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PREFACE

This book brings together innovative research that highlights the
growing role of intelligent systems, embedded platforms, and advanced signal
analysis in modern engineering applications. The chapters reflect a
convergence of hardware, software, and data-driven methodologies aimed at
improving perception, performance, and decision-making in complex
technological environments.

The chapter Road Sign Recognition Using BNN in PYNQ-Z2 Board
explores the implementation of efficient neural networks on embedded
hardware for real-time visual recognition, demonstrating practical solutions
for intelligent transportation systems. Complementing this, Preparation and
Characterization Studies of KNOs-HTPB Based Solid Rocket Propellant with
Different Plasticizers presents an experimental investigation into materials
and formulation techniques critical for propulsion performance and reliability.

The final chapter, Signal to Insight: Al-Driven Signal Processing,
broadens the scope by examining how artificial intelligence transforms raw
signals into meaningful insights across diverse domains. Together, these
chapters offer readers a concise yet comprehensive perspective on the
integration of intelligent computation, hardware innovation, and advanced
engineering analysis, making the book a valuable resource for researchers,
engineers, and students alike.

Editorial Team
January 19, 2026
Turkiye
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INTRODUCTION

Recognition is a fundamental and challenging task in computer vision,
with wide-ranging applications such as autonomous driving, crowd counting,
and face recognition (Bhatt et al., 2022), (Fang et al., 2022). It involves both
object classification and localization, typically achieved by identifying objects
in images and drawing bounding boxes around them. Object recognition can be
implemented using machine learning and deep learning techniques. Traditional
machine learning approaches rely on handcrafted features such as color
histograms, edges, or texture descriptors to identify groups of pixels
corresponding to objects (Saha et al.,, 2012). In contrast, deep learning
techniques automatically learn hierarchical feature representations directly
from raw image data, leading to superior accuracy and robustness (Hadjam et
al., 2022), (Zhao et al., 2022).

PYNQ (Python Productivity for Zynq) is an open-source framework that
enables high-level programming of FPGA-based systems using Python (Mandi
et al.,, 2021). The PYNQ-Z2 is an FPGA development platform based on the
Zyng-7000 XC7Z020 SoC, designed specifically to support the PYNQ
framework. It integrates programmable logic (PL) with a processing system
(PS), allowing designers to develop, deploy, and test hardware-accelerated
applications using Python through Jupyter Notebook environments. This
approach significantly simplifies FPGA programming and accelerates rapid
prototyping of embedded vision applications (Méandi et al., 2021).

Binarized Neural Networks (BNNs) are a class of neural networks in
which both weights and activations are constrained to binary values (Rastegari
et al., 2016), (Jaiswal et al., 2021). This binarization dramatically reduces
memory usage, computational complexity, and power consumption, making
BNNs particularly well suited for deployment on resource-constrained
platforms such as FPGAs (Zhang et al., 2022), (Jokic et al., 2018). Despite their
simplicity, BNNs can achieve competitive performance for real-time
applications such as road sign recognition, where low latency and energy
efficiency are critical (Liang et al., 2018), (Fiscaletti et al., 2020).

The proposed work involves dataset collection, preprocessing, training,
and deployment of BNN models using road-sign and street-view datasets (Bhatt
et al., 2022), (Saha et al., 2012).
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Two BNN architectures—one based on fully connected layers and the
other using convolutional layers—are developed and trained on the same
dataset to enable a fair comparison. The trained models are synthesized and
deployed on the PYNQ-Z2 FPGA using the Vivado Design Suite. Performance
metrics such as accuracy, memory utilization, processing time, and hardware
resource consumption are analyzed to evaluate the trade-offs between fully
connected and convolutional BNN architectures (Zhang et al., 2022), (Yuan &
Agaian, 2023). This comparative study provides practical insights into selecting
appropriate BNN structures for FPGA-based embedded vision applications.

Neural Networks

Neural networks are a subset of machine learning inspired by the
structure and functioning of the human brain (Qin et al., 2020), (Zhu et al,,
2020). They consist of interconnected processing units called neurons,
organized into layers, which collectively learn to map inputs to outputs through
training. Neural networks are widely used in tasks such as image recognition,
speech processing, and pattern classification, often outperforming traditional
algorithms in complex problem domains (Zhao et al., 2022). Each neuron
processes input signals using weighted connections and a bias term, followed
by an activation function such as sigmoid or ReLU. During training, the
network adjusts weights and biases using backpropagation to minimize
prediction error. Neural networks can efficiently model complex nonlinear
relationships, enabling rapid and accurate decision-making in large-scale data-
driven applications (Zhu et al., 2020).

Types of Neural Networks

Several neural network architectures are commonly used, including
Artificial Neural Networks (ANNs), Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and Binarized Neural Networks (BNNs)
(Qin et al., 2020), (Zhu et al., 2020). ANNs are general-purpose models
composed of fully connected layers. CNNs are optimized for image processing
tasks by exploiting spatial locality through convolutional operations (Bhatt et
al., 2022), (Zhang et al., 2021). RNNs are designed for sequential and time-
dependent data.
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BNNs, which use binary weights and activations, offer significant
advantages in terms of hardware efficiency and energy consumption (Rastegari
et al., 2016), (Jaiswal et al., 2021) (Jokic et al., 2018).

Fully Connected Layers

A fully connected (dense) layer connects every input neuron to every
output neuron, performing a linear transformation followed by an activation
function. While fully connected layers are flexible and simple to implement,
they require a large number of parameters, leading to higher memory usage and
computational cost (Zhang et al., 2022), (Zhang et al., 2021).

Convolutional Layers

Convolutional layers employ sparse connectivity and shared weights,
significantly reducing the number of parameters compared to fully connected
layers (Bhatt et al., 2022), (Zhang et al., 2021). By applying convolution kernels
across the input, CNNs efficiently capture spatial features such as edges,
shapes, and textures.

1. LITERATURE SURVEY

Hardware-Optimized CNN and BNN Architectures on FPGA

One of the primary challenges in Advanced Driver Assistance Systems
(ADAS) is the high memory footprint and computational complexity of
Convolutional Neural Networks (CNNs). To address this issue, early efforts
focused on reducing numerical precision. Integer-based and quantized CNN
implementations have demonstrated significant reductions in computational
overhead while maintaining high classification accuracy, highlighting the
feasibility of low-cost hardware CNN accelerators for real-time applications
(Bhatt et al., 2022).

Rastegari et al. introduced XNOR-Net, demonstrating that binary
convolutional networks can achieve competitive accuracy while drastically
reducing memory usage and arithmetic complexity (Rastegari et al., 2016).
Building upon this concept, Zhang et al. proposed a time-domain FPGA-based
BNN architecture that reduced storage requirements by approximately 75% by
maintaining intermediate computations in 1-bit form (Zhang et al., 2022).

4
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Practical FPGA-based implementations using BNNs have also been
demonstrated on PYNQ platforms. Mandi et al. implemented a hardware-
accelerated image processing pipeline on the PYNQ-Z2 board, achieving
reduced power consumption and memory usage (Mandi et al., 2021). However,
increased latency was reported under complex road conditions.

System-Level Implementations and Hybrid Models

System-level design choices play a crucial role in real-time TSR
performance. CNN-based real-time TSR systems using hybrid datasets have
demonstrated effective trade-offs between accuracy and speed, though frame-
rate adaptation and data throughput remain bottlenecks (Bhatt et al., 2022).

Hybrid neural architectures have also been explored to reduce
complexity. Saha et al. combined local image sampling with Artificial Neural
Networks, achieving approximately 98% accuracy for a limited set of traffic
signs, but with limited scalability (Saha et al., 2012), (Mandi et al., 2021),
(Jokic et al., 2018).

Recent surveys and reviews of BNNs emphasize ongoing research in
architecture search, robustness enhancement, and mixed-precision optimization
to close the accuracy gap between binary and full-precision models (Qin et al.,
2020), (Zhu et al., 2020), (Shen et al., 2020), (Phan et al., 2020). These studies
confirm that BNNs are well suited for FPGA-based embedded vision systems
when carefully designed.

Table 1. Comparison Analysis of Existing Works

Ref Authors | Model Hardware | Key Limitations
" | / Year Type Platform | Contribution
High-accuracy | High
(1] Fang et CNN FPGA / deep CNN for computational
al., 2022 GPU image and memory
classification cost
Saha et Early NN-based iéﬁéﬁ?ity
.1 g0 ,
[3] al., 2012 ANN CPU TSR with ~98% handerafied
accuracy
features
Bhait et Embedded Re.al—tlme TSR Frame-rate and
[4] al.. 2022 CNN svstem using hybrid throughput
N Y datasets bottlenecks
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Image Low power and Increased
6] Mandi et Pr £ n PYNQ-Z2 | memory- latency in
al., 2021 OCCSSINE | FPGA efficient FPGA | o<y
+ BNN pipeline complex scenes
Binary weights
astegari activations, ccuracy drop
R i | BNN GPU/ & activati A d
[7] | etal, (XNOR- FPGA- major vs full-
2016 Net) ready complexity precision CNN
reduction
BNN ~75% storage Higher
Zhang et . . hardware
[9] al. 2022 (Time- FPGA reduction, low design
domain) power design complexity
Liane et Optimized Limited
[10] al 2%1 ] BNN FPGA dataflow for flexibility for
" binary inference | deep models
(1] | fokicet | pan clj:n(q}é?a Efi)asl) télrifie(:%/?ce Task-specific
al., 2018 system recognition architecture
Yuap & Surve Comprehg NSIVE | No hardware
y
[14] | Agaian, — BNN review & | . .
2023 (BNN) challenges implementation
Analysis of
[15] Qin et Survey o accuracy— Theoretical
al., 2020 | (BNN) efficiency trade- | focus
offs

Table 1 provides the reviews of FPGA-based CNN and BNN
implementations for real-time traffic sign recognition, highlighting that BNNs

significantly reduce memory, power, and computation while maintaining

competitive accuracy, making them suitable for embedded vision systems when

carefully architected.

Identified Research Gap

A systematic, hardware-level comparison between fully connected and

convolutional BNN architectures on PYNQ-Z2—evaluating accuracy, resource

utilization, and latency—remains insufficiently explored.

2. BINARY NEURAL NETWORK
The majority of network binarization techniques follow the BNN

methodology developed by Courbariaux.

6
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Binarization is used in BNNs for both the weights and activations. Using
bitwise operations, this lowers the memory requirement for BNNs and the
computational complexity. Except for the fact that everything is binarized to
either +1 or -1, the architecture of BNN is similar to any normal DNN design.
Here is a straightforward inference pseudo-code. (forward operation)

fork=1to L do

Wi b «Binarize (W)
Sk« ag_1W”
aj < BatchNorm (s;.0y)
if k <L then
a,€<— Binarize (ay)
end if
end for

The aforementioned pseudo-code illustrates how a BNNs network works
in the forward direction. L stands for the number layer, k for the layer index, ak
for the activation after batchnorm, Sk for the activation prior to batchnorm, and
Wk for the binarized weight.

2.1 Binarization of Weights

First, Courbariaux offers a technique for training with binary weights
utilising backpropagation and a gradient descent algorithm. As contrast to just
binarizing a network once training is complete, using binary data during
training results in a more representative loss to train against (Zhang et al., 2022)
(Jokic et al., 2018) (Yuan & Agaian, 2023), (Qin et al., 2020). It is not difficult
to compute the gradient of the loss with respect to binary weights using back
propagation. Binary weights, however, make gradient reasonable approaches
for updating the weights unfeasible. Gradient descent methods allow for minor
weight value adjustments, which are not possible with binary values.

Courbariaux maintains a set of real valued weights, WR, which are
binarized within the network to produce binary weights, WB, in order to resolve
this issue. Then, WR can be modified using backprop and gradient descent for
incremental updates. The only weights recorded and used during inference are
the binary weights because WR is not required. A straightforward sign function
is used for binarization.
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WB=sign (WR) ....(1)

Generates a tensor with the values +1 and -1. Because to the sign function
employed in binarization, calculating the gradient of the loss with respect to the
real valued directly weights have no practical application. At every point, the
gradient of the sign function is zero or undefined. Courbariaux employs a
technique known as the straight through estimator to circumvent this issue. By
skipping over the gradient of the layer in question, this technique approximates
a gradient. Just transform the troublesome gradient into an identity function.

= 2)

where L is the output loss. The weights with real values are updated using
this gradient approximation. Sometimes, this binarization is considered to be a
layer unto itself. The weights are sent via a binarization layer that, during the
forward pass, determines the sign of the values, and, during the backward pass,
executes an identity function. An illustration of the Straight-Through Estimator
with sign layer (STE). The gradient of the binary weights is simply passed
through to the real valued weights, while the sign function processes the real
values of the weights in the forward pass.

The real valued weights can be adjusted using the STE and an
optimization technique like SDG or Adam. If values in WR are not constrained,
they can add up to very large amounts because the gradient updates can change
the real valued weights WR without modifying the binary values WB. For
instance, if a positive value of WR is assessed to have a positive gradient over
a significant chunk of training, every update will raise that value. This may
result in high WR values. Because of this, BNNs cut WR values between 1 and
+1. As a result, WR and WB values remain nearby.

2.2 Binarization of Activations

In his initial BNN study, Courbariaux introduced the binarization of the
activation values. Similar to how the weights are binarized, the activations are
binarized by passing them through a sign function with a STE in the backwards
pass. The network's activation function is this sign function. If the input to the
activation was too large, Courbariaux discover that they need to use the
backwards pass to cancel out the gradient in order to get decent results.
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oL oL
P— _B* 1|aR|51 (3)

daR da

where aR is the activation function's real-valued input and aB is the
function's binarized output. The indicator function 1[aR|1 returns 1 when [aR]1
and 0 when it does not. If the input to the activation function is too large, this
zeroes out the gradient. It is possible to add a hard tanh function before the sign
activation function to provide this capability, however this layer would only be
effective in the backwards pass and not the forward pass.

