

INTELLIGENT SIGNAL PROCESSING AND

EMBEDDED AI SYSTEMS- 2026

ISBN: 978-625-93102-8-2

DOI: 10.5281/zenodo.18305502

Edited By

Pavan Kumar Potuganti

January/ 2026

İstanbul, Türkiye

Copyright © Haliç Yayınevi

Date: 19.01.2026

Halic Publishing House

İstanbul, Türkiye

 www.halicyayinevi.com

All rights reserved no part of this book may be reproduced in any form, by

photocopying or by any electronic or mechanical means, including information

storage or retrieval systems, without permission in writing from both the copyright

owner and the publisher of this book.

© Halic Publishers 2026

The Member of International Association of Publishers

The digital PDF version of this title is available Open Access and distributed under

the terms of the Creative Commons Attribution-Non-Commercial 4.0 license

(http://creativecommons. org/licenses/by-nc/4.0/) which permits adaptation,

alteration, reproduction and distribution for noncommercial use, without further

permission provided the original work is attributed. The derivative works do not

need to be licensed on the same terms.

adopted by ESRA KOÇAK

ISBN: 978-625-93102-8-2

Copyright © 2025 by Halic Academic Publishers All rights reserved

http://www.halicyayinevi.com/

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI

SYSTEMS

EDITOR

Pavan Kumar Potuganti

AUTHORS

Dr. Suhas S. PATIL

A. KAMARAJ

S. Selva NIDHYANANTHAN

J. SENTHIL KUMAR

Monisha KARMAKAR

Pratim KUMA

Mrunmayee V. DAITHANKAR

TABLE OF CONTENTS

PREFACE ... i

CHAPTER 1

ROAD SIGN RECOGNITION USING BNN IN PYNQ-Z2

BOARD

A. KAMARAJ

S. Selva NIDHYANANTHAN

J. SENTHIL KUMAR... 1

CHAPTER 2

PREPARATION AND CHARACTERIZATION STUDIES OF

KNO₃-HTPB BASED SOLID ROCKET PROPELLANT WITH

DIFFERENT PLASTICIZERS

Monisha KARMAKAR

Pratim KUMA ... 36

CHAPTER 3

SIGNAL TO INSIGHT: AI-DRIVEN SIGNAL PROCESSING

Mrunmayee V. DAITHANKAR

Dr. Suhas S. PATIL ... 57

i

PREFACE

This book brings together innovative research that highlights the

growing role of intelligent systems, embedded platforms, and advanced signal

analysis in modern engineering applications. The chapters reflect a

convergence of hardware, software, and data-driven methodologies aimed at

improving perception, performance, and decision-making in complex

technological environments.

The chapter Road Sign Recognition Using BNN in PYNQ-Z2 Board

explores the implementation of efficient neural networks on embedded

hardware for real-time visual recognition, demonstrating practical solutions

for intelligent transportation systems. Complementing this, Preparation and

Characterization Studies of KNO₃-HTPB Based Solid Rocket Propellant with

Different Plasticizers presents an experimental investigation into materials

and formulation techniques critical for propulsion performance and reliability.

The final chapter, Signal to Insight: AI-Driven Signal Processing,

broadens the scope by examining how artificial intelligence transforms raw

signals into meaningful insights across diverse domains. Together, these

chapters offer readers a concise yet comprehensive perspective on the

integration of intelligent computation, hardware innovation, and advanced

engineering analysis, making the book a valuable resource for researchers,

engineers, and students alike.

Editorial Team

January 19, 2026

Türkiye

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

1

CHAPTER 1

ROAD SIGN RECOGNITION USING BNN IN PYNQ-

Z2 BOARD

A. KAMARAJ1

S. Selva NIDHYANANTHAN2

J. SENTHIL KUMAR3

1Department of ECE, Mepco Schlenk Engineering College, Sivakasi, kamarajvlsi@gmail.com,
ORCID ID: 0000-0001-6952-2374.
2Department of ECE, Mepco Schlenk Engineering College, Sivakasi, nidhyan@mepcoeng.ac.in,
ORCID ID: 0000-0001-9131-8409.
3Department of ECE, Mepco Schlenk Engineering College, Sivakasi,
senthilkumarj@mepcoeng.ac.in, ORCID ID: 0000-0002-9516-0327.

mailto:kamarajvlsi@gmail.com
mailto:nidhyan@mepcoeng.ac.in
mailto:senthilkumarj@mepcoeng.ac.in

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

2

INTRODUCTION

Recognition is a fundamental and challenging task in computer vision,

with wide-ranging applications such as autonomous driving, crowd counting,

and face recognition (Bhatt et al., 2022), (Fang et al., 2022). It involves both

object classification and localization, typically achieved by identifying objects

in images and drawing bounding boxes around them. Object recognition can be

implemented using machine learning and deep learning techniques. Traditional

machine learning approaches rely on handcrafted features such as color

histograms, edges, or texture descriptors to identify groups of pixels

corresponding to objects (Saha et al., 2012). In contrast, deep learning

techniques automatically learn hierarchical feature representations directly

from raw image data, leading to superior accuracy and robustness (Hadjam et

al., 2022), (Zhao et al., 2022).

PYNQ (Python Productivity for Zynq) is an open-source framework that

enables high-level programming of FPGA-based systems using Python (Mándi

et al., 2021). The PYNQ-Z2 is an FPGA development platform based on the

Zynq-7000 XC7Z020 SoC, designed specifically to support the PYNQ

framework. It integrates programmable logic (PL) with a processing system

(PS), allowing designers to develop, deploy, and test hardware-accelerated

applications using Python through Jupyter Notebook environments. This

approach significantly simplifies FPGA programming and accelerates rapid

prototyping of embedded vision applications (Mándi et al., 2021).

Binarized Neural Networks (BNNs) are a class of neural networks in

which both weights and activations are constrained to binary values (Rastegari

et al., 2016), (Jaiswal et al., 2021). This binarization dramatically reduces

memory usage, computational complexity, and power consumption, making

BNNs particularly well suited for deployment on resource-constrained

platforms such as FPGAs (Zhang et al., 2022), (Jokic et al., 2018). Despite their

simplicity, BNNs can achieve competitive performance for real-time

applications such as road sign recognition, where low latency and energy

efficiency are critical (Liang et al., 2018), (Fiscaletti et al., 2020).

The proposed work involves dataset collection, preprocessing, training,

and deployment of BNN models using road-sign and street-view datasets (Bhatt

et al., 2022), (Saha et al., 2012).

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

3

Two BNN architectures—one based on fully connected layers and the

other using convolutional layers—are developed and trained on the same

dataset to enable a fair comparison. The trained models are synthesized and

deployed on the PYNQ-Z2 FPGA using the Vivado Design Suite. Performance

metrics such as accuracy, memory utilization, processing time, and hardware

resource consumption are analyzed to evaluate the trade-offs between fully

connected and convolutional BNN architectures (Zhang et al., 2022), (Yuan &

Agaian, 2023). This comparative study provides practical insights into selecting

appropriate BNN structures for FPGA-based embedded vision applications.

Neural Networks

Neural networks are a subset of machine learning inspired by the

structure and functioning of the human brain (Qin et al., 2020), (Zhu et al.,

2020). They consist of interconnected processing units called neurons,

organized into layers, which collectively learn to map inputs to outputs through

training. Neural networks are widely used in tasks such as image recognition,

speech processing, and pattern classification, often outperforming traditional

algorithms in complex problem domains (Zhao et al., 2022). Each neuron

processes input signals using weighted connections and a bias term, followed

by an activation function such as sigmoid or ReLU. During training, the

network adjusts weights and biases using backpropagation to minimize

prediction error. Neural networks can efficiently model complex nonlinear

relationships, enabling rapid and accurate decision-making in large-scale data-

driven applications (Zhu et al., 2020).

Types of Neural Networks

Several neural network architectures are commonly used, including

Artificial Neural Networks (ANNs), Convolutional Neural Networks (CNNs),

Recurrent Neural Networks (RNNs), and Binarized Neural Networks (BNNs)

(Qin et al., 2020), (Zhu et al., 2020). ANNs are general-purpose models

composed of fully connected layers. CNNs are optimized for image processing

tasks by exploiting spatial locality through convolutional operations (Bhatt et

al., 2022), (Zhang et al., 2021). RNNs are designed for sequential and time-

dependent data.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

4

BNNs, which use binary weights and activations, offer significant

advantages in terms of hardware efficiency and energy consumption (Rastegari

et al., 2016), (Jaiswal et al., 2021) (Jokic et al., 2018).

Fully Connected Layers

A fully connected (dense) layer connects every input neuron to every

output neuron, performing a linear transformation followed by an activation

function. While fully connected layers are flexible and simple to implement,

they require a large number of parameters, leading to higher memory usage and

computational cost (Zhang et al., 2022), (Zhang et al., 2021).

