly influences metabolite yield and process efficiency. Common reactor configurations include:

- **Batch reactors:** Simple and flexible, suitable for small-scale production and experimental studies. Cells grow and metabolites accumulate during a fixed operation time.
- **Fed-batch reactors:** Substrate feeding is controlled over time, maintaining optimal growth conditions and extending production phases. This approach enhances metabolite accumulation and allows better control over nutrient availability.
- **Continuous reactors:** Cells are maintained at steady state, providing constant product output. Continuous systems improve productivity and reduce downtime but require robust process monitoring and contamination control (Stanbury et al., 2016).

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Key engineering considerations in bioreactor design include oxygen transfer, shear stress, mixing, pH control, temperature regulation, and nutrient delivery. Optimization of these parameters is essential to maximize secondary metabolite production while maintaining cell viability.

Process Monitoring, Control, and Scale-Up Challenges

Monitoring and control systems maintain high yields and quality, using sensors and feedback to regulate oxygen, pH, temperature, nutrients, and biomass (Posten & Schügerl, 1995).

Scaling up from laboratory to pilot and industrial scale introduces challenges such as:

- Maintaining uniform mixing and oxygen transfer in larger volumes
- Avoiding shear-induced cell damage
- Controlling metabolite accumulation and byproduct formation
- Preventing contamination in prolonged operations

Scale-up strategies often involve stepwise transition through laboratory, pilot, and demonstration scale reactors, with iterative optimization of operating conditions using computational modeling and experimental validation.

Applications in Secondary Metabolite Production

Bioreactor and fermentation strategies are applied in various industrial contexts:

- **Alkaloids:** Vincristine and vinblastine are produced from *Catharanthus roseus* cell cultures using fed-batch bioreactors with optimized nutrient feeding strategies (Verpoorte et al., 2002).
- **Terpenoids:** Taxol (paclitaxel) precursors are synthesized in plant cell suspension cultures under controlled bioreactor conditions, offering an alternative to extraction from slow-growing yew trees (Cragg & Newman, 2013).
- **Phenolics and flavonoids:** Microbial fermentation produces polyphenols and flavonoids for nutraceutical and functional food applications, with improved yield and consistency over plant extraction.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Bioreactors allow integration of upstream extraction, in situ product recovery, and downstream purification, streamlining industrial production and improving overall process efficiency.

Future Directions and Technological Innovations

Emerging strategies in bioreactor-based natural product production include:

- **Membrane bioreactors:** Combine separation with cultivation, enabling continuous removal of metabolites and reducing downstream processing steps.
- **Immobilized cell systems:** Enhance stability and productivity by confining cells in matrices that protect against shear and facilitate repeated batch production.
- **Process intensification:** Integrating multiple unit operations such as extraction, purification, and biotransformation in a single system to improve efficiency and reduce resource consumption (Posten & Schügerl, 1995).

Advanced process monitoring tools, computational modeling, and artificial intelligence are increasingly applied to optimize fermentation parameters, predict yields, and maintain consistent quality at industrial scale.

8. DRYING, STABILIZATION, AND FORMULATION OF NATURAL PRODUCTS

After extraction and purification, drying and formulation stabilize natural products, prevent microbial growth, and enhance solubility, bioavailability, and controlled release for various applications (Eckhardt & Müller, 2017).

Drying Techniques: Spray, Freeze, and Rotary Drying

Drying removes moisture from plant extracts and isolated compounds, enhancing stability and ease of handling. Common industrial drying methods include:

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

- **Spray drying:** Liquid extracts are atomized into a hot drying gas, producing fine powders rapidly. This method preserves thermolabile compounds such as essential oils, polyphenols, and enzymes (Gharsallaoui et al., 2007).
- **Freeze drying (lyophilization):** Water is removed under vacuum at low temperatures, minimizing thermal degradation. Freeze drying is particularly suitable for heat-sensitive compounds and preserves bioactivity, color, and flavor.
- **Rotary drying:** Continuous heating with agitation allows large-scale drying of heat-stable extracts. While efficient for bulk powders, thermal degradation of sensitive compounds may occur if process conditions are not carefully controlled.

Selection of a drying technique depends on the thermal sensitivity of the target compound, desired particle size, bulk density, and intended formulation.

Encapsulation and Micro/Nanoformulations

Encapsulation enhances stability, solubility, and controlled release of natural products. Techniques include:

- **Microencapsulation:** Active compounds are entrapped within polymeric matrices or lipid carriers, protecting them from oxidation, moisture, and light.
- **Nanoformulations:** Liposomes, solid lipid nanoparticles, and polymeric nanoparticles improve solubility and bioavailability, particularly for poorly soluble compounds such as curcumin, resveratrol, and certain flavonoids (Singh et al., 2017).

Chemical engineering approaches optimize encapsulation parameters, particle size distribution, and release kinetics to maximize therapeutic efficacy. Spray drying, coacervation, and nanoemulsion techniques are commonly employed to produce stable micro- and nano-encapsulated formulations.

Stability Studies and Shelf-Life Optimization

Stability assessment is essential to ensure that natural products maintain potency, safety, and quality during storage. Parameters assessed include:

- Temperature, humidity, and light exposure

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

- Oxidative stability
- Moisture content and water activity
- Chemical and physical integrity

Accelerated stability testing simulates long-term storage conditions to predict shelf life. Packaging, antioxidant addition, and controlled storage conditions are also optimized to extend product longevity (Singh et al., 2017).

Formulation for Targeted Delivery and Bioavailability Enhancement

Chemical engineering contributes to the design of formulations that enhance bioavailability and facilitate targeted delivery. Strategies include:

- Particle size reduction to improve dissolution rate
- Emulsification for lipophilic compounds
- Controlled release matrices for sustained therapeutic effect
- Liposomal and polymeric carriers for targeted tissue delivery

These approaches are informed by pharmacokinetic studies to optimize absorption, distribution, metabolism, and excretion of natural products, ensuring maximum therapeutic impact.

Industrial Considerations

In industrial production, drying and formulation processes are integrated with upstream extraction and purification to maintain consistency, quality, and bioactivity. Key considerations include:

- Equipment selection and scale-up parameters
- Process reproducibility and batch-to-batch consistency
- Minimization of compound degradation and loss
- Regulatory compliance for pharmaceutical or nutraceutical products

Integration of drying, stabilization, and formulation ensures that natural products are transformed into commercially viable forms with high bioactivity, stability, and safety (Eckhardt & Müller, 2017).

9. QUALITY CONTROL, STANDARDIZATION, AND REGULATORY CONSIDERATIONS

Quality control and standardization ensure reproducibility, safety, efficacy, and regulatory compliance, with chemical engineering enabling systematic monitoring and robust assurance frameworks.

Chemical Fingerprinting Using GC-MS, LC-MS, and NMR

Chemical fingerprinting is a cornerstone of quality control in natural product processing. It involves comprehensive characterization of bioactive compounds to confirm identity, purity, and consistency across production batches (Williamson et al., 2013).

- **Gas Chromatography Mass Spectrometry (GC-MS):** Ideal for volatile and thermally stable compounds, GC-MS enables high-resolution separation and sensitive detection of essential oils, terpenoids, and small organic metabolites.
- **Liquid Chromatography Mass Spectrometry (LC-MS):** Suitable for nonvolatile, thermolabile compounds such as flavonoids, alkaloids, glycosides, and phenolics, LC-MS combines separation with precise mass identification.
- **Nuclear Magnetic Resonance (NMR) Spectroscopy:** Provides detailed structural information, including functional groups, stereochemistry, and molecular conformation, supporting both identity confirmation and detection of adulterants or degradation products.