XP = sin(X) = {_i"?;};e’”zw(‘)se e (d)

2.3 Bitwise Operations

The dot product between weights and activations can be broken down
into bitwise operations when employing binary values. There are two possible
binary values: -1 and +1 for the Figure 3.1. The encoding of these signed binary
values uses a 0 for -1 and a 1 for +1. In order to be unambiguous, by refer to
the signed numbers 1 and +1 as binary "values" and 0 and 1 as binary
"encodings" for these numbers. As seen in Table 3.1, applying an XNOR
logical operation to the binary encodings is equal to multiplying the binary

values.

Figure 1. XNOR Gate

All the products between values must be added up to create a dot product.
Bitwise multiplication can be accomplished with XNOR as shown in Figure 1;
however, accumulating the results of the XNOR operation necessitates a
summation. This can be done using the binary encodings produced by the
XNOR operation by counting the number of 1 bit in a collection of XNOR
products, multiplying this number by 2, and then taking away the number of
bits that result in an integer value. To count the number of ones in a binary
value, pop count instructions are frequently included in processor instruction
sets as shown in Table 2.
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Table 2. XNOR Operation's Counterpart

A B OUTPUT A B OUTPUT
-1 -1 1 0 0 1
-1 1 -1 0 1 0
1 -1 -1 1 0 0
1 1 1 1 1 1

Comparatively to multi-bit floating-point or fixed-point multiplication
and accumulation, these bitwise operations are substantially easier to compute.
This may result in quicker execution times and/or a need for less hardware
resources. It is not always easy to theories efficient speedups, though. For
instance, some of the publications referred studied here use the number of
instructions as a metric of execution time when examining the CPU's execution
time. A CPU may perform a bitwise XNOR operation between two 64-bit
registers thanks to the 64-bit x86 instruction set. One instruction is required for
this procedure. Two 32-bit floating point multiplications could be achieved on
a 64-bit CPU with a comparable architecture.

The bitwise operations would be 32 times faster than the floating-point
operations, one could infer. However, the quantity of instructions does not
reflect the speed of execution. The time it takes to complete each command can
vary depending on the clock cycle. A modern CPU core's dynamic instruction
and resource scheduling means that the number of cycles required to complete
an instruction relies on the results of earlier instructions. Some kinds of
instruction profiles are better suited to CPUs and GPUs than others. It is
preferable to look at the actual execution times as a metric of efficiency rather
than the total amount of instructions. While optimizing their code for bitwise
operations, Courbariaux notice a 23 speedup. BNNs require less hardware in
digital designs than bitwise operations, which also enable faster execution times

in software-based implementations.

2.4 Batch Normalization

Deep learning commonly uses batch normalization (BN) layers. They
serve as a sort of regularization and condition the values within a network for
quicker training. They are viewed as crucial in BNNs.

10
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BN layers contain gain and bias terms that the network learns as well as
conditions for the values utilized during training. These acquired terms enable
BNN become more complicated, without which it would suffer.

3. PROPOSED METHODOLOGY

Every input neuron and every output neuron are connected in a fully
connected layer, also known as a linear layer, in commonly used neural
networks. Bigger parameters typically enable improved efficiency and
parallelization. Via the use of weights, the neuron makes a linear transformation

to the input vector.

Input image

Fully connected layer

1

n
= Z(Nn «Wn)+ Bn
X=

l

Binary activation

|

PN

-

o yes

ﬂi'\\ Classification /‘,"*—" Object recognized

s

Figure 2. Fully Connected Layer Flow Chart

As shown in Figure 2, the input image is given the completely linked
state from the above flowchart. In other words, the number of neurons
employed in the network equals the number of pixels, and each node is given a
different value. And after multiplying by the appropriate weights, each value is
added together. The bias value is once more added to the additional value before
being sent to the activation function, which determines whether the node is
active or not. After classification is complete, a final check is made to see if the
given image is recognized in the dataset or classes.

11
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input layer

Figure 3. Fully Connected Layer

Layer to layer, all potential connections are present. Fully linked
networks have the main benefit of being "structure agnostic," or not requiring
any additional assumptions to be made about the input. As a result, these
networks typically perform worse than special purpose networks that are
customized to a problem's structure. Hence, there are many neurons as shown
in Figure 3.

3.1 Using Convolutional Layer

In a neural network where not all input nodes are connected to output,
there is a convolutional layer (Rastegari et al., 2016), (Jaiswal et al., 2021).
Convolutional layers now have additional learning flexibility as a result.
Moreover, there are a lot less weights per layer, which is beneficial for high-
dimensional inputs like image data.

12
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Input image

l

Convolution layer

l

subsampling
l

Fully connected layer

l

n
a’ = Z(Nn *Wn)+ Bn
k=0
|

Binary activation

yes

Classification /*—' Object recognized

.

///

R

Figure 4. Convolutional Layer Flow Chart

As shown in Figure 4, the convolutional layer receives the input image
from the previous computation; where the 3*3 kernel matrix is multiplied by
the input image matrix to create images with distinct edges. To minimise the
size of the image, pooling or sub-sampling is used. Thereafter, the number of
pixels is decreased, and various values are assigned to each node. And after
multiplying by the appropriate weights, each value is added together. The bias
value is once more added to the additional value before being sent to the
activation function, which determines whether the node is active or not. After
classification is complete, a final check is made to see if the given image is

recognised in the dataset or classes.

13
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Output layer

Input layer

Figure 5. Convolutional Layer

With the kernel shifting along the input matrix and us taking the dot
product between the two as though they were vectors, convolutional is
essentially a sliding dot product. The model design can encode attributes since
it explicitly assumes that the inputs are images. Every layer of a basic CNN is
a sequence layer that translates activation volume from one layer to another
using a differential function (Mandi et al., 2021), (Rastegari et al., 2016) as
shown in Figure 5.

Binary
classification

subsampling
Convolution &

non linearity

Convolution & pooling layers

OOOOOOOOO‘

‘OQOOOOOOO‘

vector

Fully connected layer

Figure 6. Convolutional Layer Using Subsampling

14
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Sub-sampling shown in Figure 6 is a technique for reducing the amount
of data by choosing only a portion of the original data. The process that
identifies the highest values within each patch of a feature map and utilizes
these values to generate down-sampled outputs. Typically, it comes after the
convolutional layer. Sub sampling allows for faster processing and storage
reduction.

3.2 Fully Connected Layer Vs Convolutional Layer

Compared to a fully linked layer, a convolutional layer is significantly
more efficient and specialised. Each connection between neurons in a layer that
is fully connected has its own weight since every neuron is linked to every other
neuron in the layer above it. This connection design is entirely general-purpose
and doesn't make any assumptions about the characteristics of the data. Also,
the cost of memory (weights) and computation is relatively high (connections).

Contrarily, in a convolutional layer, every neuron has the same set of
weights (and local connection structure) and is only connected to a small
number of neighbouring (also known as local) neurons in the previous layer.
This connection pattern only makes sense in situations when the data can be
perceived as spatial, the features to be extracted are local in space (thus, only
local connections are acceptable), and the likelihood of occurrence at any input
position is equal (hence same weights at all positions OK). Convolutional layers
are typically applied to image data where the features are local (e.g., a "nose"
is made up of a group of neighbouring pixels rather than being dispersed
throughout the entire image) and equally likely to occur anywhere.

The density of the connections is the primary distinction between the two
types of layers. Every neuron in the output is coupled to every neuron in the
input in the FC layers because of their high connectivity. The neurons in a
convolutional layer, on the other hand, are only coupled to nearby neurons
within the convolutional kernel's width and are not densely connected. Hence,
a Conv layer is more appropriate when the input is a picture and there are many
neurons. They also differ significantly in terms of how they share weight. Every
output neuron in an FC layer is coupled to every input neuron by a unique
weight(w).

15
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The weights in a Conv layer, however, are distributed among various
neurons. This is also another feature of Conv layers that makes them suitable

for use when dealing with many neurons.

4. FUNCTIONAL MODULES

A data set is a collection of related, discrete items of related data that
may be accessed individually or in combination or managed as a whole entity.

A data set is organized into some type of data structure. In a database,
for example, a data set might contain a collection of business data (names,
salaries, contact information, sales figures, and so forth). The database itself
can be considered a data set, as can bodies of data within it related to a particular
type of information, such as sales data for a particular corporate department.

The term data set originated with IBM, where its meaning was similar to
that of file. In an IBM mainframe operating system, a data set s a named
collection of data that contains individual data units organized (formatted) in a
specific, IBM-prescribed way and accessed by a specific access method based
on the data set organization. Types of data set organization include sequential,
relative sequential, indexed sequential, and partitioned. Access methods
include the Virtual Sequential Access Method (VSAM) and the Indexed
Sequential Access Method (ISAM).

OOO®®BDEO®
OB HAH®
ALAADOG®
AAADOBO

Sb b <0
2433

Figure 7. Sample Traffic Sign Dataset

16
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A total of 50,000 images are used to test the detection phase of the
models. Of these,43 traffic sign class from online sources with traffic sign
having different viewing angle and position on image as shown in Figure 7. The
German Traffic Sign Benchmark is a multi-class, single-image classification
challenge held at the International Joint Conference on Neural Networks
(IJCNN) 2011.And cordially invite researchers from relevant fields to
participate: The competition is designed to allow for participation without
special domain knowledge. Our benchmark has the following properties:

o Single-image, multi-class classification problem
e More than 40 classes

e More than 50,000 images in total

o Large, lifelike database

4.1 Classifier Evaluation

The categorization displays how many layers were utilised to discover
the picture and how much the image's size was decreased throughout the
processing procedure. According to the table below, recognition is complete
after the input picture, which has a resolution of 1024 pixels, has gone through
five convolutional layers and been reduced to 256 pixels. The complete
Classification of Convolutional Layer has been provided in Table 4.

Table 3. Set Of Images Given as Input

S. Ng Road sign Name .Of the No. of S. Ng Road sign Name .Of the N'O of
road sign images road sign images

1 20km/hr 10 18 % End of all 10
restrictions

2 30km/hr 10 19 % End of no passi| |,
zone

4 60km/hr 10 21 @ Left turn 10

5 70km/hr 10 2 ° No entry 10

17
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S. Ng Road sign Name .Of the No. of S. Ng Road sign Name .Of the N'O of
road sign images road sign images
6 80km/hr 10 23 No overtaking | 10
7 100km/hr | 10 24 No overtaking |,
large trucks
8 120km/hr 10 25 a pass by left 10
Ahead only .
9 @ right 10 26 ° pass by right 10
Bicycle Pedestrian
10 A crossing 10 27 crossing 10
. Priority cross
11 /!\ caution 10 28 /.l\ roads 10
12 @ Priority road | 10 29 @ stop 10
13 Road about | 10 30 Traffic signal -
ahead
14 Road work | 10 31 Truck crossing | 10
15 Slippery 10 32 G Right turn 10
Watch for
16 A Snow 10 33 @ children 10
17 A Speed breake| 10 34 A Wild animals |
{ crossing
Table 4. Classification of Convolutional Layer
Layers Size
Input image resolution 32x32
Convolutional Layer 1 30x30
Convolutional Layer 2 28x28
Sub sampling / Maxpool 1 14x14
Convolutional Layer 3 12x12
Convolutional Layer 4 10x10
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Sub sampling / Maxpool 2 5x5
Convolutional Layer 5 3x3
Fully Connected Layer 1 256
Fully Connected Layer 2 64
Fully Connected Layer 3 8

5. FPGA REALIZATION

By utilising a convolutional layer, one can may reduce the size of the
picture and analyse it more quickly because employing a fully linked layer may
require more data and processing. To decrease the size of the picture, there are
three to five convolutional layers, and the BNNs technique is used to identify
the road sign. Version 2019.1 of Vivado is the programme in use. (Jaiswal et
al., 2021) The software is implemented using the PYNQ-Z2 board. The Xilinx
Zyng-7000 SoC, which includes a dual-core ARM Cortex-A9 CPU and
programmable logic that can be programmed using the Xilinx Vivado Design
Suite, is installed on the PYNQ-Z2 board.

Figure 8. PYNQ-Z2 Board

5.1 Steps to Create and Implement a Project

Step 1: Create a Vivado Project

Vivado "projects" are directory structures that have every file a certain
design requires. Several of these files are system files made by Vivado to
control project design, simulation, and implementation. Others of these files are
user-created source files that explain and limit the design. no need to worry
about the user-created source files in a typical design.
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But in the future, this may access to the other files as well if it require
additional details about our design or more fine control over certain
implementation aspects. Based on the sort of project need to develop, the
"project type" configures certain design tools and the IDE look. They will often
select "RTL Project" to set up the tools for creating a new design in all Real
Digital courses. (RTL stands for Register Transfer Language, which is a phrase
occasionally used to denote a hardware design language like Verilog).

Figure 9. ZYNQ 7000 part

There are several components made by Xilinx, and the synthesizer needs
to know precisely which one is using in order to create the appropriate
programming file. The device family, packaging, and speed and temperature
grades—which solely impact special-purpose simulation results and have no
bearing on the synthesizer's capacity to build accurate circuits—must be known
in order to identify the right item. It is necessary and check select the proper
component for the equipment mounted on PYNQ Z2 BOARD as shown in
Figure 9 and Table 5.

Table 5. PYNQ-Z2 Package in Vivado

Part number Xc7z007sclg400-1
Family Zynq-7000
Package Clg400

Speed Grade -1

Temperature Grade C
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Step 2: Edit the Project - Create source files

A constraints file that gives the synthesizer the details it needs to map the
circuit into the target chip and an HDL file (Verilog or VHDL) that describes
the circuit are both required for every project. It is possible to immediately
replicate the Verilog source file after it has been prepared. Before spending the
effort to create a circuit in a real device, and test its functionality using
simulation (explained in greater depth later). The simulator enables allows to
test that the outputs respond as anticipated in all circumstances by driving all
of the circuit's inputs with a variety of patterns over time.