Convolutional Layers

Convolutional layers employ sparse connectivity and shared weights,

significantly reducing the number of parameters compared to fully connected

layers (Bhatt et al., 2022), (Zhang et al., 2021). By applying convolution kernels

across the input, CNNs efficiently capture spatial features such as edges,

shapes, and textures.

1. LITERATURE SURVEY

Hardware-Optimized CNN and BNN Architectures on FPGA

One of the primary challenges in Advanced Driver Assistance Systems

(ADAS) is the high memory footprint and computational complexity of

Convolutional Neural Networks (CNNs). To address this issue, early efforts

focused on reducing numerical precision. Integer-based and quantized CNN

implementations have demonstrated significant reductions in computational

overhead while maintaining high classification accuracy, highlighting the

feasibility of low-cost hardware CNN accelerators for real-time applications

(Bhatt et al., 2022).

Rastegari et al. introduced XNOR-Net, demonstrating that binary

convolutional networks can achieve competitive accuracy while drastically

reducing memory usage and arithmetic complexity (Rastegari et al., 2016).

Building upon this concept, Zhang et al. proposed a time-domain FPGA-based

BNN architecture that reduced storage requirements by approximately 75% by

maintaining intermediate computations in 1-bit form (Zhang et al., 2022).

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

5

Practical FPGA-based implementations using BNNs have also been

demonstrated on PYNQ platforms. Mándi et al. implemented a hardware-

accelerated image processing pipeline on the PYNQ-Z2 board, achieving

reduced power consumption and memory usage (Mándi et al., 2021). However,

increased latency was reported under complex road conditions.

System-Level Implementations and Hybrid Models

System-level design choices play a crucial role in real-time TSR

performance. CNN-based real-time TSR systems using hybrid datasets have

demonstrated effective trade-offs between accuracy and speed, though frame-

rate adaptation and data throughput remain bottlenecks (Bhatt et al., 2022).

Hybrid neural architectures have also been explored to reduce

complexity. Saha et al. combined local image sampling with Artificial Neural

Networks, achieving approximately 98% accuracy for a limited set of traffic

signs, but with limited scalability (Saha et al., 2012), (Mándi et al., 2021),

(Jokic et al., 2018).

Recent surveys and reviews of BNNs emphasize ongoing research in

architecture search, robustness enhancement, and mixed-precision optimization

to close the accuracy gap between binary and full-precision models (Qin et al.,

2020), (Zhu et al., 2020), (Shen et al., 2020), (Phan et al., 2020). These studies

confirm that BNNs are well suited for FPGA-based embedded vision systems

when carefully designed.

Table 1. Comparison Analysis of Existing Works

Ref.
Authors

/ Year

Model

Type

Hardware

Platform

Key

Contribution
Limitations

[1]
Fang et

al., 2022
CNN

FPGA /

GPU

High-accuracy

deep CNN for

image

classification

High

computational

and memory

cost

[3]
Saha et

al., 2012
ANN CPU

Early NN-based

TSR with ~98%

accuracy

Limited

scalability,

handcrafted

features

[4]
Bhatt et
al., 2022

CNN
Embedded
system

Real-time TSR
using hybrid

datasets

Frame-rate and
throughput

bottlenecks

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

6

[6]
Mándi et

al., 2021

Image

Processing

+ BNN

PYNQ-Z2

FPGA

Low power and

memory-

efficient FPGA

pipeline

Increased

latency in

complex scenes

[7]

Rastegari

et al.,

2016

BNN

(XNOR-

Net)

GPU /

FPGA-

ready

Binary weights

& activations,

major

complexity
reduction

Accuracy drop

vs full-

precision CNN

[9]
Zhang et

al., 2022

BNN

(Time-

domain)

FPGA

~75% storage

reduction, low

power design

Higher

hardware

design

complexity

[10]
Liang et

al., 2018
BNN FPGA

Optimized

dataflow for

binary inference

Limited

flexibility for

deep models

[11]
Jokic et

al., 2018
BNN

FPGA

camera

system

Real-time (20

kfps) on-device

recognition

Task-specific

architecture

[14]

Yuan &

Agaian,

2023

Survey

(BNN)
—

Comprehensive

BNN review &

challenges

No hardware

implementation

[15]
Qin et
al., 2020

Survey
(BNN)

—

Analysis of

accuracy–
efficiency trade-

offs

Theoretical
focus

Table 1 provides the reviews of FPGA-based CNN and BNN

implementations for real-time traffic sign recognition, highlighting that BNNs

significantly reduce memory, power, and computation while maintaining

competitive accuracy, making them suitable for embedded vision systems when

carefully architected.

Identified Research Gap

A systematic, hardware-level comparison between fully connected and

convolutional BNN architectures on PYNQ-Z2—evaluating accuracy, resource

utilization, and latency—remains insufficiently explored.

2. BINARY NEURAL NETWORK

The majority of network binarization techniques follow the BNN

methodology developed by Courbariaux.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

7

Binarization is used in BNNs for both the weights and activations. Using

bitwise operations, this lowers the memory requirement for BNNs and the

computational complexity. Except for the fact that everything is binarized to

either +1 or -1, the architecture of BNN is similar to any normal DNN design.

Here is a straightforward inference pseudo-code. (forward operation)

for k = 1 to L do

 𝑊𝑘
−𝑏 ←Binarize (𝑊𝑘)

 𝑆𝑘 ← 𝑎𝑘−1
𝑏 𝑊𝑘

−𝑏

 𝑎𝑘 ← BatchNorm (𝑠𝑘.∅𝑘)

if k < L then

 𝑎𝑘
𝑏← Binarize (𝑎𝑘)

 end if

 end for

The aforementioned pseudo-code illustrates how a BNNs network works

in the forward direction. L stands for the number layer, k for the layer index, ak

for the activation after batchnorm, Sk for the activation prior to batchnorm, and

Wk for the binarized weight.

2.1 Binarization of Weights

First, Courbariaux offers a technique for training with binary weights

utilising backpropagation and a gradient descent algorithm. As contrast to just

binarizing a network once training is complete, using binary data during

training results in a more representative loss to train against (Zhang et al., 2022)

(Jokic et al., 2018) (Yuan & Agaian, 2023), (Qin et al., 2020). It is not difficult

to compute the gradient of the loss with respect to binary weights using back

propagation. Binary weights, however, make gradient reasonable approaches

for updating the weights unfeasible. Gradient descent methods allow for minor

weight value adjustments, which are not possible with binary values.

Courbariaux maintains a set of real valued weights, WR, which are

binarized within the network to produce binary weights, WB, in order to resolve

this issue. Then, WR can be modified using backprop and gradient descent for

incremental updates. The only weights recorded and used during inference are

the binary weights because WR is not required. A straightforward sign function

is used for binarization.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

8

WB=sign (WR) ….(1)

Generates a tensor with the values +1 and -1. Because to the sign function

employed in binarization, calculating the gradient of the loss with respect to the

real valued directly weights have no practical application. At every point, the

gradient of the sign function is zero or undefined. Courbariaux employs a

technique known as the straight through estimator to circumvent this issue. By

skipping over the gradient of the layer in question, this technique approximates

a gradient. Just transform the troublesome gradient into an identity function.

𝜕𝐿

𝜕𝑊𝑅
=

𝜕𝐿

𝜕𝑊𝐵
 ….(2)

where L is the output loss. The weights with real values are updated using

this gradient approximation. Sometimes, this binarization is considered to be a

layer unto itself. The weights are sent via a binarization layer that, during the

forward pass, determines the sign of the values, and, during the backward pass,

executes an identity function. An illustration of the Straight-Through Estimator

with sign layer (STE). The gradient of the binary weights is simply passed

through to the real valued weights, while the sign function processes the real

values of the weights in the forward pass.

The real valued weights can be adjusted using the STE and an

optimization technique like SDG or Adam. If values in WR are not constrained,

they can add up to very large amounts because the gradient updates can change

the real valued weights WR without modifying the binary values WB. For

instance, if a positive value of WR is assessed to have a positive gradient over

a significant chunk of training, every update will raise that value. This may

result in high WR values. Because of this, BNNs cut WR values between 1 and

+1. As a result, WR and WB values remain nearby.

2.2 Binarization of Activations

In his initial BNN study, Courbariaux introduced the binarization of the

activation values. Similar to how the weights are binarized, the activations are

binarized by passing them through a sign function with a STE in the backwards

pass. The network's activation function is this sign function. If the input to the

activation was too large, Courbariaux discover that they need to use the

backwards pass to cancel out the gradient in order to get decent results.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

9

𝜕𝐿

𝜕𝑎𝑅
=

𝜕𝐿

𝜕𝑎𝐵
∗ 1|𝑎𝑅|≤1 …. (3)

where aR is the activation function's real-valued input and aB is the

function's binarized output. The indicator function 1|aR|1 returns 1 when |aR|1

and 0 when it does not. If the input to the activation function is too large, this

zeroes out the gradient. It is possible to add a hard tanh function before the sign

activation function to provide this capability, however this layer would only be

effective in the backwards pass and not the forward pass.