Integration of these techniques allows comprehensive chemical profiling, aiding in batch-to-batch consistency and adulteration detection (Atanasov et al., 2021).

Industrial Quality Assurance and Process Validation

Industrial quality assurance encompasses raw material verification, in-process monitoring, and final product testing. Key elements include:

- **Standard Operating Procedures (SOPs):** Define critical process parameters for extraction, purification, drying, and formulation.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

- **In-Process Monitoring:** Ensures consistency in yield, purity, and bioactivity during production. Parameters such as temperature, solvent composition, pH, and residence time are continuously monitored.
- **Process Validation:** Demonstrates reproducibility and robustness of manufacturing operations across multiple batches.

Quality attributes typically assessed include active compound concentration, physical and chemical stability, microbial safety, and absence of contaminants. Continuous monitoring, documentation, and corrective actions are fundamental for maintaining product integrity (Ekor, 2014).

Standardization Approaches

Standardization ensures that natural products contain defined concentrations of bioactive compounds, enhancing reproducibility and efficacy. Techniques include:

- Quantitative determination of marker compounds using HPLC, LC-MS, or GC-MS.
- Chemical profiling and fingerprinting to verify characteristic metabolite patterns.
- Optimization of extraction and purification to maintain active compound integrity.

Standardization is particularly important for herbal medicines, nutraceuticals, and functional food ingredients, where variation in raw material and processing can affect therapeutic outcomes (Lu et al., 2016).

Regulatory Requirements for Herbal Products and Nutraceuticals

Regulatory frameworks provide guidelines for the safety, efficacy, and quality of natural products. Key agencies include:

- **U.S. Food and Drug Administration (FDA):** Oversees dietary supplements, nutraceuticals, and herbal medicines.
- **European Medicines Agency (EMA):** Provides guidance on herbal medicinal products, including traditional use registration and safety evaluation.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

- **World Health Organization (WHO):** Offers global standards for quality control, good manufacturing practices (GMP), and safety assessment of herbal products.

Compliance requires validated analytical methods, documented quality assurance processes, stability data, and evidence of safety. Chemical engineering contributes to regulatory compliance through controlled extraction parameters, standardized solvent systems, purification protocols, and process reproducibility (Harvey et al., 2015).

Integration of Quality Control in Industrial Production

Chemical engineering strategies enable integration of quality control throughout the production pipeline:

- Implementation of in-line sensors and automated monitoring to ensure critical process parameters remain within predefined limits.
- Continuous verification of extract composition via rapid analytical methods.
- Process optimization to minimize variability in yield, purity, and bioactivity.

This integration ensures industrially produced natural products meet regulatory standards, maintain therapeutic efficacy, and are safe for human consumption.

10. PROCESS MODELING, SIMULATION, AND OPTIMIZATION

Modern chemical engineering uses computational modeling and simulation to predict extraction, purification, and process performance, enhancing efficiency, scalability, and consistent product quality.

Computational Tools for Extraction and Purification

Computational modeling is integral to designing extraction and purification processes. Engineers use simulations to evaluate mass transfer, solvent selection, reaction kinetics, and equipment performance. Key platforms include:

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

- **Aspen Plus:** For process flow simulation, energy balance calculations, and optimization of extraction and separation units.
- **MATLAB:** Enables mathematical modeling of kinetics, mass transfer, and process control algorithms.
- **COMSOL Multiphysics:** Provides multiphysics modeling of coupled transport phenomena, including diffusion, convection, and heat transfer in extraction systems.
- **gPROMS:** Offers dynamic modeling for process optimization and scale up in continuous and batch operations.

By integrating physical, chemical, and process parameters, these tools allow engineers to predict optimal operating conditions for laboratory, pilot, and industrial scale operations (Chemat & Abert Vian, 2014).

Kinetic Modeling of Reactions and Separation Processes

Understanding reaction and separation kinetics is crucial for rational process design. Models describe rates of:

- **Solute dissolution and extraction:** Based on concentration gradients, temperature, agitation, and particle size, using Fick's laws of diffusion.
- **Enzymatic and biotransformation reactions:** Incorporating substrate concentration, enzyme activity, pH, and temperature.
- **Separation processes:** Including chromatography, crystallization, and membrane filtration, where mass transfer rates, column length, flow rates, and retention times influence yield and purity.

Kinetic modeling enables prediction of process performance, helping engineers optimize residence time, flow conditions, and equipment configurations for maximum extraction efficiency and minimal degradation of bioactive compounds (Luque de Castro & García Ayuso, 1998).

Process Optimization for Energy Efficiency and Yield Maximization

Process optimization integrates modeling results, experimental data, and economic constraints to achieve maximum yield and energy efficiency. Key strategies include:

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

- **Adjusting solvent-to-solid ratios, temperature profiles, and extraction times** to enhance solubility and mass transfer.
- **Sequence optimization of purification steps**, combining chromatography, crystallization, and membrane filtration to minimize losses and solvent use.
- **Energy-efficient operations**, including heat recovery and continuous process configurations.

Advanced optimization techniques include:

- **Response Surface Methodology (RSM)**: Evaluates multiple process variables simultaneously to identify optimal operating conditions.
- **Genetic Algorithms (GA)**: Simulates evolutionary processes to find global optima for multi-variable systems.
- **Machine Learning (ML)**: Analyzes complex datasets to predict process outcomes, adjust parameters in real-time, and improve reproducibility (Herrero et al., 2010).

These approaches ensure industrial-scale production is cost-effective, reproducible, and environmentally sustainable, while maintaining the bioactivity and integrity of natural products.

Integration of Modeling and Experimental Validation

Computational models provide predictive frameworks, but laboratory and pilot scale validation remains essential. Engineers combine modeling insights with experimental data to:

- Verify extraction yields and selectivity.
- Confirm chromatographic resolution and purification efficiency.
- Assess the stability and bioactivity of final products.

Iterative feedback between modeling and experimentation allows continuous improvement, reduces development timelines, and supports robust scale-up strategies.

Advantages for Industrial Implementation

Modeling, simulation, and optimization provide multiple benefits for industrial natural product processing:

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

- **Reduced experimentation:** Minimizes material use and experimental costs.
- **Enhanced reproducibility:** Ensures consistent quality across production batches.
- **Predictive scale-up:** Allows transition from laboratory to pilot and industrial scale with minimal trial-and-error.
- **Energy and resource efficiency:** Optimized processes reduce solvent and energy consumption.
- **Regulatory compliance:** Demonstrates control over critical process parameters, supporting good manufacturing practice (GMP) requirements.

Through these strategies, chemical engineers can design highly efficient, sustainable, and commercially viable processes for natural product extraction and purification.

11. SCALE-UP AND INDUSTRIAL IMPLEMENTATION OF NATURAL PRODUCT PROCESSES

Scaling natural product processes from laboratory to industrial production represents a critical step in translating phytochemical discoveries into commercially viable products. This stage involves pilot plant validation, process optimization, techno-economic evaluation, environmental and safety management, and integration of quality control measures.