Step 3: Synthesize, Implement, and Generate Bitstream

By Synthesizing the design project after execution of Verilog and
constraint files are finished. Verilog code is converted into a "netlist," which
specifies all the necessary circuit components, during the synthesis process
(these components are the programmable parts of the targeted logic device -
more on that later). By selecting the Run Synthesis button in the Flow Navigator
window as illustrated, this may begin the Synthesize procedure. When synthesis
is active, can able to access the Project Manager log panel at the bottom to view
a log of the processes that are now operating. The log will include a description
of any synthesis-related mistakes that take place. When the design has been
synthesized, the Implementation phase must be conducted. The synthesized
design is mapped onto the Xilinx chip that it is intended for during the
implementation phase. On the Flow Navigator window, click the Run
Implementation button as displayed. The log panel at the bottom of Project
Manager will provide information about any mistakes that happen while the
implementation process is underway.

By selecting the Create Bitstream procedure in the Flow Navigator panel
as shown, this may produce a bit file after the design has been successfully
executed. The method converts the implemented design into a bitstream that
can be directly programmable into the hardware on PYNQ Z2 BOARD.
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5.2 Board connection and Download Bitstream

Use a micro-USB cord to connect Blackboard to your computer. Be
careful to attach the micro-USB cable to the "PROG UART" port. By turning
the switch in the top-left corner to the on position, now turn on the board. When
it turns on, a red LED will start to glow near the switch. Make sure the blue
jumper near the port marked "EXTP" is set to "USB" if the board won't turn on.
The image depicts a Blackboard that is powered on and has the proper jumper
settings.

The Hardware panel, which is found in the upper left corner of Hardware
Manager, will display the board's logic device component number if Vivado
successfully recognizes the board (For the Blackboard this will be xc7z007s).
Right-click on the device to be programmed, then choose Program Device. The
produced bit file will be chosen in the text box when a Program Device pop-up
dialogue window appears. To download the bitstream to the board, choose
Program.

5.3 Design Implemented and Block Generated

To test the picture, downloaded the "GTSRB" dataset. (Zhang et al.,
2022), (Jokic et al., 2018) (Liang et al., 2018), (Fiscaletti et al., 2020) Following
the creation of the HDL wrapper in Vivado, the processing system developed
an IP and picked the ZYNQ7 chip since the PYNQ-Z2 board supports the
ZYNQ 7000 series. AXI connection has been employed, which employs several
slave and master nodes before using a reset system to restart the procedure. The
output is then sent to the processing system once the IP block has been linked
to two AXI interconnect blocks.

Figure 10. Generated Block Diagram
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Synthesis and implementation follow the generation of the block as
generated in Figure 10. The implementation results demonstrate how Vivado
uses time, power, and register. The bit files are then copied to the board after
the bit stream has been created. On our computer, intercommon port 5 is used
to connect the PYNQ-Z2. As the board boots up, a default IP may be configured
in the settings, and the Jupyter page will appear instantly. From there, in order
to view results in real time application, must upload our files. Vivado generates

a report for two ways, and a comparison is made.

Pracessor AXIT AXI ZYN QT
system reset interconnect interconnect processmg
) system

Figure 11. Simple Block Diagram

The ZYNQ?7 Processing System and its peripherals, such as the AXI
Interconnect and the IP Generator, which oversee facilitating communication
between the processing system and the programmable logic of the PYNQ Z2
board, are reset using the processor system reset. Although the IP Generator
oversees gathering data on the accelerator's performance, the AXI Connector
handles communication between the processing systems. The simplified
version of the generated block is shown in Figure 11.

6. RESULTS AND DISCUSSIONS

Binarized neural network (BNN) is designed and synthesised utilising a
completely linked and convolutional layer. Implementation is carried out on the
Vivado platform using the ZYNQ 70000 series PYNQ-Z2 board.

6.1 Synthesis and Implementation Results

Timing Summary

Worst Negative Slack (WNS): For maximum delay analysis, this number
represents the worst slack of all time pathways.
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It could be favorable or unfavorable. When considering only the worst
violation of each timing route endpoint, Total Negative Slack (TNS) is the total
of all WNS violations. When all timing requirements are satisfied for the max
delay analysis, its value is 0 ns. The delay will be greatest if the worst negative
slack value turns negative the total number of endpoints that failed (WNS< Ons)
is referred to as the number of failing endpoints. The total number of endpoints
that have been examined.

Worst Hold Slack (WHS): Refers to the timing routes' worst slack for the
min delay analysis. It could be favorable or unfavorable. When just considering
the worst violation of each timing route endpoint, Total Hold Slack (THS) is
the total of all WHS violations. When all timing requirements are satisfied for
the minimum delay analysis, its value is 0 ns. The delay will be greatest if the
worst negative slack value turns negative. The total number of endpoints that
failed (WHS<O0 ns) is known as the number of failing endpoints. The total
number of endpoints that have been examined.

Worst Pulse Width Slack (WPWS): When utilizing both the min and max
delays, corresponds to the worst slack of all the timing tests stated above. By
just considering the worst violation of each pin in the design, Total Pulse Width
Slack (TPWS) is the total of all WPWS infractions. When all pertinent
restrictions are satisfied, its value is set to 0. The delay will be greatest if the
worst negative slack value turns negative. The total number of pins with a
violation (WPWS< 0 ns) is referred to as the number of failing endpoints. The
total number of endpoints that have been examined.

Timing Summary of Fully Connected Layer

Worst Negative Slack (WNS) - 0.101ns

Total Negative Slack (TNS) Total Endpoints -131755
Worst Hold Slack (WHS) -0.009ns

Total Hold Slack (THS) Total Endpoints -131755

Worst Pulse Width Slack (WPWS) -3.750ns

Total Pulse Width Slack (TPWS) Total Endpoints -49520

Timing Summary of Convolutional Layer
Worst Negative Slack (WNS) - 0.166ns
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Total Negative Slack (TNS) Total Endpoints -101307
Worst Hold Slack (WHS) -0.019ns

Total Hold Slack (THS) Total Endpoints -101307

Worst Pulse Width Slack (WPWS) -3.750ns

Total Pulse Width Slack (TPWS) Total Endpoints -41013

Power Analysis

The post-synthesis, post-placement, and post-routing stages of the flow
are all powered estimated using the Vivado ® power analysis tool. Since it can
read the precise logic and routing resources from the implemented design, post-
route is when it is most accurate. The Summary power report and the many
perspectives of your design that you may explore—by clock domain, by
resource type, and by design hierarchy—are shown in the accompanying image.
You can modify environment settings and design activities in the Vivado
Integrated Design Environment (IDE) to assess how to lower your design
supply and thermal power usage. In order to evaluate and identify the design's
high power-consuming hierarchy and resources, you may also cross-probe into
the design from the power report.

Power analysis from Implemented netlist. Activity derived from constraints On-Chip Power
files, simulation files or vectorless analysis.
Dynamic: 2.047W (92%)
Total On-Chip Power: 2221W
Design Power Budget: Not Specified 16% Clocks:  0.119W  (6%)
Power Budget Margin: N/A Signals:  0.336W  (16%)
Junction Temperature: 50.6°C 92% Logic: 0.261 W (13%)
| —

Thermal Margin: 34.4°C(28W) Il BRAM: 0.067W  (3%)
Effective 8 11.5°CW DSP: 0.002W (<1%)
Power supplied to off-chip devices: 0W M rs7: 1.262W (61%)
Confidence level: Medium

8% ic: (8%)
Launch Power Constraint Advisor to find and fix = Device Static; ~ 0.174W (8%
invalid switching activity

Figure 12. Power Analysis Using Fully Connected Layer

From Figure 12, the power analysis for a completely linked layer is
successfully obtained from the given graphic. 2.21W of the chip's total power
is utilized by clocks, signals, logic, Memory, DSP, and PS7. The junction
temperature is 50.6°C, while the thermal margin temperature is 34.4°C, or
2.8W.
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Tc Console | Messages |Log | Reports |Design Runs | Power x DRC | Methodology | Timing ? 20
{ Summary
»
Power analysis from Implemented netlist. Activity derived from constraints On-Chip Power
files, simulation files or vectorless analysis.
Dynamic: 1.548W  (91%)
Total On-Chip P : 1.703wW
otal n ip Power: 5% )
Design Power Budget: Not Specified — Clacke.—0,083W (%)
Power Budget Margin: N/A Dynamic 0.074W (59
Junction Temperature: 44.6°C o1y | Utilization:  91% of Total  ggg vy
Thermal Margin: 40.4°C (3.3W) Estimation: 1.548 W 0.059 W
Effective §Ja: 11.5°CW DSP: 0.013W
Power supplied to off-chip devices: OW M rs7: 1.262W
Confidence lavel: Medium
eteaint Advisor o find and fix £ Device Static: ~ 0.155W  (5%)

invalid switch ct‘\wly

Figure 13. Power Analysis Using Convolutional Layer

From Figure 13, the power analysis for a completely linked layer is
successfully obtained from the given graphic. 1.703W of the chip's total power
is utilized by clocks, signals, logic, Memory, DSP, and PS7. The junction
temperature is 44.4°C, while the thermal margin temperature is 40.4°C, or
3.3W.

Synthesis Results

The functionally verified HDL codes are implemented in FPGA platform
for prototype hardware generation. The synthesis results Fully connected layer
and convolutional layer are shown in Table 6 and Table 7.

Table 6. Implementation Result of Fully Connected Layer

Device Utilization Summary

Site Type Used Available Util%
Slice LUTs 40946 53200 76.97
LUT as Logic 36190 | 53200 68.21
LUT as Memory 4791

LUT as Distributed RAM 4362 17400 27.53
LUT as Shift Register 429

Slice Registers 45338 106400 42.61
Register as Flip Flop 45338 106400 42.61
F7 Muxes 903 26600 3.39
F8 Muxes 128 13300 0.96

To examined the outcomes and power use on the device utilizing fully
linked layer BNNs.
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In addition to using the F7 mux, which may multiply some inputs, the
slice register and block ram memory are also utilized. The utilization statistics
and design summary for the completely linked layer are shown in the
implementation results above; the worst time is 0.101ns, and the power use is
around 2.221W.

In order to examined the outcomes and power use on the device utilizing
convolutional layer BNNs. In addition to using the F7 mux, which may multiply
some inputs, the slice register and block ram memory are also utilized. The
utilization statistics and design summary for the completely linked layer are
shown in the implementation results below; the worst time is 0.166ns, and the
power use is around 1.703W.

Table 7. Implementation Result of Convolutional Layer

Device Utilization Summary

Site Type Used Available Util%
Slice LUTs 24395 53200 45.86
LUT as Logic 22472 53200 42.24
LUT as Memory 1923

LUT as Distributed RAM 1578 17400 11.05
LUT as Shift Register 345

Slice Registers 38506 106400 36.19
Register as Flip Flop 38506 106400 36.19
F7 Muxes 857 26600 3.22
F8 Muxes 240 13300 1.80

The resource utilization for the BNN algorithm using the Fully connected
layer and convolutional layer is listed in a Table 8.

Table 8. Comparison of Fully Connected and Convolutional Layer

Resources FCL CNL % of Reduction
Slice LUTs 40946 24395 40.4

LUT as Logic 36190 22472 37.9

LUT as Memory 4791 1923 59.8

LUT as Distributed RAM 4362 1578 63.8

LUT as Shift Register 429 345 19.5

Slice Registers 45338 38506 15

F7 Muxes 903 857 )

POWER 2.221W 1.703W 23.3
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The resource utilization for the BNN algorithm using the Fully connected
layer and convolutional layer is compared using a bar graph in the Figure 14
and found that the resource is utilized minimally in Convolutional layer than
the Fully connected layer which uses the resources comparatively higher. The
usage of slice LUTs and LUT flip flop pairs are 31% comparatively lower in
Convolutional layer than in Fully connected layer which utilizes the area
efficiently. The timing constraints and area utilization ensures the efficiency of
Convolutional layer.

Resource utilization
100

30
nhon

o \':- o ‘_‘_\-:.-'“
SRR

mBENN using LFC  mBNN using CNL

Figure 14. Comparison Of Two Layers

Jupyter Output for Traffic Sign Recognition

Using https://192.168.2.99 as the default IP, connect the PYNZQ-Z2
board to the Jupyter notebook. The Jupyter notebook requires the username and
password to be entered after the connection. Both the username and password
are Xilinx. After that, you must upload the zip file or folder containing the
dataset and the codes. The PYNQ-Z2 board must have the BNN package
installed in order to carry out the operation. First determine how many datasets
there are and how many classes are included in the supplied dataset. So, the
GTSTB dataset, which includes 50,000 photos and the 42 classes stated in the
previous chapter, for determining the inference time and classification rate
using the 340 input photos provided as shown in Figure 15. The sign's name
and the class to which the image belongs will be included in the output. Also,

the program's operating speed varies across hardware and software.
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In [15]: from PIL import Image
impart numpy as np
fron o5 import Listdir
from os.path import isfile, join
from IPython.display import display

inglist = [f for F in listdir("/honefxilins/jupyter_notebooks/bnn/pictures/road signs/*) if isfile(join(*/honefxilins/jupyte

images = []

Figure 15. Input Images Uploaded

vame: 30 Kn/h

Figure 16. Classification in Hardware

The provided Figure 16 illustrates the inference results and performance
benchmarks of a convolutional neural network (CNN) trained for traffic sign
classification, likely utilizing the German Traffic Sign Recognition Benchmark
(GTSRB) dataset. The execution block demonstrates a batch processing
approach where the classify images function predicts class indices for a series
of input images, which are subsequently mapped to human-readable labels such
as "Priority Road," "Give way," and various speed limit indicators.
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High-performance efficiency is a key highlight of this output, with the
model achieving a classification rate of 2,667.20 images per second and a mean
inference time of approximately 374.92 microseconds per image. Furthermore,
the inclusion of a "Not a roadsign" classification category suggests the
implementation of a robust filtering mechanism to handle non-relevant
background data, which is critical for the reliability of real-time autonomous
driving systems.