𝑋𝑏 = sin(𝑋) = {
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

1, 𝑖𝑓 𝑥 ≥ 0
 …. (4)

2.3 Bitwise Operations

The dot product between weights and activations can be broken down

into bitwise operations when employing binary values. There are two possible

binary values: -1 and +1 for the Figure 3.1. The encoding of these signed binary

values uses a 0 for -1 and a 1 for +1. In order to be unambiguous, by refer to

the signed numbers 1 and +1 as binary "values" and 0 and 1 as binary

"encodings" for these numbers. As seen in Table 3.1, applying an XNOR

logical operation to the binary encodings is equal to multiplying the binary

values.

Figure 1. XNOR Gate

All the products between values must be added up to create a dot product.

Bitwise multiplication can be accomplished with XNOR as shown in Figure 1;

however, accumulating the results of the XNOR operation necessitates a

summation. This can be done using the binary encodings produced by the

XNOR operation by counting the number of 1 bit in a collection of XNOR

products, multiplying this number by 2, and then taking away the number of

bits that result in an integer value. To count the number of ones in a binary

value, pop count instructions are frequently included in processor instruction

sets as shown in Table 2.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

10

Table 2. XNOR Operation's Counterpart

A B OUTPUT

-1 -1 1

-1 1 -1

1 -1 -1

1 1 1

A B OUTPUT

0 0 1

0 1 0

1 0 0

1 1 1

Comparatively to multi-bit floating-point or fixed-point multiplication

and accumulation, these bitwise operations are substantially easier to compute.

This may result in quicker execution times and/or a need for less hardware

resources. It is not always easy to theories efficient speedups, though. For

instance, some of the publications referred studied here use the number of

instructions as a metric of execution time when examining the CPU's execution

time. A CPU may perform a bitwise XNOR operation between two 64-bit

registers thanks to the 64-bit x86 instruction set. One instruction is required for

this procedure. Two 32-bit floating point multiplications could be achieved on

a 64-bit CPU with a comparable architecture.

The bitwise operations would be 32 times faster than the floating-point

operations, one could infer. However, the quantity of instructions does not

reflect the speed of execution. The time it takes to complete each command can

vary depending on the clock cycle. A modern CPU core's dynamic instruction

and resource scheduling means that the number of cycles required to complete

an instruction relies on the results of earlier instructions. Some kinds of

instruction profiles are better suited to CPUs and GPUs than others. It is

preferable to look at the actual execution times as a metric of efficiency rather

than the total amount of instructions. While optimizing their code for bitwise

operations, Courbariaux notice a 23 speedup. BNNs require less hardware in

digital designs than bitwise operations, which also enable faster execution times

in software-based implementations.

2.4 Batch Normalization

Deep learning commonly uses batch normalization (BN) layers. They

serve as a sort of regularization and condition the values within a network for

quicker training. They are viewed as crucial in BNNs.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

11

BN layers contain gain and bias terms that the network learns as well as

conditions for the values utilized during training. These acquired terms enable

BNN become more complicated, without which it would suffer.

3. PROPOSED METHODOLOGY

Every input neuron and every output neuron are connected in a fully

connected layer, also known as a linear layer, in commonly used neural

networks. Bigger parameters typically enable improved efficiency and

parallelization. Via the use of weights, the neuron makes a linear transformation

to the input vector.

Figure 2. Fully Connected Layer Flow Chart

As shown in Figure 2, the input image is given the completely linked

state from the above flowchart. In other words, the number of neurons

employed in the network equals the number of pixels, and each node is given a

different value. And after multiplying by the appropriate weights, each value is

added together. The bias value is once more added to the additional value before

being sent to the activation function, which determines whether the node is

active or not. After classification is complete, a final check is made to see if the

given image is recognized in the dataset or classes.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

12

Figure 3. Fully Connected Layer

Layer to layer, all potential connections are present. Fully linked

networks have the main benefit of being "structure agnostic," or not requiring

any additional assumptions to be made about the input. As a result, these

networks typically perform worse than special purpose networks that are

customized to a problem's structure. Hence, there are many neurons as shown

in Figure 3.

3.1 Using Convolutional Layer

In a neural network where not all input nodes are connected to output,

there is a convolutional layer (Rastegari et al., 2016), (Jaiswal et al., 2021).

Convolutional layers now have additional learning flexibility as a result.

Moreover, there are a lot less weights per layer, which is beneficial for high-

dimensional inputs like image data.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

13

Figure 4. Convolutional Layer Flow Chart

As shown in Figure 4, the convolutional layer receives the input image

from the previous computation; where the 3*3 kernel matrix is multiplied by

the input image matrix to create images with distinct edges. To minimise the

size of the image, pooling or sub-sampling is used. Thereafter, the number of

pixels is decreased, and various values are assigned to each node. And after

multiplying by the appropriate weights, each value is added together. The bias

value is once more added to the additional value before being sent to the

activation function, which determines whether the node is active or not. After

classification is complete, a final check is made to see if the given image is

recognised in the dataset or classes.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

14

Figure 5. Convolutional Layer

With the kernel shifting along the input matrix and us taking the dot

product between the two as though they were vectors, convolutional is

essentially a sliding dot product. The model design can encode attributes since

it explicitly assumes that the inputs are images. Every layer of a basic CNN is

a sequence layer that translates activation volume from one layer to another

using a differential function (Mándi et al., 2021), (Rastegari et al., 2016) as

shown in Figure 5.

Figure 6. Convolutional Layer Using Subsampling

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

15

Sub-sampling shown in Figure 6 is a technique for reducing the amount

of data by choosing only a portion of the original data. The process that

identifies the highest values within each patch of a feature map and utilizes

these values to generate down-sampled outputs. Typically, it comes after the

convolutional layer. Sub sampling allows for faster processing and storage

reduction.

3.2 Fully Connected Layer Vs Convolutional Layer

Compared to a fully linked layer, a convolutional layer is significantly

more efficient and specialised. Each connection between neurons in a layer that

is fully connected has its own weight since every neuron is linked to every other

neuron in the layer above it. This connection design is entirely general-purpose

and doesn't make any assumptions about the characteristics of the data. Also,

the cost of memory (weights) and computation is relatively high (connections).

Contrarily, in a convolutional layer, every neuron has the same set of

weights (and local connection structure) and is only connected to a small

number of neighbouring (also known as local) neurons in the previous layer.

This connection pattern only makes sense in situations when the data can be

perceived as spatial, the features to be extracted are local in space (thus, only

local connections are acceptable), and the likelihood of occurrence at any input

position is equal (hence same weights at all positions OK). Convolutional layers

are typically applied to image data where the features are local (e.g., a "nose"

is made up of a group of neighbouring pixels rather than being dispersed

throughout the entire image) and equally likely to occur anywhere.

The density of the connections is the primary distinction between the two

types of layers. Every neuron in the output is coupled to every neuron in the

input in the FC layers because of their high connectivity. The neurons in a

convolutional layer, on the other hand, are only coupled to nearby neurons

within the convolutional kernel's width and are not densely connected. Hence,

a Conv layer is more appropriate when the input is a picture and there are many

neurons. They also differ significantly in terms of how they share weight. Every

output neuron in an FC layer is coupled to every input neuron by a unique

weight(w).

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

16

The weights in a Conv layer, however, are distributed among various

neurons. This is also another feature of Conv layers that makes them suitable

for use when dealing with many neurons.

4. FUNCTIONAL MODULES

A data set is a collection of related, discrete items of related data that

may be accessed individually or in combination or managed as a whole entity.

A data set is organized into some type of data structure. In a database,

for example, a data set might contain a collection of business data (names,

salaries, contact information, sales figures, and so forth). The database itself

can be considered a data set, as can bodies of data within it related to a particular

type of information, such as sales data for a particular corporate department.

The term data set originated with IBM, where its meaning was similar to

that of file. In an IBM mainframe operating system, a data set s a named

collection of data that contains individual data units organized (formatted) in a

specific, IBM-prescribed way and accessed by a specific access method based

on the data set organization. Types of data set organization include sequential,

relative sequential, indexed sequential, and partitioned. Access methods

include the Virtual Sequential Access Method (VSAM) and the Indexed

Sequential Access Method (ISAM).

Figure 7. Sample Traffic Sign Dataset

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

17

A total of 50,000 images are used to test the detection phase of the

models. Of these,43 traffic sign class from online sources with traffic sign

having different viewing angle and position on image as shown in Figure 7. The

German Traffic Sign Benchmark is a multi-class, single-image classification

challenge held at the International Joint Conference on Neural Networks

(IJCNN) 2011.And cordially invite researchers from relevant fields to

participate: The competition is designed to allow for participation without

special domain knowledge. Our benchmark has the following properties:

 Single-image, multi-class classification problem

 More than 40 classes

 More than 50,000 images in total

 Large, lifelike database

4.1 Classifier Evaluation

The categorization displays how many layers were utilised to discover

the picture and how much the image's size was decreased throughout the

processing procedure. According to the table below, recognition is complete

after the input picture, which has a resolution of 1024 pixels, has gone through

five convolutional layers and been reduced to 256 pixels. The complete

Classification of Convolutional Layer has been provided in Table 4.