Pilot Plant Design and Validation

Pilot plants bridge the gap between laboratory experiments and full-scale production. Design considerations include:

- **Equipment selection:** Extraction reactors, chromatographic systems, membrane units, crystallizers, and dryers are chosen based on laboratory results and anticipated scale requirements.
- **Parameter optimization:** Pilot-scale operations allow refinement of solvent-to-solid ratios, temperature, pressure, flow rates, and residence times.
- **Process reproducibility:** Multiple pilot runs validate consistency in yield, purity, and bioactivity.

- **Troubleshooting:** Pilot studies identify potential challenges such as solvent recovery efficiency, heat transfer limitations, or mass transfer bottlenecks, enabling preemptive engineering solutions (Chemat & Vian, 2014).

Pilot plant validation ensures that industrial-scale implementation maintains the integrity of bioactive compounds while remaining operationally feasible.

Techno-Economic Evaluation

A comprehensive techno-economic assessment evaluates the feasibility and sustainability of industrial-scale operations. Key components include:

- **Capital costs:** Equipment procurement, installation, and infrastructure.
- **Operating costs:** Solvent consumption, energy requirements, labor, maintenance, and waste management.
- **Process yield and productivity:** Extraction efficiency, purification effectiveness, and bioactive compound recovery.
- **Economic return:** Projected product market value, payback period, and profitability.

Economic modeling supports informed decisions regarding scale, process configuration, and resource allocation, ensuring commercial viability without compromising product quality (Luque de Castro & García Ayuso, 1998).

Safety, Environmental Impact, and Waste Management

Industrial-scale processing of natural products involves handling large quantities of solvents, plant materials, and bioactive compounds, requiring stringent safety and environmental protocols:

- **Safety protocols:** Include process hazard analysis, chemical storage and handling procedures, use of personal protective equipment, and emergency response planning.
- **Environmental management:** Solvent recovery, wastewater treatment, energy optimization, and reduction of greenhouse gas emissions.

- **Waste valorization:** Plant residues can be converted into biofuels, compost, or sources of secondary metabolites, aligning with circular bioeconomy principles (Herrero et al., 2010). Sustainable practices minimize environmental footprint, ensure regulatory compliance, and enhance corporate social responsibility.

Integration with Continuous and Intensified Processes

Industrial implementation increasingly utilizes continuous and intensified processing:

- **Continuous extraction and purification:** Reduces manual intervention, enhances reproducibility, and maximizes throughput.
- **Process intensification:** Combines multiple operations (e.g., extraction and purification) in a single unit, improving energy efficiency and minimizing solvent use.
- **Membrane bioreactors and continuous crystallizers:** Facilitate in situ product recovery, improve yields, and ensure consistent product quality.

These strategies allow the production of high-value natural products at industrial scales while reducing resource consumption and operational complexity (Chemat & Abert Vian, 2014).

Case Studies

- **Essential Oils:** Industrial steam distillation, coupled with fractional condensation and continuous solvent recovery, enables large-scale production of essential oils from aromatic plants while preserving volatile compounds.
- **Flavonoid and Alkaloid Extracts:** Sequential solvent extraction, chromatographic purification, and drying/encapsulation processes are scaled up to produce nutraceuticals and herbal medicines with reproducible bioactivity.
- **Plant Cell Culture Products:** Controlled bioreactor production of paclitaxel and vincristine demonstrates successful integration of chemical engineering, bioprocess optimization, and quality assurance to yield pharmacologically consistent products (Panda et al., 2017).

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Challenges and Future Directions

Scale-up challenges include:

- Maintaining uniform heat and mass transfer in larger reactors.
- Preventing degradation of thermolabile or light-sensitive compounds.
- Achieving consistent product quality across batches.

Future strategies involve automation, real-time process monitoring, advanced modeling, and AI-assisted control systems to streamline industrial production and ensure compliance with regulatory standards.

12. INTEGRATION OF CHEMICAL ENGINEERING WITH PHARMACOLOGICAL EVALUATION

Integrating chemical engineering with pharmacological evaluation ensures industrial scale natural products maintain bioactivity, therapeutic efficacy, and safety through controlled extraction, purification, and formulation.

Linking Process Parameters with Bioactivity

Process conditions such as temperature, solvent type, extraction duration, and purification methods determine the chemical composition and bioactivity of plant derived products. For example:

- **Thermal sensitivity:** Flavonoids, polyphenols, and certain alkaloids degrade under excessive heat, reducing pharmacological potency.
- **Solvent effects:** Solvent polarity affects extraction efficiency of target metabolites, impacting both qualitative and quantitative bioactive content.
- **Extraction and purification efficiency:** Incomplete extraction or low purification selectivity can lead to reduced efficacy or presence of inactive compounds (Chemat & Abert Vian, 2014).

Integration involves iterative feedback loops where pharmacologists provide bioactivity data that guide chemical engineers in optimizing extraction and purification protocols to maintain or enhance therapeutic effects.

Bioavailability Enhancement through Engineering Strategies

Many natural products exhibit poor solubility or limited bioavailability, which can compromise pharmacological efficacy. Chemical engineering offers several solutions:

- **Particle size reduction:** Improves dissolution rate and absorption.
- **Encapsulation:** Micro and nano-encapsulation protects compounds from degradation, enhances stability, and enables controlled release. Techniques include liposomes, polymeric microcapsules, and solid lipid nanoparticles.
- **Emulsification and nanoformulation:** Increases solubility of hydrophobic compounds and improves pharmacokinetic profiles.

These strategies are guided by pharmacokinetic and bioavailability studies to ensure that engineered formulations achieve therapeutic plasma concentrations and desired biological effects (Williamson et al., 2013).

Case Examples of Industrial Integration

Several high-value natural products illustrate successful integration of chemical engineering with pharmacological evaluation:

- **Paclitaxel:** Originally derived from *Taxus* species, paclitaxel is produced using plant cell suspension cultures in bioreactors. Optimized process parameters ensure consistent alkaloid yield and bioactivity, suitable for anticancer applications.
- **Vincristine and Vinblastine:** Extracted from *Catharanthus roseus*, optimized extraction, purification, and formulation processes ensure reproducible alkaloid concentrations for therapeutic use.
- **Nutraceutical extracts:** Standardized extracts of green tea catechins, curcuminoids, and *Ginkgo biloba* flavonoids utilize controlled solvent extraction, chromatographic purification, and encapsulation to maintain bioactivity, enhance stability, and improve oral bioavailability (Atanasov et al., 2021).

These examples demonstrate that process engineering must align with pharmacological requirements to ensure industrial products retain efficacy comparable to laboratory or traditional preparations.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Integration Workflow and Feedback Loops

The integration of chemical engineering and pharmacology follows a structured workflow:

- **Laboratory optimization:** Small scale extraction, purification, and formulation under controlled conditions.
- **Bioactivity assessment:** In vitro and in vivo studies determine pharmacological potency and safety.
- **Process adjustment:** Engineering parameters are modified to maximize bioactive retention, yield, and stability.
- **Pilot scale validation:** Scaled-up processes are tested while monitoring bioactive compound content and bioactivity.
- **Industrial production:** Continuous quality control ensures pharmacological efficacy is maintained across batches.

Iterative feedback between pharmacologists and chemical engineers ensures reproducibility, quality, and safety in industrial natural product manufacturing.