In [17]: sw_class = bnn.CnvClassifier(bnn.NETHORK_CNVWIAL, "rozd-signs”, bnn.RUNTINE_SK)

images (images)
*format (results))

Id

. format((classifier.class_name(index))})

took §3648255.80 microseconds, 1591006.3% usec per image

tion rate: 8.63 images per second

classes: [18 921 13 27 36 4 5123120431813 2 313 51743 839 17 15
1411 3 543 135 1 43826 71641 1]

Identified class name: No overtaking for large trucks

class name: No overtakin

class name: Double bend (first to left)

class name: Give way

class name: Pedestrians in road ahead

class name: Ahead or right only

class e: 78 Km/h

class name: 88 Km/h

class name: Priority road

class name: Wild animels

class name: Bend to right

class name: Not a roadsign

class name: Danger Ahead

class i

class

class m

class

class name:

class name: No entry for vehicular traffic

class name: i

class name:

class name: Risk of snow or ice

class name: No entry for vehicular traffic
class name: No wehicles
class 20 km/h

Figure 17. Classification in Software

The following figure illustrates the performance characteristics of a
traffic sign classification model specifically operating under a software-only
runtime environment (bnn. RUNTIME SW). While the model maintains
consistent classification accuracy—correctly identifying a diverse array of
regulatory and warning signs such as "No overtaking," "Give way," and various
speed limits—the computational overhead of the software-based inference is
substantial. The system recorded an inference time of approximately
63,640,255.00 microseconds, translating to a significantly reduced throughput
of 0.63 images per second and a latency of 1,591,006.38 microseconds per
image. This performance metric highlights the inherent limitations of standard
software execution for complex neural network operations in real-time
scenarios, serving as a critical baseline for evaluating the acceleration provided

by dedicated hardware runtimes or FPGA-based implementations.
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Table 9. Comparison between Software and Hardware BNN

Software Runtime |Hardware Runtime
Metric (SW) (BNN) Improvement
Throughput 0.63 FPS 2667.20 FPS ~4,233x
Inference Latency [1,591,006.38 us 374.92 us 99.9% reduction
Resource 31% Reduction in Optimized for
Efficiency N/A LUTs FPGA
Power
Consumption N/A 1.703W Energy Efficient

The performance comparison between the software runtime (SW) and
hardware runtime (BNN) highlights significant improvements in both speed
and resource efficiency as shown in Table 9. Throughput increases by
approximately 4,233 times, with the hardware achieving 2,667.20 FPS
compared to the software’s 0.63 FPS. Inference latency is reduced by over
99.9%, from 1,591,006.38 us in software to just 374.92 ps in hardware.
Additionally, resource usage is optimized for FPGA, with a 31% reduction in
LUTs. Power consumption is notably lower in the hardware implementation,
with the system consuming just 1.703W, demonstrating its energy efficiency.

CONCLUSION

This method can be effectively applied to a variety of real-time
applications, offering significant performance benefits. The approach
demonstrates impressive efficiency, particularly in the classification of traffic
signs, with the system capable of classifying them in under 0.5 seconds. A
generalized recognition system for road signs was developed using a 3x3 kernel
and a 64x64 feature matrix. A comparison of resource usage between the BNN
algorithm's fully connected layer and convolutional layer revealed that the
convolutional layer consumes significantly fewer resources. Specifically, the
convolutional layer uses 31% less slice LUTs and LUT flip-flop pairs,
effectively optimizing space usage. The convolutional layer's efficiency is
further validated by its ability to meet strict time constraints and minimize area
usage. Despite being less densely connected, with some input nodes not
affecting all output nodes, convolutional layers outperform fully connected

layers in terms of resource consumption and learning flexibility.
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Implementation results in Vivado show that the fully connected layer has
higher resource utilization, but the convolutional layer exhibits a lower power
consumption of 1.703W. Additionally, the road sign recognition process is
completed in just 3527 microseconds, with 1417.64 images classified per
second. In conclusion, this approach proves to be both resource-efficient and
effective for real-time applications, offering significant advantages in speed,
power consumption, and overall performance.
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INTRODUCTION

Composite solid propellants remain central to contemporary propulsion
systems owing to their reliability, scalability, and tunable performance. The
present work reports an expanded experimental investigation into potassium
nitrate (KNOs)-based composite propellants employing hydroxyl-terminated
polybutadiene (HTPB) as the polymeric fuel-binder. In contrast to
conventional ammonium perchlorate (AP) formulations, KNOs offers enhanced
safety, reduced environmental impact, and improved handling characteristics,
albeit at the expense of energetic performance. To address this limitation,
catalytic additives and optimized curing systems were systematically explored.
Propellant formulations were prepared using HTPB with plasticizers (dioctyl
adipate, dioctyl phthalate, and dibutyl phthalate), cured with either toluene
diisocyanate (TDI) or isophorone diisocyanate (IPDI), and catalyzed using
cupric oxide (CuO) and cobalt (II, IIT) oxide (Cos0a).

A comprehensive experimental methodology encompassing controlled
mixing, casting, vacuum degassing, and multi-stage thermal curing was
adopted. Thermophysical and combustion-related properties—including
density, moisture content, calorific value, burning rate, flame temperature, and
emission spectra—were evaluated using standardized laboratory techniques.
Results demonstrate that TDI-based formulations consistently outperform
IPDI-based systems in terms of combustion temperature and calorific value,
attributable to higher crosslink density and aromatic rigidity. Among the
catalysts investigated, CuO significantly increased peak flame temperature (up
to 1034 °C), while Co304 enhanced calorific value (up to 2598.8 cal g') and
promoted smoother combustion behavior. Spectral emission analysis
confirmed the presence of characteristic K* and Cu?*' species, validating
catalytic participation during combustion.

The expanded dataset and discussion provide deeper insight into
structure—property—performance relationships in KNOs—HTPB propellants.
The findings highlight the feasibility of developing safer, chlorine-free, and
environmentally benign solid propellants for educational, experimental, and
small-scale aerospace applications. The work contributes to the growing body
of research on green propulsion materials and establishes a foundation for
future pressure-dependent and motor-scale studies.
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Solid rocket propulsion has played a decisive role in the advancement of
aerospace and defense technologies due to its inherent simplicity, mechanical
robustness, and operational reliability. Unlike liquid propulsion systems, solid
propellants integrate fuel and oxidizer into a single grain, eliminating complex
feed systems and enabling long-term storability. Composite solid propellants,
comprising a crystalline oxidizer dispersed within a polymeric binder matrix,
dominate modern applications ranging from tactical missiles to space launch
vehicle boosters (Kubota, 2002; Yang et al., 2000).

Hydroxyl-terminated polybutadiene (HTPB) has emerged as one of the
most widely adopted binders for composite propellants since the 1960s. Its
popularity stems from its favorable mechanical flexibility, chemical
compatibility with a wide range of oxidizers, and ability to form polyurethane
networks when cured with diisocyanates (Ramakrishna et al., 2002).
Traditionally, ammonium perchlorate (AP) has been the oxidizer of choice due
to its high oxygen balance and energetic output. However, AP-based
propellants generate environmentally harmful chlorine-containing exhaust
species and pose handling and disposal challenges.

WOH HO WOH HO [/
HO * OH

n n n
1,4-trans 1,4-cis 1,2-vinyl

0.4 0.2 0280

HTPB R-45M
Figure 1. Chemical structure of HTPB.
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In recent years, increasing emphasis on environmental sustainability and
operational safety has motivated the exploration of alternative oxidizers such
as ammonium nitrate (AN), ammonium dinitramide (ADN), and potassium
nitrate (KNOs) (Reddy et al., 2021).
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KNOs, though less energetic than AP, offers distinct advantages
including low sensitivity to impact and friction, ease of availability, and
reduced environmental impact. These attributes make KNOs-based propellants
particularly attractive for academic research, educational demonstrations, and
small-scale propulsion systems.

Despite these advantages, KNOs-based propellants often suffer from
lower burning rates and reduced flame temperatures. To mitigate these
drawbacks, burn rate modifiers and catalysts—typically transition metal
oxides—are incorporated to tailor combustion characteristics. Cupric oxide
(CuO) and cobalt oxide (Cos04) are among the most studied catalysts due to
their redox activity and ability to alter oxidizer decomposition pathways (Lee
et al., 2011; Zhang et al., 2016).

The curing chemistry of HTPB also plays a critical role in determining
final propellant properties. Diisocyanates such as toluene diisocyanate (TDI)
and isophorone diisocyanate (IPDI) react with hydroxyl groups in HTPB to
form a crosslinked polyurethane matrix. The molecular structure of the curing
agent influences curing kinetics, crosslink density, mechanical integrity, and
thermal stability (Nguyen & Wang, 2010).

The present study expands upon prior work by providing a detailed, data-
rich investigation of KNOs;—HTPB composite propellants formulated with
different plasticizers, curing agents, and catalysts. Beyond basic
characterization, this paper emphasizes combustion diagnostics, spectral
analysis, and comparative performance evaluation, with the aim of contributing
a comprehensive reference for green composite propellant development.

1. CLASSIFICATION OF SOLID ROCKET

PROPELLANTS

Solid rocket propellants are commonly classified based on their chemical
composition, energetic mechanism, and physical structure. Broadly, they are
categorized into homogeneous and heterogeneous (composite) propellants.

Homogeneous propellants consist of fuel and oxidizer combined at the
molecular level. These include double-base propellants, primarily composed of
nitrocellulose and nitroglycerin, which offer smooth combustion and low
smoke but limited performance and scalability.
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Modified double-base (MDB) propellants incorporate energetic
additives such as RDX or HMX to enhance performance, though they often
present increased sensitivity and processing complexity.

Heterogeneous or composite propellants consist of a crystalline oxidizer
dispersed within a polymeric binder matrix that also acts as a fuel. This category
dominates modern aerospace applications due to its superior mechanical
strength, formulation flexibility, and higher specific impulse. Conventional
composite propellants typically employ ammonium perchlorate (AP) as the
oxidizer and hydroxyl-terminated polybutadiene (HTPB) as the binder.
However, environmental and safety concerns associated with AP have driven
research into alternative oxidizers such as ammonium nitrate (AN), ammonium
dinitramide (ADN), and potassium nitrate (KNOs). Based on oxidizer
chemistry, composite propellants may further be classified as chlorine-based
(e.g., AP systems) and chlorine-free or green propellants (e.g., AN-, ADN-, or
KNO:s-based systems). Green propellants offer reduced environmental impact,
lower toxicity, and enhanced handling safety, albeit at reduced energetic
performance. Additionally, solid propellants can be classified by burning rate
modifiers, where metallic or metal oxide catalysts are introduced to tailor
combustion behavior, and by binder chemistry, depending on curing agents and
plasticizers used to optimize mechanical and thermal properties. This study
focuses on chlorine-free composite solid propellants, specifically KNOs;—HTPB
formulations, representing a safer and environmentally benign alternative for
small-scale and experimental propulsion applications.

2. LITERATURE REVIEW

Evolution of Composite Solid Propellants

The evolution of composite solid propellants has been closely linked to
advances in polymer chemistry and materials science. Early propellants relied
on asphalt and polysulfide binders, which were gradually replaced by synthetic
polymers offering superior mechanical and thermal properties. HTPB emerged
as a dominant binder due to its controllable molecular weight, terminal
hydroxyl functionality, and excellent compatibility with energetic additives
(Smith & Anderson, 2002).
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Oxidizer Selection and Environmental Considerations

While AP-based propellants remain unmatched in performance,
environmental concerns have prompted significant research into chlorine-free
alternatives. Raghu et al. (2014) demonstrated that KNOs-based formulations
exhibit enhanced safety and stability, though at reduced energetic efficiency.
Recent reviews emphasize the importance of balancing performance with
environmental impact, particularly for future aerospace systems subject to
stricter emission regulations (Ghosh & Sengupta, 2022).

Curing Chemistry of HTPB

The curing reaction between hydroxyl-terminated polymers and
diisocyanates forms the structural backbone of composite propellants. TDI-
based systems cure rapidly and produce rigid networks, whereas IPDI-based
systems cure more slowly and impart improved flexibility and weather
resistance (Nguyen & Wang, 2010; Shrivastava & Kulkarni, 2011). The
NCO:OH ratio, curing temperature, and presence of catalysts critically
influence the final properties.

Role of Burn Rate Catalysts

Transition metal oxides have been extensively studied as combustion
catalysts. CuO has been shown to enhance flame temperature and energy
release, while Co304 promotes smoother combustion and modifies burn rate
behavior (Lee et al., 2011; Zhang et al., 2016). Spectroscopic studies reveal that
these catalysts participate actively in redox reactions during combustion,
altering gas-phase and condensed-phase kinetics (Tiwari & Jain, 2013).