Table 3. Set Of Images Given as Input

S. No. Road sign
Name of the

road sign

No. of

images
S. No. Road sign

Name of the

road sign

N.o of

images

1

20km/hr 10 18

End of all
restrictions

10

2

30km/hr 10 19

End of no passing
zone

10

3

50km/hr 10 20

Give away 10

4

60km/hr 10 21

Left turn 10

5

70km/hr 10 22

No entry 10

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

18

S. No. Road sign
Name of the

road sign

No. of

images
S. No. Road sign

Name of the

road sign

N.o of

images

6

80km/hr 10 23

No overtaking 10

7

100km/hr 10 24

No overtaking for
large trucks

10

8

120km/hr 10 25

pass by left 10

9

Ahead only
right

10 26

pass by right 10

10

Bicycle
crossing

10 27

Pedestrian
crossing

10

11

caution 10 28

Priority cross
roads

10

12

Priority road 10 29

stop 10

13

Road about 10 30

Traffic signal
ahead

10

14

Road work 10 31

Truck crossing 10

15

Slippery 10 32

Right turn 10

16

Snow 10 33

Watch for

children
10

17

Speed breaker 10 34

Wild animals
crossing

10

Table 4. Classification of Convolutional Layer

Layers Size

Input image resolution 32x32

Convolutional Layer 1 30x30

Convolutional Layer 2 28x28

Sub sampling / Maxpool 1 14x14

Convolutional Layer 3 12x12

Convolutional Layer 4 10x10

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

19

Sub sampling / Maxpool 2 5x5

Convolutional Layer 5 3x3

Fully Connected Layer 1 256

Fully Connected Layer 2 64

Fully Connected Layer 3 8

5. FPGA REALIZATION

By utilising a convolutional layer, one can may reduce the size of the

picture and analyse it more quickly because employing a fully linked layer may

require more data and processing. To decrease the size of the picture, there are

three to five convolutional layers, and the BNNs technique is used to identify

the road sign. Version 2019.1 of Vivado is the programme in use. (Jaiswal et

al., 2021) The software is implemented using the PYNQ-Z2 board. The Xilinx

Zynq-7000 SoC, which includes a dual-core ARM Cortex-A9 CPU and

programmable logic that can be programmed using the Xilinx Vivado Design

Suite, is installed on the PYNQ-Z2 board.

Figure 8. PYNQ-Z2 Board

5.1 Steps to Create and Implement a Project

Step 1: Create a Vivado Project

Vivado "projects" are directory structures that have every file a certain

design requires. Several of these files are system files made by Vivado to

control project design, simulation, and implementation. Others of these files are

user-created source files that explain and limit the design. no need to worry

about the user-created source files in a typical design.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

20

But in the future, this may access to the other files as well if it require

additional details about our design or more fine control over certain

implementation aspects. Based on the sort of project need to develop, the

"project type" configures certain design tools and the IDE look. They will often

select "RTL Project" to set up the tools for creating a new design in all Real

Digital courses. (RTL stands for Register Transfer Language, which is a phrase

occasionally used to denote a hardware design language like Verilog).

Figure 9. ZYNQ 7000 part

There are several components made by Xilinx, and the synthesizer needs

to know precisely which one is using in order to create the appropriate

programming file. The device family, packaging, and speed and temperature

grades—which solely impact special-purpose simulation results and have no

bearing on the synthesizer's capacity to build accurate circuits—must be known

in order to identify the right item. It is necessary and check select the proper

component for the equipment mounted on PYNQ Z2 BOARD as shown in

Figure 9 and Table 5.

Table 5. PYNQ-Z2 Package in Vivado

Part number Xc7z007sclg400-1

Family Zynq-7000

Package Clg400

Speed Grade -1

Temperature Grade C

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

21

Step 2: Edit the Project - Create source files

A constraints file that gives the synthesizer the details it needs to map the

circuit into the target chip and an HDL file (Verilog or VHDL) that describes

the circuit are both required for every project. It is possible to immediately

replicate the Verilog source file after it has been prepared. Before spending the

effort to create a circuit in a real device, and test its functionality using

simulation (explained in greater depth later). The simulator enables allows to

test that the outputs respond as anticipated in all circumstances by driving all

of the circuit's inputs with a variety of patterns over time.

Step 3: Synthesize, Implement, and Generate Bitstream

By Synthesizing the design project after execution of Verilog and

constraint files are finished. Verilog code is converted into a "netlist," which

specifies all the necessary circuit components, during the synthesis process

(these components are the programmable parts of the targeted logic device -

more on that later). By selecting the Run Synthesis button in the Flow Navigator

window as illustrated, this may begin the Synthesize procedure. When synthesis

is active, can able to access the Project Manager log panel at the bottom to view

a log of the processes that are now operating. The log will include a description

of any synthesis-related mistakes that take place. When the design has been

synthesized, the Implementation phase must be conducted. The synthesized

design is mapped onto the Xilinx chip that it is intended for during the

implementation phase. On the Flow Navigator window, click the Run

Implementation button as displayed. The log panel at the bottom of Project

Manager will provide information about any mistakes that happen while the

implementation process is underway.

By selecting the Create Bitstream procedure in the Flow Navigator panel

as shown, this may produce a bit file after the design has been successfully

executed. The method converts the implemented design into a bitstream that

can be directly programmable into the hardware on PYNQ Z2 BOARD.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

22

5.2 Board connection and Download Bitstream

Use a micro-USB cord to connect Blackboard to your computer. Be

careful to attach the micro-USB cable to the "PROG UART" port. By turning

the switch in the top-left corner to the on position, now turn on the board. When

it turns on, a red LED will start to glow near the switch. Make sure the blue

jumper near the port marked "EXTP" is set to "USB" if the board won't turn on.

The image depicts a Blackboard that is powered on and has the proper jumper

settings.

The Hardware panel, which is found in the upper left corner of Hardware

Manager, will display the board's logic device component number if Vivado

successfully recognizes the board (For the Blackboard this will be xc7z007s).

Right-click on the device to be programmed, then choose Program Device. The

produced bit file will be chosen in the text box when a Program Device pop-up

dialogue window appears. To download the bitstream to the board, choose

Program.

5.3 Design Implemented and Block Generated

To test the picture, downloaded the "GTSRB" dataset. (Zhang et al.,

2022), (Jokic et al., 2018) (Liang et al., 2018), (Fiscaletti et al., 2020) Following

the creation of the HDL wrapper in Vivado, the processing system developed

an IP and picked the ZYNQ7 chip since the PYNQ-Z2 board supports the

ZYNQ 7000 series. AXI connection has been employed, which employs several

slave and master nodes before using a reset system to restart the procedure. The

output is then sent to the processing system once the IP block has been linked

to two AXI interconnect blocks.

Figure 10. Generated Block Diagram

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

23

Synthesis and implementation follow the generation of the block as

generated in Figure 10. The implementation results demonstrate how Vivado

uses time, power, and register. The bit files are then copied to the board after

the bit stream has been created. On our computer, intercommon port 5 is used

to connect the PYNQ-Z2. As the board boots up, a default IP may be configured

in the settings, and the Jupyter page will appear instantly. From there, in order

to view results in real time application, must upload our files. Vivado generates

a report for two ways, and a comparison is made.

Figure 11. Simple Block Diagram

The ZYNQ7 Processing System and its peripherals, such as the AXI

Interconnect and the IP Generator, which oversee facilitating communication

between the processing system and the programmable logic of the PYNQ Z2

board, are reset using the processor system reset. Although the IP Generator

oversees gathering data on the accelerator's performance, the AXI Connector

handles communication between the processing systems. The simplified

version of the generated block is shown in Figure 11.

6. RESULTS AND DISCUSSIONS

Binarized neural network (BNN) is designed and synthesised utilising a

completely linked and convolutional layer. Implementation is carried out on the

Vivado platform using the ZYNQ 70000 series PYNQ-Z2 board.

6.1 Synthesis and Implementation Results

Timing Summary

Worst Negative Slack (WNS): For maximum delay analysis, this number

represents the worst slack of all time pathways.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

24

It could be favorable or unfavorable. When considering only the worst

violation of each timing route endpoint, Total Negative Slack (TNS) is the total

of all WNS violations. When all timing requirements are satisfied for the max

delay analysis, its value is 0 ns. The delay will be greatest if the worst negative

slack value turns negative the total number of endpoints that failed (WNS< 0ns)

is referred to as the number of failing endpoints. The total number of endpoints

that have been examined.