Challenges and Future Perspectives

Challenges in integrating chemical engineering and pharmacology include:

- **Complex natural mixtures:** Variability in plant material and metabolite composition can affect reproducibility.
- **Thermolabile or unstable compounds:** Sensitive compounds require low temperature or inert-atmosphere processing to maintain activity.
- **Translation from laboratory to industrial scale:** Maintaining bioactivity during scale up is complex due to mass transfer, heat, and solvent considerations.

Future directions include using in silico pharmacokinetic modeling, high-throughput bioassays, and AI-driven process optimization to enhance the predictive design of extraction and formulation protocols, ensuring industrial products meet pharmacological targets efficiently.

13. FUTURE PERSPECTIVES AND EMERGING TECHNOLOGIES

Natural product development is rapidly evolving as advances in chemical engineering, biotechnology, and computational science improve extraction, purification, formulation, and scale up with greater efficiency and sustainability.

Continuous Flow Processing and Process Intensification

Continuous flow processing represents a shift from traditional batch operations to systems where reactions, extraction, and purification occur in a continuous, controlled manner. Advantages of continuous flow include:

- **Precise control of reaction conditions:** Temperature, pressure, and residence time can be finely tuned for optimal extraction or chemical modification.
- **Enhanced mass and heat transfer:** Flow reactors increase efficiency, minimize thermal degradation, and allow faster kinetics.
- **Reproducibility and scalability:** Continuous processes reduce batch-to-batch variability and simplify scale-up.

Process intensification combines multiple unit operations into integrated platforms, for example, coupling extraction, purification, and crystallization in a single continuous system. This reduces solvent use, energy consumption, and processing time while improving product consistency (Chemat et al., 2017).

Membrane Bioreactors and Hybrid Separation Techniques

Membrane bioreactors integrate biotransformation with separation, allowing *in situ* recovery of metabolites while minimizing downstream processing steps. Advantages include:

- **Reduced solvent consumption:** Membrane filtration concentrates target compounds directly from culture media or extracts.
- **Protection of thermolabile compounds:** Low temperature operations preserve sensitive bioactive molecules.
- **Continuous operation:** Facilitates high throughput production with minimal manual intervention.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Hybrid systems combining membrane technologies with chromatographic purification or supercritical fluid extraction provide additional selectivity and efficiency, enabling scalable production of high-value natural products.

Artificial Intelligence and Machine Learning in Process Optimization

Artificial intelligence (AI) and machine learning (ML) are increasingly applied to optimize natural product processes. Applications include:

- **Predictive modeling:** AI algorithms analyze historical experimental and process data to predict optimal extraction, purification, and crystallization conditions.
- **Process monitoring and control:** Real time data from sensors can be used to adjust operational parameters automatically, ensuring consistent product quality.
- **Multi-objective optimization:** Machine learning allows simultaneous consideration of yield, purity, energy consumption, and bioactivity, accelerating process development (Sharma et al., 2021).

AI-driven optimization reduces experimental trial-and-error, shortens development timelines, and enhances reproducibility across laboratory, pilot, and industrial scales.

Sustainable and Circular Bioeconomy Approaches

Sustainability is a key consideration in future natural product development. Chemical engineering strategies increasingly integrate principles of circular bioeconomy:

- **Valorization of plant residues:** Biomass left after extraction can be converted to biofuels, compost, or feedstock for secondary metabolite recovery.
- **Green solvent use:** Supercritical CO₂, ethanol, deep eutectic solvents, and ionic liquids replace toxic organic solvents, reducing environmental impact.
- **Energy efficient operations:** Continuous processing, solvent recovery, and low-temperature extraction minimize energy consumption.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Circular bioeconomy approaches ensure resource efficiency and align industrial practices with environmental stewardship, supporting sustainable production of bioactive compounds (Herrero et al., 2010).

Integration of Synthetic Biology and Biocatalysis

Synthetic biology and biocatalysis offer new routes for producing rare or high value natural products without relying solely on plant harvesting:

- **Metabolic engineering:** Microbial hosts can be engineered to produce complex plant metabolites, reducing dependence on slow growing or endangered species.
- **Enzyme catalyzed modifications:** Biocatalysts enable selective transformations of natural products to enhance activity, solubility, or stability.
- **High yield production:** Engineered microbes in optimized bioreactors facilitate reproducible industrial scale manufacturing of secondary metabolites.

Integration of these biotechnological approaches with chemical engineering ensures scalable, cost-effective, and sustainable production.

Future Outlook and Emerging Trends

Future research and development in natural product engineering will likely focus on:

- **Automated and smart manufacturing:** Fully integrated, sensor based systems with AI-driven process control.
- **Omics guided process design:** Genomics, metabolomics, and proteomics to identify high yield pathways and optimize biotransformations.
- **Personalized natural products:** Tailored nutraceuticals and herbal formulations based on individual pharmacogenomics and metabolomics profiles.
- **Sustainability metrics:** Life cycle assessment and circular economy metrics incorporated into process design and scale-up decisions.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

These emerging technologies position chemical engineering at the forefront of efficient, reproducible, and environmentally responsible natural product development, bridging the gap between laboratory discovery and industrial production.

CONCLUSION

Natural products have long been vital sources of bioactive compounds for pharmaceuticals, nutraceuticals, cosmetics, and other industries. This chapter highlights the interdisciplinary integration of natural product chemistry and chemical engineering, providing a roadmap from raw plant material to industrially viable, high-quality products. Understanding physicochemical properties such as solubility, polarity, stability, thermal behavior, ionization, and partition coefficients is fundamental for selecting suitable extraction and purification methods, preserving bioactivity, and guiding downstream processing. Extraction technologies encompass traditional methods like maceration, percolation, and Soxhlet extraction, alongside modern techniques such as ultrasound assisted, microwave-assisted, supercritical fluid, and pressurized liquid extraction. These approaches emphasize efficiency, energy savings, reduced solvent use, and protection of thermolabile compounds, while green chemistry principles ensure sustainability and regulatory compliance.

Purification and isolation techniques, including chromatography, membrane separation, crystallization, and precipitation, are optimized for purity, morphology, and stability, with chemical engineering ensuring scalability and reproducibility. Bioreactor and fermentation technologies offer sustainable alternatives to plant harvesting, enabling controlled production of secondary metabolites through microbial and plant cell cultures. Stabilization and formulation strategies, such as drying, encapsulation, and micro/nanoformulation, enhance bioavailability, solubility, and shelf life, enabling the development of functional nutraceuticals and pharmaceuticals. Quality control, standardization, and regulatory frameworks ensure safety, efficacy, and consistency, supported by chemical fingerprinting, chromatographic profiling, and spectroscopic analysis.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Process modeling, simulation, and optimization facilitate predictive design, yield maximization, and sustainable manufacturing, while scale-up strategies translate lab and pilot processes to industrial production. Integration with pharmacological evaluation ensures retention of bioactivity, and emerging technologies including continuous flow processing, AI-driven optimization, and circular bioeconomy approaches enhance efficiency, reproducibility, and sustainability. Combining natural product chemistry with chemical engineering provides a multidisciplinary framework for transforming bioactive molecules into commercially viable, high-quality products. Advanced technologies, sustainable practices, and data driven optimization position natural product industries to meet global therapeutic, nutritional, and industrial demands efficiently and responsibly.