Combustion Diagnostics and Spectroscopy

Advanced diagnostic techniques such as 2D and 3D emission
spectroscopy provide valuable insight into combustion mechanisms by
identifying intermediate species and tracking temporal evolution of flames. The
detection of K*, Cu**, and OH* emissions has been widely used to correlate
chemical reactions with macroscopic performance metrics (Jani & Shah, 2016).
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3. MATERIALS AND METHODS

Materials
Table 1. Propellant Material Composition
0,
Component Chemical Name Formula Function Wt
Range
Hydroxyl-Terminated [[HO— . o
HTPB Polybutadiene (CsHs)»—OH Fuel & Binder 12%
KNOs |[Potassium Nitrate  |[KNO; |Oxidizer 165-75%
. . Burn Rate o
CuO Cupric Oxide CuO Catalyst 1%
C050s Cobalt (IL, I1T) Oxide  [|C0:0s Burn Rate 0.5%
Catalyst
.. . Process o
DOA/DOP/DBP||Plasticizers Various Aid/Flexibility 8%
|IPDI/TDI ||Diisocyanates ||Various ||Curing Agent ||172%

Preparation Procedure

The preparation process began with the drying of potassium nitrate
(KNOs) at 100 °C for 2 hours, after which it was sieved to obtain a particle size
finer than 150 mesh. Hydroxyl-terminated polybutadiene (HTPB) was then
blended with selected plasticizers, such as dioctyl adipate (DOA), dioctyl
phthalate (DOP), or dibutyl phthalate (DBP), at 40 °C.

This was followed by the sequential addition of catalysts, including
cupric oxide (CuO) and cobalt oxide (Cos04), along with the sieved KNOs, in
a vacuum mixer to ensure homogeneous dispersion. The curing agent, either
isophorone diisocyanate (IPDI) or toluene diisocyanate (TDI), was introduced
at the final mixing stage, with dibutyltin dilaurate optionally added to accelerate
the curing process. The resulting mixture was cast into Teflon-lined molds and
subjected to vacuum degassing to remove entrapped air bubbles.

Finally, the samples were thermally cured, initially at room temperature
for 24 hours, followed by an extended curing period of 48—72 hours at 50-60
°C to achieve complete polymerization.
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Characterization Techniques

Density, moisture content, and calorific value were measured using
standard analytical instruments. Burning rate was determined via strand burner
tests. Combustion temperature and emission spectra were recorded using

thermocouples and flame emission spectroscopy.

4. RESULTS AND DISCUSSION
Calorific Value: Measured using a LABTRONICS bomb calorimeter
with oxygen at 400 psi, calibrated with benzoic acid.

Table 2. Calorific Value Results Of Propellant Formulations

|Sample ||Max Temp Rise (°C) ||Caloriﬁc Value (cal/g) |
[IPDI Cupric [0.745 |[1849.23 |
[IPDI Cobalt |[0.746 [[1779.30 |
ITDI Normal 10.939 112356.90 |
ITDI Cupric 10.940 112275.50 |
ITDI Cobalt 10.999 112598.80 |

The TDI-Cobalt formulation exhibited the highest calorific value
(2598.8 cal/g), indicating superior energy release, likely due to enhanced
catalytic activity of CosOa4.

Density: Determined using a WENSAR Digital Analytical Weighing
Balance (accuracy 0.001 g) by dividing sample weight by volume.

Table 3. Density Of Propellant Samples

[Sample | Density (g/em?) |
[IPDI Cupric [1.333 |
[IPDI Cobalt |[1.491 |
[TDI Normal |[1.234 |
[TDI Cupric |[1.285 |
[TDI Cobalt [[1.670 |

Higher densities in TDI-Cobalt suggests better packing of oxidizer and
catalyst particles.
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Moisture Content: Analyzed via a moisture balance using the loss-on-

drying method.
Table 4. Propellant Moisture Results

|Sample ||M0isture (%) |
[IPDI Cupric [[0.85 |
[IPDI Cobalt [[0.43 |
[TDI Normal [[0.90 |
|TDI Cupric ”0.96 |
[TDI Cobalt [0.68 |

Low moisture content (<1%) indicates effective drying and sealing,
critical for propellant stability.

Burning Rate: Calculated by timing the combustion of 1 cm and 2 cm
cylindrical strands with a stopwatch.

|Sample ||Length (cm) ||Time (s) ||Burn Rate (cm/s) |
ITDI Cobalt I 158.5008  ]/0.0170940 |
[TDI Cupric 1 459325 0.0217710 |
ITDI Normal 1 |135.705 10.0280073 |
[IPDI Cobalt 1 ll68.6625  0.0145639 |
[IPDI Cupric 1 |43.4175  ]0.0230322 |

TDI Normal exhibited the highest burning rate (0.0280 cm/s), likely due
to the absence of catalysts slowing decomposition. CosOa significantly
enhanced burn rates in both TDI and IPDI systems, while CuO produced higher
combustion temperatures.

Combustion Analysis: Conducted using 2D/3D emission spectroscopy
(Avantes spectrometer) to identify species like K* and Cu?".

Tablo 5. Combustion Temperature

|Sample “Temperature (9] |
[TDI Cupric |[1034 |
TDI Normal 900.4

| I |
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|Sample ||Temperature (9] |
[TDI Cobalt [927.5 |
[IPDI Cupric |[860.1 |
[IPDI Cobalt |[813 |

TDI-Cupric achieved the highest temperature (1034°C), confirming
CuO’s role in enhancing thermal energy release. In below, the first graph,
"Refined Burning Rate of Various Propellant Formulations", shows that the
TDI Base formulation exhibits the highest burning rate at 0.028007 cm/s,
followed by IPDI Cupric (0.023032 cm/s) and TDI Cupric (0.021771 cm/s).
The lowest burning rates are observed in TDI Cobalt (0.017094 cm/s) and IPDI
Cobalt (0.014564 cm/s), indicating that cobalt oxide generally slows down the
combustion rate compared to cupric oxide.

Refined Burning Rate of Various Propellant Formulations
Refined Burning Rate of Various Propellant Formulations
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Figure 1. Combustion Characteristics Of Propellant Formulations
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The second graph, "Maximum Combustion Temperature of Various
Propellant Formulations", reveals that TDI + Cupric Oxide achieves the highest
combustion temperature at 1034°C, while IPDI + Cobalt Oxide has the lowest
at 813°C. Overall, formulations containing cupric oxide tend to produce higher
combustion temperatures than those with cobalt oxide, and TDI-based
propellants generally outperform I[PDI-based ones in terms of thermal output.

From the graph we can say that-

TDI + Cupric Oxide (1034°C) has the highest temperature, confirming
that: TDI as a binder and CuO as a catalyst, significantly improve combustion
performance, confirming it as the most thermally energetic composition.

TDI without catalyst (900°C) still performs well, better than any IPDI-
based formulation. This suggests that TDI alone contributes to higher energy
release due to its aromatic structure and better crosslinking properties.

TDI + Cobalt Oxide (927.5°C) performs better than TDI alone.

IPDI + Cupric Oxide (860.1°C) performs moderately, confirming CuO
helps, but IPDI’s lower reactivity limits max temperature compared to TDI.

IPDI + Cobalt Oxide (813°C) is the least energetic formulation among
the four. This shows both:

e [PDI is less reactive
e (0304 is a weaker catalyst than CuO in this system.

Spectral Analysis: Emission spectroscopy revealed K* (766 nm) and
Cu?" (510-530 nm) peaks, with TDI-Cupric showing stronger emissions,
indicating more energetic combustion.
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Figure 2. Combustion Emission Spectra Of Propellant Samples

The spectral analysis of different fuel formulations was carried out using

3D spectra (Wavelength vs. Intensity vs. Time or Measurement Index) offers a

dynamic representation of how these emissions evolve throughout the

combustion event. Among all, the catalyzed samples (especially TDI Cupric)

exhibited more complex and multi-peaked spectra, indicating a more energetic

and chemically diverse combustion environment due to catalytic enhancement.

These observations affirm the role of metallic additives in modifying the

thermal decomposition pathways and increasing energy release rates in

composite propellants.

Table 6. Emission Peaks Of Propellant Samples

Sample Peak (nm) Functional Group

IPDI Cobalt | 766 Potassium ion (K*)

IPDI Cupric | 766, 515-525 | K*, Cu** (from CuO)

TDI Base 765 K*

TDI Cupric 766, 510-530 | K*, Cu*'(stronger emission than IPDI Cupric)
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Table 7. Functional Group / Species Reference Mapping

Species Wavelength Comment
(nm)

Potassium (K*) 766.5, 769.9 Strong doublet lines, dominant in
combustion of KNOs

Copper (Cu?") 510-530 Green-blue emission of copper
compounds

Cobalt (Co*") 345-375 Weak violet-blue emission; not resolved in
current graphs

CH ~431 From hydrocarbon combustion HTPB not

(methylidyne) clearly visible.

OH Radical ~309 UV region, often seen in flame — not
resolved here

5. FUTURE SCOPE OF THE PRESENT WORK

The present study has established a foundational understanding of the
combustion characteristics of HTPB-based composite solid propellants using
KNO:s as the oxidizer and metallic catalysts such as CuO and CosOs. While key
parameters like calorific value, density, moisture content, and combustion
temperature have been evaluated, several important aspects remain unexplored,
which presents valuable opportunities for further research and development.

5.1 Unperformed Pressure Measurement Study
A significant experimental limitation in this study is the absence of
chamber pressure measurement during combustion. Measuring pressure—time
profiles is crucial for characterizing the real-world performance of solid
propellants in rocket motors. This experiment, typically conducted using a
closed bomb calorimeter or strand burner under controlled pressure, provides
data such as:
e Peak pressure generation
e Burning rate dependence on pressure
e Ignition delay and pressure rise time
¢ Stability of combustion under confined conditions
These results would enable determination of the pressure exponent (n) in
the empirical burning rate law:
Burning Rate=a - P*
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Where a is the pre-exponential constant and # indicates how strongly
burn rate depends on pressure. Future work should include pressure
measurements to validate combustion efficiency, thermal stability, and ignition
consistency across the various formulations studied here.

5.2 Suggested Future Experiments
To comprehensively evaluate and optimize the performance of these

propellants, the following experimental extensions are recommended:

Strand Burner Testing Under Pressure

Conduct strand burn rate experiments across a range of pressures (1-10
atm) to obtain accurate pressure-dependent burn profiles. This would help
assess whether a formulation is suitable for low-thrust or high-thrust
applications.

Thermal Analysis: TGA & DSC

Use Thermogravimetric Analysis (TGA) and Differential Scanning
Calorimetry (DSC) to study the decomposition kinetics, phase transitions, and
thermal stability of each formulation. These techniques reveal critical
information about heat release, ignition temperature, and compatibility of
components.

Microstructural Studies (SEM/EDX)

Apply Scanning Electron Microscopy (SEM) and Energy Dispersive X-
ray Analysis (EDX) to visualize and chemically analyze the dispersion of
oxidizer and catalysts in the cured binder. Poor dispersion can cause uneven

combustion and performance instability.

Spectral Flame Diagnostics at Different Conditions

Expand 2D and 3D emission spectroscopy to different pressure and
temperature environments to study changes in species evolution. This will help
in better identifying metal—ion interactions and combustion efficiency under
flight-like conditions.
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Chemical Compatibility & Stability Studies
Long-term storage tests under humidity and temperature cycles can help
determine the shelf-life and chemical compatibility of propellant components.

5.3 Research Opportunities for Future Work
For researchers interested in continuing this work or exploring its
practical applications, the following directions are highly recommended:

New Catalyst Exploration

In addition to CuO and Co030s4, catalysts like nano-Fe.O3, MnO2, NiO, or
TiO: can be studied for their ability to alter flame temperature, burn rate, and
sensitivity.

Alternative Binder Systems
Exploration of other binders such as:
e GAP (Glycidyl Azide Polymer) — Energetic and gas-generating
e PBAN (Polybutadiene Acrylonitrile) — More rigid and thermally stable
e HTPE (Hydroxyl-Terminated Polyether) — Improved mechanical
properties
These systems may improve performance or reduce environmental
impact.

Incorporation of Metallic Fuels

Adding aluminum or magnesium powders to the formulation could
significantly enhance energy output and specific impulse. However, this must
be balanced with issues of slag formation and safety.

Green Propulsion Materials

Working toward chlorine-free oxidizers (such as Ammonium Nitrate
(AN), Ammonium Dinitramide (ADN)) and lead-free catalysts would make the
system eco-friendlier and more compliant with future regulations.
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Computational Simulation

Use computational fluid dynamics (CFD) and reaction Kkinetics
simulations to model flame spread, pressure wave propagation, and regression
rate of the propellant. This can be useful for designing scalable rocket motors.

5.4 Potential Applications and Real-World Impact
The formulations developed in this study—particularly those using TDI-
CuO and TDI-Co0s0+—show promising combustion characteristics and thermal
energy output. With further optimization, such propellants can be applied to:
e Model rocketry and student satellite launch vehicles (CanSat, Sounding
rockets)
e Laboratory demonstration of safe solid propulsion
e Low-cost booster stages for UAVs or expendable drones
e Green propulsion systems in educational and test-bed missions
By refining the combustion parameters, improving safety, and reducing
environmental impact, this study lays the groundwork for future work in the
field of sustainable solid propulsion.

6. LIMITATIONS OF THE PRESENT STUDY

Despite providing valuable insights into the formulation and combustion
behavior of KNOs—HTPB based composite solid propellants, the present study
is subject to certain limitations that should be acknowledged. The experimental
investigations were primarily conducted under ambient pressure conditions,
and pressure-dependent burning rate measurements were not performed. As a
result, key combustion parameters such as the pressure exponent and steady-
state burning behavior under realistic motor chamber pressures could not be
evaluated. These parameters are critical for predicting performance in actual
rocket motor applications.

The study was limited to laboratory-scale strand combustion tests, and
no motor-scale or static firing experiments were conducted. Consequently,
thrust characteristics, chamber pressure evolution, erosive burning effects, and

nozzle—propellant interactions were not assessed.
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In addition, the concentration range of burn rate catalysts (CuO and
C0s04) was restricted, and the influence of varying catalyst particle size,
morphology, or nano-scale additives was not explored.