Worst Hold Slack (WHS): Refers to the timing routes' worst slack for the

min delay analysis. It could be favorable or unfavorable. When just considering

the worst violation of each timing route endpoint, Total Hold Slack (THS) is

the total of all WHS violations. When all timing requirements are satisfied for

the minimum delay analysis, its value is 0 ns. The delay will be greatest if the

worst negative slack value turns negative. The total number of endpoints that

failed (WHS<0 ns) is known as the number of failing endpoints. The total

number of endpoints that have been examined.

Worst Pulse Width Slack (WPWS): When utilizing both the min and max

delays, corresponds to the worst slack of all the timing tests stated above. By

just considering the worst violation of each pin in the design, Total Pulse Width

Slack (TPWS) is the total of all WPWS infractions. When all pertinent

restrictions are satisfied, its value is set to 0. The delay will be greatest if the

worst negative slack value turns negative. The total number of pins with a

violation (WPWS< 0 ns) is referred to as the number of failing endpoints. The

total number of endpoints that have been examined.

Timing Summary of Fully Connected Layer

Worst Negative Slack (WNS) - 0.101ns

Total Negative Slack (TNS) Total Endpoints -131755

Worst Hold Slack (WHS) -0.009ns

Total Hold Slack (THS) Total Endpoints -131755

Worst Pulse Width Slack (WPWS) -3.750ns

Total Pulse Width Slack (TPWS) Total Endpoints -49520

Timing Summary of Convolutional Layer

Worst Negative Slack (WNS) - 0.166ns

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

25

Total Negative Slack (TNS) Total Endpoints -101307

Worst Hold Slack (WHS) -0.019ns

Total Hold Slack (THS) Total Endpoints -101307

Worst Pulse Width Slack (WPWS) -3.750ns

Total Pulse Width Slack (TPWS) Total Endpoints -41013

Power Analysis

The post-synthesis, post-placement, and post-routing stages of the flow

are all powered estimated using the Vivado ® power analysis tool. Since it can

read the precise logic and routing resources from the implemented design, post-

route is when it is most accurate. The Summary power report and the many

perspectives of your design that you may explore—by clock domain, by

resource type, and by design hierarchy—are shown in the accompanying image.

You can modify environment settings and design activities in the Vivado

Integrated Design Environment (IDE) to assess how to lower your design

supply and thermal power usage. In order to evaluate and identify the design's

high power-consuming hierarchy and resources, you may also cross-probe into

the design from the power report.

Figure 12. Power Analysis Using Fully Connected Layer

From Figure 12, the power analysis for a completely linked layer is

successfully obtained from the given graphic. 2.21W of the chip's total power

is utilized by clocks, signals, logic, Memory, DSP, and PS7. The junction

temperature is 50.6°C, while the thermal margin temperature is 34.4°C, or

2.8W.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

26

Figure 13. Power Analysis Using Convolutional Layer

From Figure 13, the power analysis for a completely linked layer is

successfully obtained from the given graphic. 1.703W of the chip's total power

is utilized by clocks, signals, logic, Memory, DSP, and PS7. The junction

temperature is 44.4°C, while the thermal margin temperature is 40.4°C, or

3.3W.

Synthesis Results

The functionally verified HDL codes are implemented in FPGA platform

for prototype hardware generation. The synthesis results Fully connected layer

and convolutional layer are shown in Table 6 and Table 7.

Table 6. Implementation Result of Fully Connected Layer

Device Utilization Summary

Site Type Used Available Util%

Slice LUTs 40946 53200 76.97

LUT as Logic 36190 53200 68.21

LUT as Memory 4791
17400 27.53 LUT as Distributed RAM 4362

LUT as Shift Register 429

Slice Registers 45338 106400 42.61

Register as Flip Flop 45338 106400 42.61

F7 Muxes 903 26600 3.39

F8 Muxes 128 13300 0.96

To examined the outcomes and power use on the device utilizing fully

linked layer BNNs.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

27

In addition to using the F7 mux, which may multiply some inputs, the

slice register and block ram memory are also utilized. The utilization statistics

and design summary for the completely linked layer are shown in the

implementation results above; the worst time is 0.101ns, and the power use is

around 2.221W.

In order to examined the outcomes and power use on the device utilizing

convolutional layer BNNs. In addition to using the F7 mux, which may multiply

some inputs, the slice register and block ram memory are also utilized. The

utilization statistics and design summary for the completely linked layer are

shown in the implementation results below; the worst time is 0.166ns, and the

power use is around 1.703W.

Table 7. Implementation Result of Convolutional Layer

Device Utilization Summary

Site Type Used Available Util%

Slice LUTs 24395 53200 45.86

LUT as Logic 22472 53200 42.24

LUT as Memory 1923

17400 11.05 LUT as Distributed RAM 1578

LUT as Shift Register 345

Slice Registers 38506 106400 36.19

Register as Flip Flop 38506 106400 36.19

F7 Muxes 857 26600 3.22

F8 Muxes 240 13300 1.80

The resource utilization for the BNN algorithm using the Fully connected

layer and convolutional layer is listed in a Table 8.

Table 8. Comparison of Fully Connected and Convolutional Layer

Resources FCL CNL % of Reduction

Slice LUTs 40946 24395 40.4

LUT as Logic 36190 22472 37.9

LUT as Memory 4791 1923 59.8

LUT as Distributed RAM 4362 1578 63.8

LUT as Shift Register 429 345 19.5

Slice Registers 45338 38506 15

F7 Muxes 903 857 5

POWER 2.221W 1.703W 23.3

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

28

The resource utilization for the BNN algorithm using the Fully connected

layer and convolutional layer is compared using a bar graph in the Figure 14

and found that the resource is utilized minimally in Convolutional layer than

the Fully connected layer which uses the resources comparatively higher. The

usage of slice LUTs and LUT flip flop pairs are 31% comparatively lower in

Convolutional layer than in Fully connected layer which utilizes the area

efficiently. The timing constraints and area utilization ensures the efficiency of

Convolutional layer.

Figure 14. Comparison Of Two Layers

Jupyter Output for Traffic Sign Recognition

Using https://192.168.2.99 as the default IP, connect the PYNZQ-Z2

board to the Jupyter notebook. The Jupyter notebook requires the username and

password to be entered after the connection. Both the username and password

are Xilinx. After that, you must upload the zip file or folder containing the

dataset and the codes. The PYNQ-Z2 board must have the BNN package

installed in order to carry out the operation. First determine how many datasets

there are and how many classes are included in the supplied dataset. So, the

GTSTB dataset, which includes 50,000 photos and the 42 classes stated in the

previous chapter, for determining the inference time and classification rate

using the 340 input photos provided as shown in Figure 15. The sign's name

and the class to which the image belongs will be included in the output. Also,

the program's operating speed varies across hardware and software.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

29

Figure 15. Input Images Uploaded

Figure 16. Classification in Hardware

The provided Figure 16 illustrates the inference results and performance

benchmarks of a convolutional neural network (CNN) trained for traffic sign

classification, likely utilizing the German Traffic Sign Recognition Benchmark

(GTSRB) dataset. The execution block demonstrates a batch processing

approach where the classify_images function predicts class indices for a series

of input images, which are subsequently mapped to human-readable labels such

as "Priority Road," "Give way," and various speed limit indicators.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

30

High-performance efficiency is a key highlight of this output, with the

model achieving a classification rate of 2,667.20 images per second and a mean

inference time of approximately 374.92 microseconds per image. Furthermore,

the inclusion of a "Not a roadsign" classification category suggests the

implementation of a robust filtering mechanism to handle non-relevant

background data, which is critical for the reliability of real-time autonomous

driving systems.

Figure 17. Classification in Software

The following figure illustrates the performance characteristics of a

traffic sign classification model specifically operating under a software-only

runtime environment (bnn. RUNTIME_SW). While the model maintains

consistent classification accuracy—correctly identifying a diverse array of

regulatory and warning signs such as "No overtaking," "Give way," and various

speed limits—the computational overhead of the software-based inference is

substantial. The system recorded an inference time of approximately

63,640,255.00 microseconds, translating to a significantly reduced throughput

of 0.63 images per second and a latency of 1,591,006.38 microseconds per

image. This performance metric highlights the inherent limitations of standard

software execution for complex neural network operations in real-time

scenarios, serving as a critical baseline for evaluating the acceleration provided

by dedicated hardware runtimes or FPGA-based implementations.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

31

Table 9. Comparison between Software and Hardware BNN

Metric

Software Runtime

(SW)

Hardware Runtime

(BNN) Improvement

Throughput 0.63 FPS 2667.20 FPS ~4,233x

Inference Latency 1,591,006.38 μs 374.92 μs >99.9% reduction

Resource

Efficiency N/A

31% Reduction in

LUTs

Optimized for

FPGA

Power

Consumption N/A 1.703W Energy Efficient

The performance comparison between the software runtime (SW) and

hardware runtime (BNN) highlights significant improvements in both speed

and resource efficiency as shown in Table 9. Throughput increases by

approximately 4,233 times, with the hardware achieving 2,667.20 FPS

compared to the software’s 0.63 FPS. Inference latency is reduced by over

99.9%, from 1,591,006.38 μs in software to just 374.92 μs in hardware.