REFERENCES

Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., & Bauer, R. (2021). Discovery and resupply of pharmacologically active plant derived natural products: A review. *Biotechnology Advances*, 49, 107754. <https://doi.org/10.1016/j.biotechadv.2020.107754>

Brittain, H. G. (2009). *Polymorphism in Pharmaceutical Solids* (2nd ed.). Informa Healthcare. <https://doi.org/10.1201/9781420099561>

Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods: A review. *International Journal of Food Microbiology*, 94(3), 223–253. <https://doi.org/10.1016/j.ijfoodmicro.2004.03.022>

Chemat, F., & Abert Vian, M. (2014). Alternative solvents for natural products extraction. In F. Chemat & M. Abert Vian (Eds.), *Green Extraction of Natural Products: Theory and Practice* (pp. 1–19). Wiley-VCH. <https://doi.org/10.1002/9783527675597.ch1>

Chemat, F., & Abert Vian, M. (2014). Green extraction of natural products: Concept and principles. *International Journal of Molecular Sciences*, 15(12), 3135–3155. <https://doi.org/10.3390/ijms15023135>

Chemat, F., Abert Vian, M., & Cravotto, G. (2012). Green extraction of natural products: Concept and principles. *International Journal of Molecular Sciences*, 13(7), 8615–8627. <https://doi.org/10.3390/ijms13078615>

Chemat, F., Abert Vian, M., & Cravotto, G. (2017). Green extraction of natural products: Concept and principles. *International Journal of Molecular Sciences*, 18(2), 203. <https://doi.org/10.3390/ijms18020203>

Chemat, F., Abert Vian, M., Fabiano-Tixier, A. S., & Strube, J. (2017). Green extraction of natural products: Progress and prospects. *International Journal of Molecular Sciences*, 18(2), 123. <https://doi.org/10.3390/ijms18010123>

Cragg, G. M., & Newman, D. J. (2013). Natural products: A continuing source of novel drug leads. *Biochimica et Biophysica Acta (BBA) - General Subjects*, 1830(6), 3670–3695. <https://doi.org/10.1016/j.bbagen.2013.02.008>

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Davey, R. J., Garside, J., & Sadiq, G. (2013). *Crystallization of Organic Compounds: A Practical Guide*. Oxford University Press. <https://doi.org/10.1093/acprof:oso/9780199672047.001.0001>

Eckhardt, A., & Müller, R. (2017). *Pharmaceutical technology: Modern formulations and processing*. Springer. <https://doi.org/10.1007/978-3-319-49807-1>

Ekor, M. (2014). The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. *Frontiers in Pharmacology*, 4, 177. <https://doi.org/10.3389/fphar.2013.00177>

Eskilsson, C. S., & Björklund, E. (2000). Analytical-scale microwave-assisted extraction. *Journal of Chromatography A*, 902(1), 227–250. [https://doi.org/10.1016/S0021-9673\(00\)00997-2](https://doi.org/10.1016/S0021-9673(00)00997-2)

Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. *Food Research International*, 40(9), 1107–1121. <https://doi.org/10.1016/j.foodres.2007.07.004>

Harvey, A. L., Edrada-Ebel, R., & Quinn, R. J. (2015). The re-emergence of natural products for drug discovery in the genomics era. *Nature Reviews Drug Discovery*, 14(2), 111–129. <https://doi.org/10.1038/nrd4510>

Herrero, M., Cifuentes, A., & Ibáñez, E. (2010). Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. *Food Chemistry*, 98(1), 136–148. <https://doi.org/10.1016/j.foodchem.2005.05.058>

Herrero, M., Mendiola, J. A., Cifuentes, A., & Ibáñez, E. (2010). Supercritical fluid extraction: Recent advances and applications. *Journal of Chromatography A*, 1217(16), 2495–2511. <https://doi.org/10.1016/j.chroma.2009.11.042>

Lu, X., Xu, M., & Chen, B. (2016). Advances in standardization of herbal medicines: Chemical fingerprinting and bioactivity correlation. *Journal of Pharmaceutical Analysis*, 6(6), 341–352. <https://doi.org/10.1016/j.jpha.2016.05.002>

Luque de Castro, M. D., & García Ayuso, L. E. (1998). Soxhlet extraction of solid materials: An outdated technique with a promising innovative

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

future. *Analytica Chimica Acta*, 369, 1–10. [https://doi.org/10.1016/S0003-2670\(98\)00355-9](https://doi.org/10.1016/S0003-2670(98)00355-9)

Luque de Castro, M. D., & Priego Capote, F. (2010). Soxhlet extraction: Past and present. *Analytical and Bioanalytical Chemistry*, 398, 245–247. <https://doi.org/10.1007/s00216-010-3851-2>

Myerson, A. S. (2002). *Handbook of Industrial Crystallization* (2nd ed.). Butterworth-Heinemann. <https://doi.org/10.1016/B978-075067591-3/50001-0>

Panda, T., Malhotra, B., & Ponnusamy, S. (2017). Biotransformations in chemical and pharmaceutical industries: Role of chemical engineering. *Biotechnology Advances*, 35(6), 677–687. <https://doi.org/10.1016/j.biotechadv.2017.06.003>

Panda, T., Parhi, P., & Mishra, P. (2017). Bioprocess engineering strategies for secondary metabolite production: Microbial and plant cell cultures. *Bioresource Technology*, 244, 1473–1485. <https://doi.org/10.1016/j.biortech.2017.08.041>

Posten, C., & Schügerl, K. (1995). Bioreactor design for plant cell and tissue cultures. *Advances in Biochemical Engineering/Biotechnology*, 52, 1–41. <https://doi.org/10.1007/BFb0011788>

Rawlings, J. B., Ekerdt, J. G., & Antal, M. J. (2001). *Chemical Reactor Analysis and Design Fundamentals* (2nd ed.). Nob Hill Publishing.

Richter, B. E., Jones, B. A., Ezzell, J. L., Porter, N. L., Avdalovic, N., & Pohl, C. (1996). Accelerated solvent extraction: A technique for sample preparation. *Analytical Chemistry*, 68(6), 1033–1039. <https://doi.org/10.1021/ac950819x>

Sangster, J. (1997). *Octanol-water partition coefficients: Fundamentals and physical chemistry*. Wiley. <https://doi.org/10.1002/9780470516050>

Sarker, S. D., & Nahar, L. (2012). *Natural Products Isolation* (2nd ed.). Humana Press. <https://doi.org/10.1007/978-1-62703-342-8>

Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., & Latha, L. Y. (2011). Extraction, isolation and characterization of bioactive compounds from plants' extracts. *African Journal of Traditional, Complementary and Alternative Medicines*, 8(1), 1–10. <https://doi.org/10.4314/ajtcam.v8i1.65350>

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K., & Chourasia, M. K. (2017). Nanoencapsulation: Concepts, classification, methods, and applications. *Nanomedicine: Nanotechnology, Biology, and Medicine*, 13(1), 53–71. <https://doi.org/10.1016/j.nano.2016.09.009>

Stalikas, C. D. (2007). Extraction, separation, and detection methods for phenolic acids and flavonoids. *Journal of Separation Science*, 30(18), 3268–3295. <https://doi.org/10.1002/jssc.200700256>

Stanbury, P. F., Whitaker, A., & Hall, S. J. (2016). *Principles of fermentation technology* (3rd ed.). Elsevier.