Mechanical properties such as tensile strength, elongation at break, and
viscoelastic behavior of the cured propellant grains were not evaluated. These
properties are essential for assessing structural integrity during handling,
storage, and operation, particularly under thermal and vibrational loads.
Furthermore, long-term aging, compatibility, and environmental stability
studies were beyond the scope of the present work.

Spectral diagnostics were limited by the resolution of the available
instrumentation, restricting the detection of certain transient radical species in
the ultraviolet region. Finally, numerical modeling and combustion simulations
were not incorporated, limiting the ability to generalize the experimental
findings across a broader range of operating conditions.

Addressing these limitations in future investigations will enable a more
comprehensive understanding of KNOs—HTPB propellant systems and support
their optimization for practical aerospace propulsion applications.

CONCLUSION

This experimental study successfully demonstrated the preparation,
processing, and performance evaluation of HTPB-based composite solid
propellants using potassium nitrate (KNOs) as the oxidizer and various
combinations of curing agents (TDI and IPDI) and burn rate catalysts (CuO and
Co0304). Through a series of controlled experiments, the effect of these variables
on key performance metrics such as burning rate, combustion temperature, and
calorific value was thoroughly assessed.

Among the formulations tested, the TDI-Cupric Oxide sample achieved
the highest combustion temperature of 1034 °C, indicating the most thermally
energetic behavior. However, the TDI-Cobalt Oxide sample demonstrated the
highest calorific value of 2598.8 cal/g, confirming its superior energy output
per unit mass. On the other hand, the IPDI-based formulations consistently
showed lower combustion efficiency and energy release, with the IPDI-Cobalt
Oxide sample producing the lowest combustion temperature (813 °C) and

calorific value.
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Burning rate analysis revealed that cobalt oxide catalysts significantly
enhance the combustion rate, particularly in IPDI-Cobalt and TDI-Cobalt
systems, suggesting a strong catalytic influence on decomposition kinetics. In
contrast, cupric oxide, while slightly slower in burn rate, produced higher
combustion temperatures and cleaner spectral signatures.

In summary, both the choice of isocyanate (curing agent) and metal oxide
catalyst play a pivotal role in tailoring the performance of composite
propellants. TDI-based systems, especially when combined with CuO or CosOa,
emerged as the most effective combinations for high-energy applications.
These findings provide valuable insight into the optimization of green and
stable propellant formulations for academic, industrial, and defense-related
propulsion technologies.
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INTRODUCTION

Intelligent Signal Processing (ISP) combines established signal
processing methods with artificial intelligence and machine learning techniques
to build systems that can understand and respond to complex forms of data,
including speech signals, images, and sensor outputs. Rather than depending
solely on predefined mathematical models, these systems learn patterns directly
from data, allowing them to perform tasks such as pattern identification, fault
analysis, adaptive control, and intelligent decision-making (Chen, 2023). As a
result, ISP has found applications across diverse fields, like healthcare
diagnostics, communication systems, energy monitoring, and automation.

The fundamental idea behind ISP lies in integrating traditional digital
signal processing with learning-based models such as neural networks and deep
learning frameworks. This integration enables systems to automatically extract
relevant features from raw, high-dimensional signals and adapt their behaviour
as operating conditions change (Wang, 2023). By learning system
characteristics from observed data instead of rigid analytical formulations, ISP
offers improved flexibility and resilience in uncertain environments, supporting
advanced applications including smart power system supervision and enhanced
speech recognition technologies.

1. LIMITATIONS OF CONVENTIONAL SIGNAL

PROCESSING IN NON-LINEAR, NON-STATIONARY

ENVIRONMENTS

Conventional signal processing methods are based on the hypotheses
of linearity and stationarity. These assumptions become substantial limitations
when dealing with real-world, complex signals that exhibit non-linear and non-
stationary behaviour (Proakis, 2006).

Limitations in Non-Stationary Environments

Limited Representation of Temporal Variability: Conventional
techniques such as the classical Fourier Transform focus solely on frequency
information and implicitly assume that signal characteristics remain unchanged
over time. As a result, they fail to reflect evolving spectral or statistical

behaviour within dynamic signals.
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Inherent Time-Frequency Compromise: To address partial non-
stationarity, the Short-Time Fourier Transform introduces windowed analysis;
however, the use of a fixed window length imposes an unavoidable compromise
between temporal and spectral resolution. (Cohen, 1995) Longer windows
improve frequency discrimination but obscure short-lived events, whereas
shorter windows enhance time localisation at the expense of frequency detail
(Sejdic, 2009). This constraint hampers effective analysis of signals containing
both abrupt transients and slowly varying components.

Inadequacy of Classical Modelling Approaches: Linear statistical
models, including autoregressive and ARMA frameworks, are generally
insufficient for representing the complex, time-dependent nature of non-
stationary data. Consequently, they provide oversimplified descriptions of real-
world signals, such as biomedical recordings (e.g., EEG) or structural response
measurements.

Limitations in Non-Linear Environments

Violation of the Superposition Assumption: Traditional linecar models
are built on the principle that system responses add linearly. However, many
real-world systems, particularly in physical devices and biological processes,
exhibit non-linearity, where the output generates additional frequency
components such as harmonics and intermodulation terms that are absent in the
original input (Akkaya, 2025).

Limitations of Conventional Linear Filtering: Linear (filtering
techniques are inherently incapable of accurately representing or suppressing
these non-linearity-induced spectral components, which restricts their
effectiveness in practical signal analysis.

Absence of a Generalised Non-Linear Framework: In contrast to
linear system theory, non-linear systems lack a comprehensive, universally
applicable theoretical foundation. As a result, modelling strategies are often
tailored to specific forms of non-linearity, necessitating specialised and
frequently complex analytical or computational methods.
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Risk of Model Instability and Overfitting: While simple non-linear
representations, such as polynomial-based models, offer increased flexibility,
they often introduce challenges, including unstable behaviour, sensitivity to
noise, and a heightened risk of overfitting. These issues limit their practical
usability unless supported by advanced regularisation or optimisation
techniques.

1.1 Motivation for Al Integration in Modern Signal Processing

The inspiration for Al integration in modern signal processing pipelines
stems primarily from the demand to overcome the limitations of conventional,
model-based methods when dealing with complex, real-world data and
dynamic environments. Al offers superior adaptability, enhanced accuracy,
automation, and predictive capabilities that transform raw data into actionable
intelligence (Wang, 2009).

Significant Inspirations Include (Bishop, 2006)

Handling Complexity and Non-Linearity: Many contemporary signal
sources exhibit irregular, non-linear behaviour that cannot be adequately
described using fixed analytical models. In areas such as next-generation wireless
systems and industrial sensing, data-driven Al methods—especially deep
learning—are better suited to capturing such complexity by learning patterns
directly from large-scale observations.

Superior Performance and Accuracy: Hybrid systems that combine Al
with classical signal processing frequently deliver improved results in tasks
including denoising, pattern classification, and feature discovery. Learning-
based models are capable of identifying weak or hidden structures that may be
overlooked by conventional algorithms, enhancing reliability in fields such as
healthcare diagnostics and fault analysis.

Automation and Efficiency: Al reduces manual intervention by
automating routine and computation-heavy processes such as preprocessing and
feature extraction. This allows specialists to concentrate on interpretation and

decision-making, leading to more efficient analytical workflows.

60



INTELLIGENT SIGNAL PROCESSING AND EMBEDDED Al SYSTEMS

Adaptability and Real-Time Operation: Al-enabled signal processing
systems can adjust continuously to evolving operating conditions, supporting
real-time applications such as autonomous platforms, adaptive networks, and
continuous health monitoring.

Enhanced Decision-Making and Predictive Insights: Through real-
time analysis and forecasting, Al facilitates anticipatory actions, such as early
detection of equipment degradation, thereby minimizing downtime and
maintenance costs.

Feature Engineering and Dimensionality Reduction: Established
transforms, including Fourier and wavelet methods, remain effective for compact
signal representation. When integrated with Al models, they improve
computational efficiency and robustness.

Addressing Data Volume Challenges: The rapid growth of sensor-
driven data exceeds the capacity of traditional techniques, making Al essential
for scalable processing and meaningful insight extraction.

1.2 Transition from Model-Driven to Data-Driven Paradigms

In AI-Based Signal Processing

The shift from model-driven to data-driven Al signal processing moves
from traditional mathematical models to learning patterns directly from vast
datasets, driven by deep learning's success. It offers superior performance in
complex tasks but demands huge data, while hybrid approaches combining both
are emerging to gain robustness, efficiency, and explainability by integrating
domain knowledge, moving towards "Smarter AI" for better real-world
automation and insights (Gannot, 2024).

Model-Driven Paradigm (Traditional)

The core idea uses established scientific laws, equations (like Fourier and
Laplace), and system understanding to build explicit models. It requires less
data, offers strong guarantees (stability, performance), is interpretable, and
leverages expert knowledge. The limitation of this approach is struggles with
extreme complexity, noise, and unmodeled dynamics; building models is slow
and expensive (requires scarce experts). The examples are traditional filters,
spectral analysis based on known physics (Shlezinger, 2023).
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Data-Driven Paradigm (Modern)
The core idea leverages machine learning (ML) and deep learning (DL)

to learn features and mappings directly from data, often end-to-end. The

advantage is the achievement of the state-of-the-art performance, automates

feature extraction, and handles high complexity (e.g., computer vision, NLP).

The difficulty is the need for massive, high-quality datasets; it can be black-box
(hard to interpret); it struggles with out-of-distribution data (Razzaq, 2025). The

examples are CNNs for image/audio, RNNs for time-series, etc.

Table 1: Comparison Of Model and Data-Driven Paradigms

Aspect

Model Driven Paradigm

Data Driven Paradigm

Core Principle

Relies on explicit
mathematical and physical
models of the signal
generation process

Learns signal characteristics
directly from data without
predefined models

Knowledge
Source

Domain expertise, physics-
based equations, and
analytical assumptions

Large volumes of labelled or
unlabelled data

Flexibility

Limited adaptability to
complex, time-varying, or
nonlinear environments

Highly flexible and adaptive
to diverse and evolving signal
conditions

Handling non-

Often struggles with strong

Excels at modeling complex

linearity non-linearities non-linear relationships
High interpretability due to | Often low interpretability
Interpretability transparent mathematical (black-box nature of deep
structure models)
Data Requires relatively small Requires I?rge and
. representative datasets for
Requirement datasets . .
effective learning
Computational Typically, lower High computational demand
Complexity computational cost during training and inference

Robustness to
Noise

Performance degrades if
model assumptions are
violated

Can be robust to noise when
trained on diverse data

Generalizes well within

Generalization depends

capability

Generalization assumed model constraints heav;ly on training data
quality

Real-Time Easier to deploy in real- Real-time deployment may be

Implementation time systems challenging due to latency

Adaptability Limited self-learning Strong self-learning and

adaptation capabilities
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E I Kalman filters, Wiener Deep neural networks, CNNs,
xampies filters, matched filtering RNNs, transformers
Typical Radar, sonar, and classical S.G/6G’. speech recognition,
L. L biomedical, and IoT signal
Applications communication systems .
analysis

- Less scalable to high- Highly scalable to large-scale,
Scalability dimensional data high-dimensional signals
Design Effort Requires qareful manual Requlr.es extensn./e.data

model design collection and training

2. MACHINE LEARNING PARADIGMS FOR SIGNAL

PROCESSING

Machine learning paradigms in signal processing use core ML types-
Supervised, Unsupervised, and Reinforcement Learning. They're applied to
signals (audio, biomedical, sensor data) through stages: pre-processing
(denoising),  processing  (feature  extraction), and  application
(classification/clustering), often leveraging techniques like Fourier transforms
for frequency analysis and neural networks for complex pattern
recognition. ML models, especially deep learning, learn representations similar
to Fourier transforms (spectral analysis) to understand frequency content in
audio or communications. Models like Recurrent Neural Networks (RNNs)
excel at capturing the time-dependent nature of signals (e.g., speech, sensor
streams) (Razzaq, 2025). Instead of manual methods (like autocorrelation), ML
automatically learns relevant features from raw signals for tasks like pattern
recognition.

Comparison of Supervised, Unsupervised, Semi-Supervised, and
Reinforcement Learning For Signals
Table 2 gives a detailed comparison of the machine learning paradigms

for signal processing.

Table 2. Comparison of Supervised, Unsupervised, Semi-Supervised, and
Reinforcement Learning

. . mi- .