Additionally, resource usage is optimized for FPGA, with a 31% reduction in

LUTs. Power consumption is notably lower in the hardware implementation,

with the system consuming just 1.703W, demonstrating its energy efficiency.

CONCLUSION

This method can be effectively applied to a variety of real-time

applications, offering significant performance benefits. The approach

demonstrates impressive efficiency, particularly in the classification of traffic

signs, with the system capable of classifying them in under 0.5 seconds. A

generalized recognition system for road signs was developed using a 3x3 kernel

and a 64x64 feature matrix. A comparison of resource usage between the BNN

algorithm's fully connected layer and convolutional layer revealed that the

convolutional layer consumes significantly fewer resources. Specifically, the

convolutional layer uses 31% less slice LUTs and LUT flip-flop pairs,

effectively optimizing space usage. The convolutional layer's efficiency is

further validated by its ability to meet strict time constraints and minimize area

usage. Despite being less densely connected, with some input nodes not

affecting all output nodes, convolutional layers outperform fully connected

layers in terms of resource consumption and learning flexibility.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

32

Implementation results in Vivado show that the fully connected layer has

higher resource utilization, but the convolutional layer exhibits a lower power

consumption of 1.703W. Additionally, the road sign recognition process is

completed in just 3527 microseconds, with 1417.64 images classified per

second. In conclusion, this approach proves to be both resource-efficient and

effective for real-time applications, offering significant advantages in speed,

power consumption, and overall performance.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

33

REFERENCES

Bhatt, N., Laldas, P., & Lobo, V. B. (2022). A real-time traffic sign detection

and recognition system on hybrid dataset using CNN. Proceedings of the

7th International Conference on Communication and Electronics

Systems (ICCES), 1354–1358.

https://doi.org/10.1109/ICCES54183.2022.9835884

Fang, M., Lei, X., Liao, B., & Wu, F. X. (2022). A deep neural network for

cervical cell classification based on cytology images. IEEE Access, 10,

130968–130980. https://doi.org/10.1109/ACCESS.2022.3227795

Fiscaletti, G., Speziali, M., Stornaiuolo, L., Santambrogio, M. D., & Sciuto, D.

(2020). BNNsplit: Binarized neural networks for embedded distributed

FPGA-based computing systems. Design, Automation & Test in Europe

Conference (DATE), 975–978.

https://doi.org/10.23919/DATE48585.2020.9116482

Hadjam, T., Salah, A. M., Nedjma, M. B., Abdelmadjid, M., & Hamil, H.

(2022). FPGA implementation of a convolutional neural network for

image classification. Proceedings of the 2nd International Conference

on Advanced Electrical Engineering (ICAEE), 1–5.

https://doi.org/10.1109/ICAEE54426.2022.9933827

Jaiswal, M., Sharma, V., Sharma, A., Saini, S., & Tomar, R. (2021). FPGA

based implementation of binarized neural network for sign language

application. IEEE International Symposium on Smart Electronic Systems

(iSES), 303–306. https://doi.org/10.1109/iSES52644.2021.00075

Jokic, P., Emery, S., & Benini, L. (2018). BinaryEye: A 20 kfps streaming

camera system on FPGA with real-time on-device image recognition

using binary neural networks. IEEE International Symposium on

Industrial Embedded Systems (SIES), 1–7.

https://doi.org/10.1109/SIES.2018.8442096

Liang, S., Yin, S., Liu, L., Luk, W., & Wei, S. (2018). FP-BNN: Binarized

neural network on FPGA. Neurocomputing, 275, 1072–1086.

https://doi.org/10.1016/j.neucom.2017.09.087

Mándi, Á., Máté, J., Rózsa, D., & Oniga, S. (2021). Hardware accelerated

image processing on FPGA based PYNQ-Z2 board. Carpathian Journal

of Electronic and Computer Engineering, 14(1), 20–23.

https://doi.org/10.1109/ICCES54183.2022.9835884
https://doi.org/10.1109/ACCESS.2022.3227795
https://doi.org/10.23919/DATE48585.2020.9116482
https://doi.org/10.1109/ICAEE54426.2022.9933827
https://doi.org/10.1109/iSES52644.2021.00075
https://doi.org/10.1109/SIES.2018.8442096
https://doi.org/10.1016/j.neucom.2017.09.087

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

34

Phan, H., Liu, Z., Huynh, D., Savvides, M., Cheng, K. T., & Shen, Z. (2020).

Binarizing MobileNet via evolution-based searching. Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 13420–13429.

https://doi.org/10.1109/CVPR42600.2020.01344

Qin, H., Gong, R., Liu, X., Bai, X., Song, J., & Sebe, N. (2020). Binary neural

networks: A survey. Pattern Recognition, 105, 107281.

https://doi.org/10.1016/j.patcog.2020.107281

Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). XNOR-Net:

ImageNet classification using binary convolutional neural networks.

European Conference on Computer Vision (ECCV 2016), 525–542.

https://doi.org/10.1007/978-3-319-46493-0_32

Saha, S. K., Chakraborty, D., & Bhuiyan, M. A. A. (2012). Neural network-

based road sign recognition. International Journal of Computer

Applications, 50(10), 1–5. https://doi.org/10.5120/7780-1087

Shen, M., Liu, X., Gong, R., & Han, K. (2020). Balanced binary neural

networks with gated residual. ICASSP 2020 – IEEE International

Conference on Acoustics, Speech and Signal Processing, 4197–4201.

https://doi.org/10.1109/ICASSP40776.2020.9054438

Yuan, C., & Agaian, S. S. (2023). A comprehensive review of binary neural

networks. Artificial Intelligence Review, 1–65.

https://doi.org/10.1007/s10462-023-10461-9

Zhang, L., Tang, X., Hu, X., Zhou, T., & Peng, Y. (2022). FPGA-based BNN

architecture in time domain with low storage and power consumption.

Electronics, 11(9), 1421. https://doi.org/10.3390/electronics11091421

Zhang, Y., Pan, J., Liu, X., Chen, H., Chen, D., & Zhang, Z. (2021). FracBNN:

Accurate and FPGA-efficient binary neural networks with fractional

activations. Proceedings of the ACM/SIGDA International Symposium

on FPGAs, 171–182. https://doi.org/10.1145/3431920.3439287

Zhao, G., Wei, W., Xie, X., Fan, S., & Sun, K. (2022). An FPGA-based BNN

real-time facial emotion recognition algorithm. Proceedings of the IEEE

International Conference on Artificial Intelligence and Computer

Applications (ICAICA), 20–24.

https://doi.org/10.1109/ICAICA54656.2022.9782352

https://doi.org/10.1109/CVPR42600.2020.01344
https://doi.org/10.1016/j.patcog.2020.107281
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.5120/7780-1087
https://doi.org/10.1109/ICASSP40776.2020.9054438
https://doi.org/10.1007/s10462-023-10461-9
https://doi.org/10.3390/electronics11091421
https://doi.org/10.1145/3431920.3439287
https://doi.org/10.1109/ICAICA54656.2022.9782352

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

35

Zhu, B., Al-Ars, Z., & Hofstee, H. P. (2020). NASB: Neural architecture search

for binary convolutional neural networks. International Joint Conference

on Neural Networks (IJCNN), 1–8.

https://doi.org/10.1109/IJCNN48605.2020.9206691

https://doi.org/10.1109/IJCNN48605.2020.9206691

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

36

CHAPTER 2

PREPARATION AND CHARACTERIZATION

STUDIES OF KNO₃-HTPB BASED SOLID ROCKET

PROPELLANT WITH DIFFERENT PLASTICIZERS

Monisha KARMAKAR1

Pratim KUMA2

1Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering
Science and Technology, Shibpur, Howrah-711103, India, mkmonisha03@gmail.com, ORCID
ID: 0009-0000-9489-2289.
2Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering
Science and Technology, Shibpur, Howrah–711103, India, pratim.kumar.86@gmail.com,
ORCID ID: 0000-0003-4151-836X.

mailto:mkmonisha03@gmail.com
mailto:pratim.kumar.86@gmail.com

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

37

INTRODUCTION

Composite solid propellants remain central to contemporary propulsion

systems owing to their reliability, scalability, and tunable performance. The

present work reports an expanded experimental investigation into potassium

nitrate (KNO₃)–based composite propellants employing hydroxyl-terminated

polybutadiene (HTPB) as the polymeric fuel–binder. In contrast to

conventional ammonium perchlorate (AP) formulations, KNO₃ offers enhanced

safety, reduced environmental impact, and improved handling characteristics,

albeit at the expense of energetic performance. To address this limitation,

catalytic additives and optimized curing systems were systematically explored.