Williamson, E. M., Chan, K., Xu, Q., & Chan, P. (2013). Good practice in herbal quality control. *Phytotherapy Research*, 27(3), 314–321. <https://doi.org/10.1002/ptr.4741>

Williamson, E. M., Lorenc, A., Booker, A., & Robinson, N. (2013). Herbal and traditional medicine: Modern issues for global health. *Journal of Herbal Medicine*, 3(1), 1–8. <https://doi.org/10.1016/j.hermed.2013.01.003>

CHAPTER 3
EDIBLE FILMS IN FOOD PACKAGING:
ENGINEERING APPROACHES FOR SUSTAINABLE
AND ACTIVE PACKAGING SYSTEMS

Ashraq Monir MAHMED¹

¹Department of Food Science, College of Agricultural Engineering Sciences University of Baghdad, Iraq, ashraq.m.m@coagri.uobaghdad.edu.iq, ORCID ID: <https://orcid.org/0000-0001-7784-1906>

INTRODUCTION

The food packaging industry plays a fundamental role in preserving food quality, ensuring safety, and extending shelf life throughout storage, transportation, and distribution. Packaging systems are designed not only to protect food products from physical, chemical, and microbial hazards but also to facilitate handling, marketing, and consumer acceptance. In recent decades, growing environmental concerns related to the extensive use of non-biodegradable plastics have intensified research efforts toward sustainable and eco-friendly packaging alternatives.

Conventional plastic materials currently account for approximately 70% of global food packaging applications. Despite their favorable mechanical strength, low cost, and versatility, most petroleum-based plastics are non-renewable and resistant to biodegradation, resulting in severe environmental pollution and long-term waste accumulation. Moreover, interactions between plastic packaging and food matrices have raised health concerns due to the potential migration of harmful chemical compounds into food products (Bourtoom, 2008; Falguera et al., 2011).

Edible films represent an innovative and sustainable packaging solution derived from natural, renewable biopolymers such as proteins, carbohydrates, and lipids. These materials can form thin layers that act as effective barriers against moisture, oxygen, gases, and microbial contamination while being safe for human consumption. Unlike conventional packaging, edible films leave no residual waste and may enhance the nutritional and functional value of food products when fortified with bioactive compounds.

Historically, edible coatings have been used for centuries. As early as the twelfth century, wax coatings were applied to citrus fruits in China to reduce water loss (Krochta et al., 1994; Sothornvit & Krochta, 2005).. In the fifteenth century, protein-based films derived from soy milk were developed in Japan, while lipid-based coatings such as lard were used in Europe to preserve meat products. Advances in food engineering, polymer science, and environmental technology have transformed these traditional practices into sophisticated edible film systems capable of delivering antimicrobial, antioxidant, and quality-monitoring functions.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Today, edible films are increasingly recognized as a core component of sustainable food packaging strategies. Their ability to extend shelf life, reduce food waste, and replace synthetic plastics aligns with international environmental regulations and circular economy objectives. Consequently, global food industries and research institutions are investing heavily in the development and industrial scaling of edible film technologies.

1. EDIBLE BIOFILMS: CONCEPTS AND FUNCTIONAL PROPERTIES

Edible biofilms are thin layers of consumable materials applied directly to food surfaces or formed as standalone films to provide protection against external environmental factors (Faluera et al., 2011). The primary function of edible biofilms is to act as a semi-permeable barrier that regulates mass transfer processes, including moisture migration, gas exchange, and the diffusion of solutes between the food and its surrounding environment. By controlling these processes, edible films contribute significantly to maintaining food quality, safety, and shelf life.

From an engineering perspective, edible biofilms are designed to protect food products from physical damage, microbial contamination, ultraviolet (UV) radiation, and oxidative reactions. Exposure to UV radiation, for instance, accelerates lipid oxidation and pigment degradation, leading to undesirable discoloration and reduced nutritional value. To overcome this challenge, recent studies have focused on incorporating functional compounds such as tannic acid-modified nanocellulose, essential oils, and lipid nanoparticles into biofilm matrices. These additives enhance UV-blocking capacity, antioxidant activity, and barrier efficiency.

One of the major advantages of edible biofilms is their origin from natural, biodegradable, and non-toxic materials, which significantly reduces synthetic packaging waste. In addition, edible films can be consumed together with the food product, eliminating post-consumption packaging residues. Their application has been shown to preserve aroma, color, and texture in dried fruits and vegetables, while also reducing organic acid degradation and improving cellular stability during freezing and thawing cycles.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Recent advancements in food engineering have led to the development of active edible packaging systems, where biofilms are functionalized with antimicrobial and antioxidant agents. These systems inhibit the growth of spoilage and pathogenic microorganisms and delay oxidative deterioration, thereby extending shelf life and enhancing food safety (Appendini & Hotchkiss, 2002). As a result, edible biofilms are increasingly viewed as a cornerstone technology in sustainable and environmentally responsible food packaging (Rhim et al., 2013).

2. TYPES OF EDIBLE FILMS

Edible films are primarily classified according to the type of biopolymer used in their formulation. The main categories include carbohydrate-based, protein-based, and lipid-based edible films. Each class exhibits distinct mechanical, barrier, and functional properties, making them suitable for specific food packaging applications.

Carbohydrate-Based Edible Films

Carbohydrate-based films represent one of the most widely used categories of edible films due to their excellent film-forming ability, transparency, and favorable mechanical properties. Common polysaccharides used in edible film production include starch, chitosan, pectin, cellulose derivatives, carrageenan, and alginate (Bourtoom, 2008; Falguera et al., 2011)..

Starch-based films are particularly attractive because of their low cost, abundance, and renewability. These films are typically colorless, odorless, and tasteless, ensuring that they do not alter the sensory attributes of the packaged food. The presence of amylose and amylopectin contributes to good tensile strength and flexibility, especially when plasticizers such as glycerol are incorporated. However, starch films generally exhibit limited water vapor barrier properties due to their hydrophilic nature.

Chitosan, derived from chitin through deacetylation, possesses excellent antimicrobial activity against a wide range of microorganisms. Chitosan films are characterized by good mechanical strength and moderate barrier properties, making them suitable for applications in meat, seafood, and fresh produce packaging.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Carrageenan-based edible films have gained increasing attention due to their biodegradability, biocompatibility, and low toxicity (Nassri & Mahmed, 2022). Although carrageenan films are hydrophilic and exhibit limited resistance to moisture transfer, they form effective barriers against lipids and gases. These films are widely used in the packaging of meat, poultry, fish, sausages, and oily foods to prevent surface dehydration and lipid oxidation.

Protein-Based Edible Films

Protein-based edible films have attracted significant research interest due to their superior mechanical strength and gas barrier properties compared to carbohydrate-based films. Proteins used in edible film formulation are generally classified into plant proteins (such as soy protein and wheat gluten) and animal proteins (including casein, whey protein, gelatin, and egg albumin) (Sothornvit & Krochta, 2005; Rhim et al., 2013).

Protein films are particularly effective in controlling oxygen permeability, which makes them suitable for packaging products sensitive to oxidative spoilage. Whey protein-based films, for example, exhibit excellent transparency, flexibility, and nutritional value, while also serving as carriers for antimicrobial and antioxidant agents. These films are often used in multilayer packaging systems, where the edible protein layer comes into direct contact with the food surface (Coma, 2008).