Supervised Unsupervise Se . Reinforcemen

Aspect . . Supervised .
Learning d Learning . t Learning

Learning
.. Learns a Discovers Combines a | Learns by

Definition . . . .

mapping from | hidden small interacting
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inputs to patterns or amount of with an
outputs using | structures labelled data | environment
labelled data from with a large | and receiving
unlabelled amount of rewards or
data unlabelled penalties
data
Completel Few labelled I(;]a(ialsa::ltllesgs
Data Fully labelled pretery + many ’
. unlabelled feedback
Requirement | dataset unlabelled
dataset (reward
samples .
signal)
L Identify Imprqve Maximize
. Minimize . learning .
Learning - inherent cumulative
oo prediction accuracy
Objective structure or . . reward over
error e using limited | .
distribution time
labels
. Partial
Feedback Direct . No explicit feedback Delayed and
. feedback via scalar reward
Mechanism feedback from
correct labels feedback
labelled data
Clustering, Decision-
. . dimensionalit | Classificatio .
. Classification, . . making,
Typical Tasks . y reduction, n with
regression control,
anomaly scarce labels S
d . optimization
etection
Self-
Linear/Logisti | k-Means, training, Co- .
; . . .. Q-Learning,
¢ Regression, | Hierarchical | training, SARSA. Dee
Common SVM, k-NN, Clustering, Label Q-Ne tw’orks p
Algorithms Decision DBSCAN, Propagation, (DON), Polic
Trees, Neural | PCA, Semi- Gra dier’1 ; y
Networks Autoencoders | Supervised
SVM
Generally .
Moderate to lower, but ngher. than High due to
. . supervised .
Computationa | high (depends | may scale d continuous
. . ue to . .
1 Complexity | on dataset poorly with - interaction and
size) high hybrid exploration
. . processing
dimensions
. No labelling | Reduces Suitable for
High accuracy ) labelling .
cost; reveals - sequential and
Advantages when labels hidden data cost while dvnamic
are reliable improving yh
structure environments
performance
Requires large | No direct Sensitive to -
N . . Training can
Limitations labelled prediction incorrectly be unstable
datasets targets labelled data
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and time-
consuming
Image. . Market . Speech Robotics,
recognition, segmentation, recoenition ame plavin
Real-World medical topic g | 8 playme,
.. . . . web content | and
Applications diagnosis, modeling, . .
classificatio | autonomous
spam and fraud n vehicles
detection detection
Suitability for | Limited Hiohl
Real-Time (depends on Limited Limited ghy
suitable
Systems model)

Feature-Based ML Vs. End-To-End Learning

Feature-based machine learning (ML) relies on manual feature
engineering to extract relevant information from raw data, while end-to-end
(E2E) learning automatically learns features directly from the raw input using
deep neural networks.

Feature-Based ML: In feature-based ML, domain experts use their
knowledge to manually identify, extract, and select valuable features from the
raw input data. These crafted features are then fed into a traditional ML
algorithm (e.g., support vector machines, logistic regression, decision trees) to
train a model. The key characteristics are:

e Requires Human Expertise: Performance heavily relies on the quality of
human-engineered features and domain-specific knowledge.

e Interpretable: The models are often considered "white boxes" because
the features used in decision-making are explicit and understandable.

e Data Efficiency: Can work effectively with smaller datasets, as the
manual feature engineering helps focus the model's learning on relevant
aspects.

End-to-End (E2E) Learning: E2E learning, typically using deep
learning models like Convolutional Neural Networks (CNNs), bypasses manual
feature engineering. The model takes raw data as input and learns hierarchical
feature representations through its many layers, from basic features in early
layers to complex, abstract features in deeper layers, producing an output
directly. The key characteristics are:
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o Automated Feature Extraction: Features are learned automatically,
reducing the need for manual intervention and extensive domain
expertise during the feature engineering phase.

o Less Interpretable: These models are often considered "black boxes"
due to their complex, non-linear structure, making it difficult for humans
to fully understand how decisions are made.

o High Performance in Complex Tasks: Excels in complex tasks like
image recognition and natural language processing, often achieving
state-of-the-art results (Aburakhia, 2024).

Bias - Variance Trade-Off in Signal Datasets

The Bias-Variance Trade-off in signal datasets is the fundamental
challenge of balancing a model's simplicity (low complexity, high bias, low
variance) against its ability to capture intricate patterns (low bias, high variance,
potential overfitting), aiming for minimal total prediction error on new data by
finding a "sweet spot" in model complexity, crucial for building robust signal
processing models that generalize well. High bias means underfitting (too
simple), while high variance means overfitting (too sensitive to training noise)
(Geman, 1992).

e Bias: Error from overly simplistic assumptions; the model consistently
misses the true signal (underfitting).

e Variance: Error from model sensitivity to training data fluctuations;
predictions change wildly with new data (overfitting).

e Total Error: Sum of Bias?, Variance, and Irreducible Error (noise). In
signal datasets, the following are some important concepts related to bias
and complexity.

e Low Complexity (High Bias): A simple model (e.g., linear) might miss
subtle signal trends but will be consistent.

e High Complexity (High Variance): A complex model (e.g., deep neural
net) can fit the training signal perfectly but might mistake noise for real

patterns, failing on new signals.
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3. DEEP LEARNING ARCHITECTURES FOR SIGNAL

PROCESSING

Convolutional Neural Network For 1D, 2D, And 3D Signals

Convolutional Neural Networks (CNNs) are adapted for signals by
matching the dimensionality of the learnable kernels to the inherent structure
of the data. While 2D CNNs are standard for images, 1D and 3D variants are
essential for sequential and volumetric signal processing.

1D CNNs: Sequential Signals: 1D CNNs use kernels that slide along a
single axis, making them ideal for time-series and periodic data where local
temporal patterns are critical. The architecture consists of 1D convolutional
layers, pooling (typically max-pooling), and fully connected layers (Kiranyaz,
2021). They are computationally efficient and suitable for real-time mobile or
edge device applications. The key applications are: Biomedical signals like
ECG, EEG, and EMG, etc. Audio/Speech signals, industrial signals like
vibration analysis or fault detection, etc.

2D CNNs: Spatial and Time-Frequency Signals: 2D CNNs process
grid-like data by sliding kernels across height and width. Beyond standard
images, they are often applied to signals that have been converted into 2D
representations. In architectures, standard deep frameworks like Res-
Net or LeNet-5 are common. The key applications are; Spectrogram Analysis,
remote sensing, healthcare, etc. (Krizhevsky, 2012)

3D CNNs: Volumetric and Spatiotemporal Signals: 3D CNNs use
cubic kernels (width % height x depth) to capture spatial dependencies across
multiple slices or time steps simultaneously. The architecture is
computationally intensive due to the extra dimension. Modern 2025 approaches
often utilize "Integrated CNNs" (3D-2D-1D hybrids) to strike a balance
between accuracy and efficiency, reducing training time by up to 60%
compared to pure 3D models. The key applications are; Medical imaging, video

analytics, autonomous systems, etc. (Ji, 2013)
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Recurrent Neural Networks (Rnns), LSTM, And GRU For

Temporal Signals

Recurrent Neural Networks (RNNs) and their advanced variants, LSTMs
and GRUs, are specifically designed to process temporal signals where the
order and timing of data points are critical. Best for modeling temporal
dependencies in sequential signals, crucial for tasks like predicting remaining
useful life (RUL) or understanding time-series data. LSTMs & GRUs
are popular extensions that solve the vanishing gradient problem, allowing the
model to capture long-term dependencies in signals like speech or vibration
data. (Mienye, 2024)

Vanilla RNNs (Classic): Simple RNNs maintain a hidden state that
captures information from previous time steps, acting as an internal "memory".

o Architecture: Uses feedback loops to pass information from one step to
the next.

e Limitation: Highly susceptible to the vanishing gradient problem,
which prevents them from learning long-term dependencies in signals.

e Best For: Short sequences and low-resource environments.

Long Short-Term Memory (LSTM): LSTMs solve the vanishing
gradient problem by introducing a specialized cell state and a complex gating
mechanism. (Chambers, 2024).

Gating Mechanism:

e Forget Gate: Decides which information to discard from the cell state.

o Input Gate: Determines which new information to store in the cell state.

e OQOutput Gate: Controls what parts of the cell state are passed to the next
hidden state.

Best For: Complex signals with very long-range dependencies, such as
full speech sentences or long-term financial trends.

Gated Recurrent Units (GRU): GRUs are a streamlined, more efficient
version of LSTMs that offer comparable performance with fewer parameters.

¢ Simplified Architecture: Merges the input and forget gates into a
single update gate and uses a reset gate.

e Performance Benefits: Typically trains 25-40% faster and uses
roughly 25% less memory than LSTMs, making them ideal for real-time
edge devices.
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o Best For: Real-time signal processing, resource-constrained loT devices,
and short-to-medium-length sequences. (Rivas, 2025)

Transformers For Long-Range Signal Dependencies

Transformers have surpassed traditional Recurrent Neural Networks
(RNNs) in signal processing due to their self-attention mechanism, which
explicitly computes relationships between all-time steps in a signal
simultaneously. Unlike LSTMs, which can "forget" information over long
sequences due to sequential processing, Transformers maintain a global view,
making them ideal for identifying long-range patterns in complex signals like
vibration, audio, and RF. (Thundiyil, 2025)

Key Advantages for Signal Processing

Global Contextual Awareness: Transformers do not rely on a hidden
state passed step-by-step. Instead, they use multi-head attention to "see" the
entire signal window at once, capturing dependencies between events that may
be separated by thousands of samples.

Parallelization: Because they process the entire sequence in one forward
pass, Transformers are significantly faster to train than RNNs on modern GPU
hardware.

Handling Non-Stationarity: Advanced variants like Auto-former and
FED-former are specifically designed to decompose complex signals into
seasonal and trend components, making them more robust for long-term
forecasting than standard models. (Nazari, 2025)

Standard Transformers face a "quadratic complexity" challenge, where
memory usage grows exponentially with signal length. In 2025, specialized
versions address this for real-time signal processing:

Informer: Uses a "ProbSparse" attention mechanism that only focuses
on the most significant signal features, reducing computational cost from O(L?)
to O(Llogl).

Auto-former: Replaces standard self-attention with an Auto-Correlation
block, utilizing the inherent periodicity of signals (via Fast Fourier Transforms)
to find dependencies more efficiently. (Wu,2021).
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Autoencoders and Latent Signal Representations

Autoencoders (AEs) are critical in signal processing for their ability to
compress high-dimensional raw signals into a low-dimensional latent
representation (or "bottleneck™). This latent space captures the most essential,
underlying features of a signal while discarding noise and redundancies. Acts
as a "proxy" for the signal's core parameters. For instance, in MRI signal
evolution, a single latent variable can represent complex tissue relaxation
properties as  effectively as multiple linear coefficients. The
decoders reconstruct the original signal from the latent vector. In 2025,
decoders are increasingly integrated directly into forward models for tasks like
high-speed MRI reconstruction. (Ahmadi, 2025)

Specialised Autoencoder Variants are;

e Denoising Autoencoders (DAE): Trained to recover clean signals from
inputs corrupted by synthetic or real-world noise (e.g., ambient
underwater noise or sensor interference). Recent 2025 research shows
DAEs can improve signal-to-noise ratios (SNR) in sonobuoy systems by
effectively "modulating" data into more secure, low-bit-rate latent
vectors.

e Variational Autoencoders (VAE): Unlike standard AEs, VAEs learn
a probabilistic latent space (mean and variance). This allows them to
generate new, synthetic signal samples that mirror the distribution of
real-world data, which is useful for data augmentation in medical studies
or simulating wireless channel effects. (Liu, 2025).

e Convolutional Autoencoders (CAE): Use 1D or 2D convolutional
layers to extract local temporal or spectral features, making them highly
effective for compressing complex biomedical signals like EMG or
ECG.

Generative Adversarial Networks (GANs)

GANS are a transformative class of deep learning architectures in signal
processing, primarily used for data augmentation and signal enhancement.
They consist of two competing neural networks: a generator that creates
synthetic signals and a discriminator that attempts to distinguish them from
real-world data. (Chakraborty, 2024).
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Common Architectures for Signals:
e 1D-DGAN:Ss: Specifically tailored 1-dimensional denoising GANs for
temporal data like vibration sensors or heart rhythms.

e WGAN-GP: Utilizes Wasserstein distance with a gradient penalty to

ensure more stable training and avoid "mode collapse," a common issue

where the generator produces a limited variety of signals.
e Conditional GANs (cGANSs): The most common variant in 2025; they
use additional information (like class labels or clean signal templates) to

guide and control the generation process.

e SynSigGAN: An emerging architecture in 2025 specifically designed
for biomedical signal synthesis (EEG, PPG, EMG).
Key Performance Benefits (2025 Benchmarks):

e Accuracy Improvement: GAN-driven denoising has been shown to

reduce Mean Squared Error (MSE) by over 30% in industrial sensor data

compared to traditional filters.

e Realism: In medical imaging Turing tests, GAN-generated signals often

prove indistinguishable from real data, allowing them to effectively

supplement training sets and improve diagnostic sensitivity by

nearly 10%.

Table 3. Comparative Summary of Deep Learning Architectures

Architect | Primary Tempo | Efficie | Key Core
ure Signal Type ral ncy Advantag | Limitation
Reach | (Trainin | e in 2025
g
CNN Spatial/ Short Very Superior Lacks inherent
Spectrogram (Local) | High at local long-range
feature temporal
extraction | memory.
and
pattern
recognitio
nin 2D
spectrogra
ms.
Vanilla Sequential Short High Simplest Susceptible to
RNN design; vanishing/expl
good for oding
short gradients; poor
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sequences | long-term
on low- memory.
power
edge
devices.
LSTM Sequential Long Modera | Robustly | High
te handles computational
long-term | complexity and
dependenc | memory usage.
ies;
mitigates
gradient
issues.
GRU Sequential Modera | High Achieves | May capture
te-Long LSTM- long-term
like dependencies
accuracy slightly less
with effectively than
~25% LSTMs in very
fewer complex
parameter | signals.
s and
faster
training.
Transfor | Contextual/Glo | Infinite | Low Global Quadratic
mer bal (High contextual | computational
GPU) awareness | cost; requires
via self- massive
attention; datasets to
no outperform
"forgetting | RNNs.
" over
long
sequences.
Autoenco | Compressed/La | Variabl | Modera | Efficient Quality highly
der tent e te signal sensitive to the
denoising | bottleneck size
and (latent
compressi | dimension).
on into
low-
dimension
al latent
spaces.
GAN Synthetic/Gene | N/A Low SOTA for | Hardest to train
rative high- due to
quality instability and
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data potential mode
augmentat | collapse.

ion and
synthetic
signal
generation
(e.g.,
radar,
MRI).

4. AI-EMBEDDED SIGNAL PROCESSING

APPLICATIONS

Al-embedded signal processing is integrated into edge devices across
many fields, enabling real-time autonomous decision-making with low latency
and enhanced privacy. These applications process various signals, such as
images, sound, and biomedical data, locally on resource-constrained hardware,
including FPGAs and specialized microcontrollers.