Propellant formulations were prepared using HTPB with plasticizers (dioctyl

adipate, dioctyl phthalate, and dibutyl phthalate), cured with either toluene

diisocyanate (TDI) or isophorone diisocyanate (IPDI), and catalyzed using

cupric oxide (CuO) and cobalt (II, III) oxide (Co₃O₄).

A comprehensive experimental methodology encompassing controlled

mixing, casting, vacuum degassing, and multi-stage thermal curing was

adopted. Thermophysical and combustion-related properties—including

density, moisture content, calorific value, burning rate, flame temperature, and

emission spectra—were evaluated using standardized laboratory techniques.

Results demonstrate that TDI-based formulations consistently outperform

IPDI-based systems in terms of combustion temperature and calorific value,

attributable to higher crosslink density and aromatic rigidity. Among the

catalysts investigated, CuO significantly increased peak flame temperature (up

to 1034 °C), while Co₃O₄ enhanced calorific value (up to 2598.8 cal g⁻¹) and

promoted smoother combustion behavior. Spectral emission analysis

confirmed the presence of characteristic K⁺ and Cu²⁺ species, validating

catalytic participation during combustion.

The expanded dataset and discussion provide deeper insight into

structure–property–performance relationships in KNO₃–HTPB propellants.

The findings highlight the feasibility of developing safer, chlorine-free, and

environmentally benign solid propellants for educational, experimental, and

small-scale aerospace applications. The work contributes to the growing body

of research on green propulsion materials and establishes a foundation for

future pressure-dependent and motor-scale studies.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

38

Solid rocket propulsion has played a decisive role in the advancement of

aerospace and defense technologies due to its inherent simplicity, mechanical

robustness, and operational reliability. Unlike liquid propulsion systems, solid

propellants integrate fuel and oxidizer into a single grain, eliminating complex

feed systems and enabling long-term storability. Composite solid propellants,

comprising a crystalline oxidizer dispersed within a polymeric binder matrix,

dominate modern applications ranging from tactical missiles to space launch

vehicle boosters (Kubota, 2002; Yang et al., 2000).

Hydroxyl-terminated polybutadiene (HTPB) has emerged as one of the

most widely adopted binders for composite propellants since the 1960s. Its

popularity stems from its favorable mechanical flexibility, chemical

compatibility with a wide range of oxidizers, and ability to form polyurethane

networks when cured with diisocyanates (Ramakrishna et al., 2002).

Traditionally, ammonium perchlorate (AP) has been the oxidizer of choice due

to its high oxygen balance and energetic output. However, AP-based

propellants generate environmentally harmful chlorine-containing exhaust

species and pose handling and disposal challenges.

Figure 1. Chemical structure of HTPB.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

39

Figure 2. HTPB/IPDI

Figure 3. HTPB/TDI

In recent years, increasing emphasis on environmental sustainability and

operational safety has motivated the exploration of alternative oxidizers such

as ammonium nitrate (AN), ammonium dinitramide (ADN), and potassium

nitrate (KNO₃) (Reddy et al., 2021).

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

40

KNO₃, though less energetic than AP, offers distinct advantages

including low sensitivity to impact and friction, ease of availability, and

reduced environmental impact. These attributes make KNO₃-based propellants

particularly attractive for academic research, educational demonstrations, and

small-scale propulsion systems.

Despite these advantages, KNO₃-based propellants often suffer from

lower burning rates and reduced flame temperatures. To mitigate these

drawbacks, burn rate modifiers and catalysts—typically transition metal

oxides—are incorporated to tailor combustion characteristics. Cupric oxide

(CuO) and cobalt oxide (Co₃O₄) are among the most studied catalysts due to

their redox activity and ability to alter oxidizer decomposition pathways (Lee

et al., 2011; Zhang et al., 2016).

The curing chemistry of HTPB also plays a critical role in determining

final propellant properties. Diisocyanates such as toluene diisocyanate (TDI)

and isophorone diisocyanate (IPDI) react with hydroxyl groups in HTPB to

form a crosslinked polyurethane matrix. The molecular structure of the curing

agent influences curing kinetics, crosslink density, mechanical integrity, and

thermal stability (Nguyen & Wang, 2010).

The present study expands upon prior work by providing a detailed, data-

rich investigation of KNO₃–HTPB composite propellants formulated with

different plasticizers, curing agents, and catalysts. Beyond basic

characterization, this paper emphasizes combustion diagnostics, spectral

analysis, and comparative performance evaluation, with the aim of contributing

a comprehensive reference for green composite propellant development.

1. CLASSIFICATION OF SOLID ROCKET

PROPELLANTS

Solid rocket propellants are commonly classified based on their chemical

composition, energetic mechanism, and physical structure. Broadly, they are

categorized into homogeneous and heterogeneous (composite) propellants.

Homogeneous propellants consist of fuel and oxidizer combined at the

molecular level. These include double-base propellants, primarily composed of

nitrocellulose and nitroglycerin, which offer smooth combustion and low

smoke but limited performance and scalability.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

41

Modified double-base (MDB) propellants incorporate energetic

additives such as RDX or HMX to enhance performance, though they often

present increased sensitivity and processing complexity.

Heterogeneous or composite propellants consist of a crystalline oxidizer

dispersed within a polymeric binder matrix that also acts as a fuel. This category

dominates modern aerospace applications due to its superior mechanical

strength, formulation flexibility, and higher specific impulse. Conventional

composite propellants typically employ ammonium perchlorate (AP) as the

oxidizer and hydroxyl-terminated polybutadiene (HTPB) as the binder.

However, environmental and safety concerns associated with AP have driven

research into alternative oxidizers such as ammonium nitrate (AN), ammonium

dinitramide (ADN), and potassium nitrate (KNO₃). Based on oxidizer

chemistry, composite propellants may further be classified as chlorine-based

(e.g., AP systems) and chlorine-free or green propellants (e.g., AN-, ADN-, or

KNO₃-based systems). Green propellants offer reduced environmental impact,

lower toxicity, and enhanced handling safety, albeit at reduced energetic

performance. Additionally, solid propellants can be classified by burning rate

modifiers, where metallic or metal oxide catalysts are introduced to tailor

combustion behavior, and by binder chemistry, depending on curing agents and

plasticizers used to optimize mechanical and thermal properties. This study

focuses on chlorine-free composite solid propellants, specifically KNO₃–HTPB

formulations, representing a safer and environmentally benign alternative for

small-scale and experimental propulsion applications.

2. LITERATURE REVIEW

Evolution of Composite Solid Propellants

The evolution of composite solid propellants has been closely linked to

advances in polymer chemistry and materials science. Early propellants relied

on asphalt and polysulfide binders, which were gradually replaced by synthetic

polymers offering superior mechanical and thermal properties. HTPB emerged

as a dominant binder due to its controllable molecular weight, terminal

hydroxyl functionality, and excellent compatibility with energetic additives

(Smith & Anderson, 2002).

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

42

Oxidizer Selection and Environmental Considerations

While AP-based propellants remain unmatched in performance,

environmental concerns have prompted significant research into chlorine-free

alternatives. Raghu et al. (2014) demonstrated that KNO₃-based formulations

exhibit enhanced safety and stability, though at reduced energetic efficiency.

Recent reviews emphasize the importance of balancing performance with

environmental impact, particularly for future aerospace systems subject to

stricter emission regulations (Ghosh & Sengupta, 2022).

Curing Chemistry of HTPB

The curing reaction between hydroxyl-terminated polymers and

diisocyanates forms the structural backbone of composite propellants. TDI-

based systems cure rapidly and produce rigid networks, whereas IPDI-based

systems cure more slowly and impart improved flexibility and weather

resistance (Nguyen & Wang, 2010; Shrivastava & Kulkarni, 2011). The

NCO:OH ratio, curing temperature, and presence of catalysts critically

influence the final properties.

Role of Burn Rate Catalysts

Transition metal oxides have been extensively studied as combustion

catalysts. CuO has been shown to enhance flame temperature and energy

release, while Co₃O₄ promotes smoother combustion and modifies burn rate

behavior (Lee et al., 2011; Zhang et al., 2016). Spectroscopic studies reveal that

these catalysts participate actively in redox reactions during combustion,

altering gas-phase and condensed-phase kinetics (Tiwari & Jain, 2013).

Combustion Diagnostics and Spectroscopy

Advanced diagnostic techniques such as 2D and 3D emission

spectroscopy provide valuable insight into combustion mechanisms by

identifying intermediate species and tracking temporal evolution of flames. The

detection of K⁺, Cu²⁺, and OH* emissions has been widely used to correlate

chemical reactions with macroscopic performance metrics (Jani & Shah, 2016).