Despite their advantages, protein-based films are inherently hydrophilic and therefore possess limited resistance to water vapor. To enhance their performance, plasticizers, cross-linking agents, and lipid components are commonly added. Advances in formulation engineering have enabled the development of protein films with improved tensile strength, elasticity, and barrier efficiency, making them viable alternatives to synthetic polymer packaging.

Lipid-Based Edible Films

Lipid-based edible films and coatings are primarily used to reduce moisture loss and gas exchange due to their hydrophobic nature. These films are commonly produced from waxes, fatty acids, fatty acid esters, and edible oils.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Historically, lipid coatings have been used to preserve fruits and vegetables by reducing respiration rates and delaying ripening(Bourtoom, 2008). Wax coatings are widely applied to citrus fruits, apples, and tomatoes to enhance surface shine, prevent dehydration, and protect against mechanical damage during transportation and storage. Lipid films are also extensively used in confectionery products, where they prevent fat migration and preserve structural integrity, particularly in chocolate-coated items.

Although lipid-based films offer excellent moisture barrier properties, they generally exhibit poor mechanical strength when used alone. Therefore, they are often combined with protein or carbohydrate matrices to form composite films that balance mechanical stability with effective moisture resistance.

3. MECHANICAL AND BARRIER PROPERTIES OF EDIBLE FILMS

The mechanical and barrier properties of edible films are critical determinants of their performance in food packaging applications. These properties govern the film's ability to withstand handling stresses, protect food from environmental factors, and maintain product integrity throughout storage and distribution. The functionality of edible films is largely influenced by the chemical structure and intermolecular interactions of the biopolymers used in their formulation (Rhim et al., 2013).

From a polymer engineering perspective, film formation is based on the interaction between hydrophilic and hydrophobic functional groups present in proteins, carbohydrates, and lipids. Hydrophilic groups, such as hydroxyl, carboxyl, and amino groups, facilitate solubility in aqueous media and promote film-forming capability through hydrogen bonding and electrostatic interactions. Conversely, hydrophobic regions contribute to resistance against moisture transfer and gas permeability.

Protein-based films generally exhibit superior mechanical strength and elasticity due to the complex and heterogeneous structure of protein molecules. The presence of multiple amino acids enables the formation of covalent bonds (such as disulfide linkages) as well as non-covalent interactions, including hydrogen bonding, ionic interactions, and van der Waals forces.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

These interactions enhance tensile strength and cohesion within the polymer matrix. However, the hydrophilic nature of proteins often results in poor water vapor barrier properties, necessitating the incorporation of plasticizers or lipid components to improve moisture resistance.

Carbohydrate-based films, particularly those derived from starch and cellulose, display good tensile strength and flexibility when properly plasticized. Their barrier performance against oxygen is generally favorable; however, their resistance to water vapor remains limited due to the abundance of hydroxyl groups. The addition of hydrophobic additives, nanofillers, or cross-linking agents has been shown to significantly improve the mechanical stability and barrier efficiency of carbohydrate films (Hadi&Mahmed,2025).

Lipid-based films exhibit excellent resistance to moisture transfer because of their nonpolar structure. These films effectively reduce water vapor permeability and are particularly useful in applications where dehydration is a primary concern. Nevertheless, lipid films alone lack sufficient mechanical strength and are prone to cracking. As a result, composite edible films combining lipids with proteins or polysaccharides are commonly engineered to achieve an optimal balance between mechanical durability and barrier performance. Overall, the mechanical and barrier properties of edible films can be precisely engineered through polymer selection, formulation optimization, and the incorporation of functional additives. This flexibility enables the design of tailored packaging systems suitable for a wide range of food products.

4. ACTIVE AND INTELLIGENT EDIBLE PACKAGING SYSTEMS

Recent advancements in food packaging engineering have led to the development of active and intelligent edible packaging systems that extend beyond the traditional passive role of packaging. Active edible films are designed to interact with the packaged food or its environment in order to enhance safety, quality, and shelf life, while intelligent systems provide real-time information about food condition (Coma, 2008; Nassri & Mahmed, 2022). Active edible packaging incorporates functional compounds such as antimicrobial agents, antioxidants, and flavor preservatives into the polymer matrix.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

These compounds are gradually released onto the food surface or into the headspace, providing continuous protection against spoilage microorganisms and oxidative degradation. Common antimicrobial agents used in edible films include essential oils, organic acids, plant extracts, and metal oxide nanoparticles such as zinc oxide and silver nanoparticles. These additives have demonstrated strong inhibitory effects against foodborne pathogens, including *Listeria monocytogenes*, *Salmonella* spp., and *Escherichia coli*. (Rhim et al., 2013).

Antioxidant-active edible films play a crucial role in preventing lipid oxidation, particularly in high-fat food products such as meat, poultry, and seafood. Natural antioxidants derived from herbs, spices, and fruit peels are increasingly favored due to their safety and consumer acceptance. The controlled release of these antioxidants from the edible film matrix significantly delays rancidity and preserves sensory attributes.

Intelligent edible packaging systems represent an emerging innovation in sustainable food packaging. These systems integrate natural indicators, such as pH-sensitive dyes extracted from anthocyanins, into edible films to monitor food freshness in real time. Color changes in the film provide a visual indication of spoilage or quality deterioration, enabling consumers and retailers to make informed decisions regarding product safety. Unlike conventional smart packaging, edible intelligent films maintain a zero-waste footprint and align with circular economy principles.

From an engineering standpoint, the integration of active and intelligent functions into edible films requires precise control over polymer structure, additive dispersion, and release kinetics. Advances in nanotechnology and material science continue to enhance the functionality and reliability of these systems, positioning edible films as a key technology in the future of sustainable food packaging.

5. APPLICATIONS OF EDIBLE FILMS IN FOOD PRODUCTS

The practical application of edible films in food packaging represents one of the most significant advancements in sustainable food engineering.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

These films are widely utilized across various food categories to enhance shelf life, maintain quality, and improve safety while reducing dependence on synthetic packaging materials.

Meat and Poultry Products

The meat and poultry industry is one of the most promising sectors for the application of edible films and coatings due to the high susceptibility of these products to microbial spoilage and lipid oxidation. Meat products are rich in nutrients and moisture, creating favorable conditions for the growth of pathogenic and spoilage microorganisms, which negatively affect color, texture, flavor, and overall acceptability (Coma, 2008; Appendini & Hotchkiss, 2002).

Edible films based on proteins, such as whey protein and gelatin, as well as polysaccharides like carrageenan, form effective physical barriers that reduce moisture loss and oxygen diffusion. These barriers play a critical role in maintaining product quality during refrigerated and frozen storage. The incorporation of natural antimicrobial agents, including essential oils and organic acids, into edible films has been shown to significantly inhibit the growth of *Listeria monocytogenes*, *Salmonella* spp., and other foodborne pathogens.

Active edible coatings are particularly effective during freezing and thawing cycles, where they minimize freezer burn and preserve the structural integrity of muscle fibers. Replacing conventional plastic packaging with biodegradable edible films offers substantial environmental benefits while maintaining the chemical and sensory quality of meat and poultry products throughout the supply chain.