Al in Image and Video Signal Processing
Al-powered image and video processing uses machine learning
algorithms, particularly Convolutional Neural Networks (CNNs) and Vision
Transformers, to enable computers to understand, interpret, and generate visual
content. This technology has a wide range of applications, from medical
diagnostics to autonomous vehicles. (Tian, 2025). The computer vision that
gives machines the ability to "see" and interpret information from images and
videos. The machine learning models are CNNs, Vision Transformers, and
GANSs. The key techniques include object detection, image segmentation,
activity recognition, image enhancement, and video compression.
Al is used in many sectors to automate and improve visual tasks. These
include:
e Surveillance and Security: Automating real-time video analysis for
change detection and security monitoring.
e Content Creation: Generating new images and videos from text
prompts (e.g., using tools like OpenAl's Sora or Google's Gemini) for

media production and marketing.
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e Healthcare: Improving the accuracy of medical imaging analysis and

diagnostics.

Autonomous Systems: Enabling self-driving cars and drones to
recognise objects and navigate their environment in real-time.

Image and Video Restoration and Enhancement: Current models
utilise diffusion models and transformers to outperform traditional
GANSs in denoising and deblurring. In 2025, research is specifically
targeting RAW image restoration to integrate Al earlier in the image
signal processing (ISP) pipeline, handling unknown noise directly from
sensor data. Improving the quality of existing media, such as upscaling
low-resolution video, denoising old footage, and enhancing low-light
performance. Modern architectures, such as SISR (Single-Image Super-
Resolution) , utilize deep residual networks and self-attention to
synthesize realistic textures rather than merely interpolating pixels. A
major focus is on Real-Time SR for IoT, optimising these heavy models
for deployment on low-power devices. (Chakraborty, 2024)

Several software libraries and commercial tools facilitate Al-powered
image and video processing: Open-Source Libraries like OpenCV,
TensorFlow, PyTorch, Scikit-Image, and Commercial Software Topaz
Video Al for video enhancement and upscaling, RunwayML for
generative video creation from text, Midjourney, and Google Gemini for
Al image generation.

Biomedical Signal Processing Using Al
Biomedical signal processing using Artificial Intelligence (Al) leverages

machine learning (ML) and deep learning (DL) algorithms to analyse complex

physiological data for enhanced diagnosis, monitoring, and personalised

treatment. Al systems can optimise traditional signal processing tasks, such as

noise reduction and feature extraction, and provide computer-aided diagnosis

(CAD) to assist physicians. The core concepts in biomedical signal processing

are as follows:

e Signal Acquisition & Preprocessing: Biomedical signals (e.g., ECG,

EEG) are often weak, noisy, and distorted.
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Traditional methods like filters (e.g., FIR, Butterworth) are used for
noise reduction, but Al can employ adaptive filtering to improve signal
quality based on real-time data dynamically.

e Feature Extraction & Analysis: Al algorithms, particularly neural
networks, can automatically identify complex patterns and extract vital
information from raw data that might be difficult for human experts to
discern.

e Modelling & Interpretation: Machine learning models can be trained
to classify signals, detect anomalies, and predict health outcomes,
enabling proactive health monitoring and reducing the need for
continuous high-power processing.

Al in biomedical signal processing has numerous applications across
various medical fields:

e Cardiology: Analysis of electrocardiogram (ECG) signals to detect
heart abnormalities and identify specific heartbeats with greater
precision.

e Neurology: Processing of electroencephalogram (EEG) signals for
diagnosing conditions like epilepsy, sleep disorders, Alzheimer's, and
Parkinson's disease.

e Rehabilitation: Using Al to interpret EEG signals for motor imagery in
stroke patients, aiding neurological rehabilitation and personalised
therapy planning.

e Patient Monitoring: Real-time analysis of various signals (blood
pressure, respiration) in intensive care units (ICUs) or through remote
monitoring systems to guide treatment decisions and optimize patient
care. (Alqudah, 2025)

Al for Communication and Radar Signal Processing

Artificial intelligence (Al), particularly deep learning, is revolutionizing
communication and radar signal processing by providing data-driven solutions
to complex challenges that exceed the capabilities of traditional model-based
techniques. Al is used to address the need for robust, efficient, and adaptive
systems in modern applications like autonomous vehicles, 5G networks, and

electronic warfare.
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e Applications in Communication Systems: Al-driven signal processing
enhances communication systems by improving efficiency, robustness,
and spectral efficiency. (Li, 2025).

e Channel Coding and Modulation Optimization: Al can optimize
signal parameters for different dynamic transmission environments and
hardware impairments, improving the reliability and efficiency of
information exchange.

e Spectrum Management: Al helps manage the radio frequency spectrum
more efficiently by identifying available bands, predicting usage, and
dynamically allocating resources. Antenna design and beamforming: Al
aids in designing complex antenna arrays and optimizing beamforming
techniques, especially for advanced systems like 5G networks, enabling
targeted and efficient signal transmission. Noise reduction and signal
restoration: Machine learning models can adaptively eliminate various
types of background noise, leading to much clearer and higher-fidelity
signals than traditional fixed methods.

e Applications in Radar Signal Processing: Al is used across the entire
radar signal processing chain, from raw data interpretation to target
identification and resource management (Ayaz, 2025).

e Automatic Target Recognition (ATR): Deep learning enables
improved classification, identification, and recognition of targets (e.g.,
in automotive radar for self-driving cars) by extracting complex patterns
from radar data.

e Imaging Techniques: Al enhances synthetic aperture radar (SAR) and
inverse SAR (ISAR) imaging, providing better resolution and more
accurate mapping of target characteristics.

e Waveform and Array Design: Al assists in the design and optimization
of radar waveforms and antenna arrays to achieve better performance in
specific scenarios. Clutter and jamming suppression: Traditional anti-
jamming techniques often struggle with sophisticated, deceptive active
jamming. Al algorithms help in recognizing and suppressing complex
jamming signals and unwanted sea/ground clutter.
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5. RESEARCH FRONTIERS IN AI-BASED SIGNAL

PROCESSING

Research frontiers in Al-based signal processing (SP) focus on bridging
the gap between classical mathematical signal modeling and the black-box
nature of deep learning to create more efficient, interpretable, and robust
systems.

Generalization Challenges in Real-World Signal Environments

Generalization challenges in real-world signal environments stem
primarily from the inherent variability, uncertainty, and complexity of these
settings compared to controlled laboratory or simulated conditions (Rohlfs,
2024). Key issues include:

e Sensor Noise and Artifacts: Real-world data from sensors (e.g.,
physiological signals, environmental sensors) are susceptible to various
types of noise, missing values, and artifacts caused by movement, device
positioning, or environmental interference. Models trained on clean,
simulated data often fail to perform reliably when faced with this
inherent "noisiness".

e Data Discrepancies (Sim-To-Real Gap): A significant hurdle is the
difference in data distributions between simulated environments (where
models are often initially trained) and actual deployment settings.
Features that are relevant in simulation may not hold the same
importance in reality, leading to performance degradation.

e Dynamic and Unpredictable Conditions: Real-world environments are
constantly changing, with dynamic factors such as varying weather,
different user behaviours, or unexpected obstacles. Models must be
robust enough to handle these unseen, out-of-distribution (OOD)
scenarios without compromising performance.

e Partial Observability and Hidden States: In many real-world
scenarios, the system or agent may not have access to the full state of the
environment, operating instead on partial or incomplete observations.
This hidden information makes it difficult for models to reason
effectively and generalize their behaviour.
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e Communication Reliability and Latency: In distributed systems, such
as smart traffic networks, the reliability of communication channels can
be a major issue. Poor signal strength often results in data loss or
increased latency, which can severely impact the real-time performance
and coordination of signal processing systems.

e Resource Constraints: Real-time systems deployed in edge computing
environments, like IoT devices or autonomous vehicles, often have
limited computational resources. Models need to be highly efficient to
operate within these constraints while maintaining accuracy and low
latency, a challenge for complex models.

e Ethical and Safety Constraints: In high-stakes domains like healthcare
or autonomous systems, it can be difficult to generate data for all possible
abnormal or dangerous conditions due to safety and ethical constraints.
This data sparseness limits the models' exposure to critical scenarios
during training, impacting their generalization to rare but important

events.

Current Research Frontiers

Researchers are moving beyond pure data-driven approaches by
integrating mathematical priors (e.g., physical laws or geometric constraints)
with generative learning:

e Diffusion Models for 3D Imaging: Scaling diffusion models to 3D and
multimodal imaging for medicine and astronomy.

e Physics-Informed Neural Networks (PINNs): These are used to ensure
that signal reconstructions adhere to physical reality, reducing data
requirements and computational costs.

The convergence of foundational models (like Large Language Models)
and multimedia signal processing is a primary 2025 research topic:

e Cross-Modal Data Fusion: Developing algorithms that can
simultaneously process and correlate video, audio, and sensor data
(e.g., radar and LiDAR for autonomous driving).

e Multimodal VLMs in Healthcare: Using Vision-Language Models
(VLMs) for smart healthcare to reason across medical images and textual
patient records.
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Deep integration between neuroscience and signal processing is leading
to "Brain-in-the-Loop" technologies:

e Closed-Loop Neuromodulation: Real-time decoding of cortical signals
for neuro-prosthetics to mitigate neurological injury.

e Neuromorphic Engineering: Developing Al hardware that mimics the
brain’s energy-efficient signal processing, suitable for wearable ECG or

EEG devices.

Trustworthy, Explainable, and Responsible AI (XAI): A major
frontier involves "unveiling the decision veil" to make Al signal processing
transparent, especially in high-stakes fields. Current models often
explain what they detected but not why. Future research must develop
frameworks that provide causal reasoning for SP decisions, especially
in medical diagnostics (e.g., detecting cognitive decline or heart anomalies).

Evaluation Metrics and Performance Analysis in Al-Based

Signal Processing

Evaluating AI models in signal processing requires a combination
of quantitative metrics (specific to the task, such as classification or regression)
and performance analysis techniques (focusing on speed, resource utilization,
and reliability). The choice of metrics depends heavily on the specific
application and its goals (e.g., medical diagnosis vs. spam detection).

Evaluation Metrics
Metrics are generally divided by the type of machine learning task:
Classification Metrics: These metrics are used when the Al model
categorizes signals, such as detecting a pattern or identifying a disease. Key
metrics include (Powers, 2011):
e Accuracy: Overall proportion of correct predictions.
e Precision: Proportion of correctly classified positive instances among all
predicted positives, important when false positives are costly.
e Recall (Sensitivity): Proportion of actual positive instances correctly
identified, critical when false negatives are costly.
e F1-Score: A balanced measure using the harmonic mean of precision
and recall, especially for imbalanced datasets.
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Specificity: Proportion of true negatives correctly identified.
AUC-ROC: Evaluates the model's ability to distinguish between classes
across thresholds.

Regression Metrics: These are applied when models predict continuous

values, such as forecasting time series or estimating signal amplitudes.

(Willmott, 2005) Common metrics include:

Mean Absolute Error (MAE): Average magnitude of errors.

Mean Squared Error (MSE) / Root Mean Squared Error
(RMSE): Average of squared errors, sensitive to outliers.

R? Score: Proportion of variance in the target variable explained by the
model.

Domain-Specific Signal Processing Metrics: Some metrics are specific

to signal processing (Kay, 1993) tasks:

Signal-to-Noise Ratio (SNR): Measures signal clarity after processing.
Echo Return Loss Enhancement (ERLE): Evaluates echo cancellation.
Peak Signal-to-Noise Ratio (PSNR): Used for quality evaluation in
image/video processing.

Perceptual Evaluation of Speech Quality (PESQ): A human-centric
measure for speech quality.

Performance Analysis in AI Systems
Performance analysis examines operational aspects beyond prediction

accuracy (Sokolova, 2009). This includes:

Latency: Time for processing input and producing output, vital for real-
time systems.

Throughput: Number of tasks handled per unit time.

Resource Utilization: Monitoring CPU, GPU, and memory usage for
efficiency.

Reliability & Robustness: How well the model handles unexpected
inputs or noisy conditions.

Scalability: Ability to maintain performance with increased workload or
data.

Effective performance analysis involves defining clear goals, using

diverse datasets, combining multiple metrics for a comprehensive view,
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incorporating human judgment for subjective tasks, and continuous monitoring
after deployment. The advanced performance analysis can be done with the
help of the following metrics:
e Closed-Loop Evaluation: In 2025, systems use "auto-raters" (Al acting
as a judge) to detect and correct errors in real-time before they cascade.
e Robustness & Fairness: Models are stress-tested against adversarial
inputs and audited for demographic parity to ensure ethical compliance.
e Drift Detection: Continuous monitoring is used to identify performance
degradation caused by changes in input signal patterns over time.

CONCLUSION

This chapter presents a comprehensive overview of intelligent signal
processing, emphasizing the evolution from conventional, model-driven
techniques to modern Al-enabled, data-driven approaches. It begins by
highlighting the limitations of classical signal processing in handling non-
linear, non-stationary, and high-dimensional signals, motivating the integration
of machine learning and deep learning methods. Various learning paradigms—
supervised, unsupervised, and self-supervised learning—are discussed
alongside the trade-offs between feature-based models and end-to-end learning,
with attention to the bias—variance dilemma in signal datasets. The chapter then
explores key deep learning architectures, including CNNs, RNNs, transformers,
autoencoders, and GAN:Ss, illustrating their suitability for spatial, temporal, and
generative signal modeling. Practical Al-embedded applications in image and
video processing, biomedical signals, and communication and radar systems
are reviewed. Finally, the chapter addresses research frontiers, generalization
challenges in real-world environments, and the role of evaluation metrics and

performance analysis in assessing Al-based signal processing systems.
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