Seafood Preservation

Seafood products are highly perishable due to their high-water activity, neutral pH, and the presence of unsaturated fatty acids, which are prone to oxidation. Rapid microbial growth and protein degradation significantly limit the shelf life of fresh and processed seafood. The application of edible films based on chitosan, carrageenan, or protein matrices provides an effective barrier against moisture loss and oxygen exposure.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

These coatings reduce drip loss, maintain texture, and delay spoilage during refrigerated storage. Functionalization of edible films with natural antioxidant compounds, such as rosemary extract or citrus peel extracts, has proven effective in preventing lipid oxidation and preserving omega-3 fatty acids (Falguera et al., 2011; Nassri & Mahmed, 2022).

Engineering studies have demonstrated that edible coatings can extend the shelf life of fish and seafood products by several days compared to uncoated samples. These technologies align with environmental sustainability goals by reducing the use of synthetic preservatives and minimizing packaging waste (Nassri, & Mahmed ,2023).

Fresh Fruits and Vegetables

Edible coatings are widely applied to fresh fruits and vegetables to reduce post-harvest losses, which can reach significant levels in developing regions. Fresh produce continues to undergo physiological processes such as respiration and transpiration after harvest, leading to moisture loss, senescence, and quality deterioration (Bourtoom, 2008; Falguera et al., 2011).

Edible films derived from starch, pectin, cellulose, and wax-based emulsions create a semi-permeable barrier that modifies the internal atmosphere surrounding the product. By regulating oxygen and carbon dioxide exchange, these coatings slow metabolic activity, delay ripening, and extend shelf life. Additionally, edible films act as moisture barriers, preventing weight loss and maintaining firmness and visual appeal.

For highly sensitive fruits such as strawberries, tomatoes, and citrus fruits, lipid-enhanced edible coatings provide superior protection against surface dehydration and fungal growth without the need for synthetic fungicides. These applications significantly improve marketability and consumer acceptance.

6. ECONOMIC FEASIBILITY AND INDUSTRIAL SUSTAINABILITY

The successful industrial adoption of edible films depends largely on economic feasibility, scalability, and raw material availability. One of the key advantages of bio-based edible films is their potential for waste valorization.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Biopolymers derived from agricultural and industrial by-products, such as whey proteins and plant residues, offer cost-effective and sustainable alternatives to petroleum-based plastics (Mahmed et al. ,2020). From an engineering perspective, the integration of edible film technologies into existing food packaging lines requires minimal modification to current coating and extrusion equipment. Although the initial production costs of certain biopolymers may exceed those of conventional plastics, long-term economic benefits include reduced environmental remediation costs, compliance with environmental regulations, and enhanced consumer demand for sustainable products. (Mahmed et al., 2021; Rhim et al., 2013).

Life Cycle Assessment (LCA) studies indicate that edible films significantly reduce carbon footprint and plastic waste accumulation. Consequently, edible packaging technologies support the transition toward a circular bio-economy and sustainable industrial practices.

7. CHALLENGES AND FUTURE PERSPECTIVES

Despite significant advancements, several challenges continue to limit the widespread commercial adoption of edible films. One of the primary limitations is the sensitivity of biopolymers to environmental humidity, which can adversely affect mechanical stability and barrier performance. Additionally, large-scale production and standardization remain technical challenges that require further research and investment.

Future developments in edible film technology are expected to focus on nanocomposite integration, active and intelligent packaging systems, and improved moisture resistance. The incorporation of natural indicators and biosensors into edible films will enable real-time monitoring of food quality while maintaining environmental sustainability. Advances in formulation engineering and industrial processing are essential to bridge the gap between laboratory research and commercial application.

CONCLUSION

This chapter highlights the transformative potential of edible films as a sustainable and environmentally friendly alternative to conventional plastic food packaging.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

By engineering biofilms from natural biopolymers such as proteins, carbohydrates, and lipids, it is possible to develop high-performance packaging systems that enhance food safety, extend shelf life, and reduce environmental pollution. Edible films offer multifunctional benefits, including moisture control, gas regulation, antimicrobial activity, and antioxidant protection across a wide range of food products. The utilization of renewable resources and industrial by-products further strengthens their economic and environmental viability. As global food systems move toward sustainable and circular practices, edible films will play a pivotal role in shaping the future of food packaging technology.

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

REFERENCES

Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. *Innovative Food Science & Emerging Technologies*, 3(2), 113–126. [https://doi.org/10.1016/S1466-8564\(02\)00012-7](https://doi.org/10.1016/S1466-8564(02)00012-7)

Bourtoom, T. (2008). Edible films and coatings: Characteristics and properties. *International Food Research Journal*, 15(3), 237–248. <https://www.scirp.org/reference/referencespapers?referenceid=2930587>

Coma, V. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. *Meat Science*, 78(1–2), 90–103.

Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends. *Trends in Food Science & Technology*, 22(6), 292–303. <https://doi.org/10.1016/j.tifs.2011.02.004>

Hadi, S. T., & Mahmed, A. M. (2025). Chemical composition and active compounds in bitter orange (*Citrus aurantium*) peels. *Functional Food Science*, 5(8), 328–339. <https://doi.org/10.31989/ffs.v5i8.1649>

Hadi, S. T., & Mahmed, A. M. (2025). Green synthesis optimization and characterization of selenium nanoparticles using aqueous extract of bitter orange (*Citrus aurantium*) peel. *Functional Food Science*, 5(6), 238–248. <https://doi.org/10.31989/ffs.v5i6.1648>

Mahmed, A. M et al. (2020). The biological role of palm extract varieties in the growth of cancer cell lines L20B and MCF-7 and their application in therapeutic foods. *AIP Conference Proceedings*, 2292. <https://doi.org/10.1063/5.0030525>

Mahmed, A. M. (2019). Effect of adding heart palm powder (*Phoenix dactylifera* L.) on the specific properties of laboratory cake. *Biochemical and Cellular Archives*, 19(1), 1269–1273. https://connectjournals.com/file_full_text/2964001H_1269-1273.pdf

Mahmed, A. M., Mohammed, B. H., & Hassen, L. K. (2021). The role of packaging technology in the food product. *IOP Conference Series: Earth and Environmental Science*, 761(1), 012116. <https://doi.org/10.1088/1755-1315/761/1/012116>

Nassri, S. K., & Mahmed, A. M. (2022). Preparation of bio-edible casings from carrageenan enriched with aqueous extract of black pepper. *Euphrates*

NEUROMORPHIC COMPUTING AND TRUSTED SYSTEMS FOR SMART DEVICES

Journal of Agriculture Science, 14(4), 293–301.
<https://iasj.rdd.edu.iq/journals/uploads/2025/05/11/3c7a4cda79d60def906be19bb0f8bd0f.pdf>

Nassri, S. K., & Ahmed, A. M. (2023). Preparation of bio-edible casings from carrageenan enriched with aqueous extract of turmeric. AIP Conference Proceedings, 2839(1). <https://doi.org/10.1063/5.0167934>

Rhim, J. W., Park, H. M., & Ha, C. S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10–11), 1629–1652. <https://doi.org/10.1016/j.progpolymsci.2013.05.008>

Sothornvit, R., & Krochta, J. M. (2005). Plasticizers in edible films and coatings. In Innovations in food packaging (pp. 403–433). Elsevier. <https://doi.org/10.1016/B978-012311632-1/50055-3>

Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging. Journal of Food Science, 68(2), 408–420. <https://doi.org/10.1111/>

ISBN: 978-625-93344-3-1