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

43

3. MATERIALS AND METHODS

Materials

Table 1. Propellant Material Composition

Component Chemical Name Formula Function
Wt%

Range

HTPB
Hydroxyl-Terminated
Polybutadiene

HO–
(C₄H₆)ₙ–OH

Fuel & Binder 12%

KNO₃ Potassium Nitrate KNO₃ Oxidizer 65–75%

CuO Cupric Oxide CuO
Burn Rate

Catalyst
1%

Co₃O₄ Cobalt (II, III) Oxide Co₃O₄
Burn Rate

Catalyst
0.5%

DOA/DOP/DBP Plasticizers Various
Process
Aid/Flexibility

8%

IPDI/TDI Diisocyanates Various Curing Agent 1–2%

Preparation Procedure

The preparation process began with the drying of potassium nitrate

(KNO₃) at 100 °C for 2 hours, after which it was sieved to obtain a particle size

finer than 150 mesh. Hydroxyl-terminated polybutadiene (HTPB) was then

blended with selected plasticizers, such as dioctyl adipate (DOA), dioctyl

phthalate (DOP), or dibutyl phthalate (DBP), at 40 °C.

This was followed by the sequential addition of catalysts, including

cupric oxide (CuO) and cobalt oxide (Co₃O₄), along with the sieved KNO₃, in

a vacuum mixer to ensure homogeneous dispersion. The curing agent, either

isophorone diisocyanate (IPDI) or toluene diisocyanate (TDI), was introduced

at the final mixing stage, with dibutyltin dilaurate optionally added to accelerate

the curing process. The resulting mixture was cast into Teflon-lined molds and

subjected to vacuum degassing to remove entrapped air bubbles.

Finally, the samples were thermally cured, initially at room temperature

for 24 hours, followed by an extended curing period of 48–72 hours at 50–60

°C to achieve complete polymerization.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

44

Characterization Techniques

Density, moisture content, and calorific value were measured using

standard analytical instruments. Burning rate was determined via strand burner

tests. Combustion temperature and emission spectra were recorded using

thermocouples and flame emission spectroscopy.

4. RESULTS AND DISCUSSION

Calorific Value: Measured using a LABTRONICS bomb calorimeter

with oxygen at 400 psi, calibrated with benzoic acid.

Table 2. Calorific Value Results Of Propellant Formulations

Sample Max Temp Rise (°C) Calorific Value (cal/g)

IPDI Cupric 0.745 1849.23

IPDI Cobalt 0.746 1779.30

TDI Normal 0.939 2356.90

TDI Cupric 0.940 2275.50

TDI Cobalt 0.999 2598.80

The TDI–Cobalt formulation exhibited the highest calorific value

(2598.8 cal/g), indicating superior energy release, likely due to enhanced

catalytic activity of Co₃O₄.

Density: Determined using a WENSAR Digital Analytical Weighing

Balance (accuracy 0.001 g) by dividing sample weight by volume.

Table 3. Density Of Propellant Samples

Sample Density (g/cm³)

IPDI Cupric 1.333

IPDI Cobalt 1.491

TDI Normal 1.234

TDI Cupric 1.285

TDI Cobalt 1.670

Higher densities in TDI–Cobalt suggests better packing of oxidizer and

catalyst particles.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

45

Moisture Content: Analyzed via a moisture balance using the loss-on-

drying method.

Table 4. Propellant Moisture Results

Sample Moisture (%)

IPDI Cupric 0.85

IPDI Cobalt 0.43

TDI Normal 0.90

TDI Cupric 0.96

TDI Cobalt 0.68

Low moisture content (<1%) indicates effective drying and sealing,

critical for propellant stability.

Burning Rate: Calculated by timing the combustion of 1 cm and 2 cm

cylindrical strands with a stopwatch.

Sample Length (cm) Time (s) Burn Rate (cm/s)

TDI Cobalt 1 58.5008 0.0170940

TDI Cupric 1 45.9325 0.0217710

TDI Normal 1 35.705 0.0280073

IPDI Cobalt 1 68.6625 0.0145639

IPDI Cupric 1 43.4175 0.0230322

TDI Normal exhibited the highest burning rate (0.0280 cm/s), likely due

to the absence of catalysts slowing decomposition. Co₃O₄ significantly

enhanced burn rates in both TDI and IPDI systems, while CuO produced higher

combustion temperatures.

Combustion Analysis: Conducted using 2D/3D emission spectroscopy

(Avantes spectrometer) to identify species like K⁺ and Cu²⁺.

Tablo 5. Combustion Temperature

Sample Temperature (°C)

TDI Cupric 1034

TDI Normal 900.4

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

46

Sample Temperature (°C)

TDI Cobalt 927.5

IPDI Cupric 860.1

IPDI Cobalt 813

TDI–Cupric achieved the highest temperature (1034°C), confirming

CuO’s role in enhancing thermal energy release. In below, the first graph,

"Refined Burning Rate of Various Propellant Formulations", shows that the

TDI Base formulation exhibits the highest burning rate at 0.028007 cm/s,

followed by IPDI Cupric (0.023032 cm/s) and TDI Cupric (0.021771 cm/s).

The lowest burning rates are observed in TDI Cobalt (0.017094 cm/s) and IPDI

Cobalt (0.014564 cm/s), indicating that cobalt oxide generally slows down the

combustion rate compared to cupric oxide.

Figure 1. Combustion Characteristics Of Propellant Formulations

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

47

The second graph, "Maximum Combustion Temperature of Various

Propellant Formulations", reveals that TDI + Cupric Oxide achieves the highest

combustion temperature at 1034°C, while IPDI + Cobalt Oxide has the lowest

at 813°C. Overall, formulations containing cupric oxide tend to produce higher

combustion temperatures than those with cobalt oxide, and TDI-based

propellants generally outperform IPDI-based ones in terms of thermal output.

From the graph we can say that-

TDI + Cupric Oxide (1034°C) has the highest temperature, confirming

that: TDI as a binder and CuO as a catalyst, significantly improve combustion

performance, confirming it as the most thermally energetic composition.

TDI without catalyst (900°C) still performs well, better than any IPDI-

based formulation. This suggests that TDI alone contributes to higher energy

release due to its aromatic structure and better crosslinking properties.

TDI + Cobalt Oxide (927.5°C) performs better than TDI alone.

 IPDI + Cupric Oxide (860.1°C) performs moderately, confirming CuO

helps, but IPDI’s lower reactivity limits max temperature compared to TDI.

IPDI + Cobalt Oxide (813°C) is the least energetic formulation among

the four. This shows both:

 IPDI is less reactive

 Co₃O₄ is a weaker catalyst than CuO in this system.

Spectral Analysis: Emission spectroscopy revealed K⁺ (766 nm) and

Cu²⁺ (510–530 nm) peaks, with TDI–Cupric showing stronger emissions,

indicating more energetic combustion.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

48

Figure 2. Combustion Emission Spectra Of Propellant Samples

The spectral analysis of different fuel formulations was carried out using

3D spectra (Wavelength vs. Intensity vs. Time or Measurement Index) offers a

dynamic representation of how these emissions evolve throughout the

combustion event. Among all, the catalyzed samples (especially TDI Cupric)

exhibited more complex and multi-peaked spectra, indicating a more energetic

and chemically diverse combustion environment due to catalytic enhancement.

These observations affirm the role of metallic additives in modifying the

thermal decomposition pathways and increasing energy release rates in

composite propellants.

Table 6. Emission Peaks Of Propellant Samples

Sample Peak (nm) Functional Group

IPDI Cobalt 766 Potassium ion (K⁺)

IPDI Cupric 766, 515–525 K⁺, Cu²⁺ (from CuO)

TDI Base 765 K⁺

TDI Cupric 766, 510–530 K⁺, Cu²⁺(stronger emission than IPDI Cupric)

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

49

Table 7. Functional Group / Species Reference Mapping

Species Wavelength

(nm)

Comment

Potassium (K⁺) 766.5, 769.9 Strong doublet lines, dominant in

combustion of KNO₃

Copper (Cu²⁺) 510–530 Green-blue emission of copper

compounds

Cobalt (Co²⁺) 345–375 Weak violet-blue emission; not resolved in

current graphs

CH

(methylidyne)

~431 From hydrocarbon combustion HTPB not

clearly visible.

OH Radical ~309 UV region, often seen in flame — not
resolved here

5. FUTURE SCOPE OF THE PRESENT WORK

The present study has established a foundational understanding of the

combustion characteristics of HTPB-based composite solid propellants using

KNO₃ as the oxidizer and metallic catalysts such as CuO and Co₃O₄. While key

parameters like calorific value, density, moisture content, and combustion

temperature have been evaluated, several important aspects remain unexplored,

which presents valuable opportunities for further research and development.

5.1 Unperformed Pressure Measurement Study

A significant experimental limitation in this study is the absence of

chamber pressure measurement during combustion. Measuring pressure–time

profiles is crucial for characterizing the real-world performance of solid

propellants in rocket motors. This experiment, typically conducted using a

closed bomb calorimeter or strand burner under controlled pressure, provides

data such as:

 Peak pressure generation

 Burning rate dependence on pressure

 Ignition delay and pressure rise time

 Stability of combustion under confined conditions

These results would enable determination of the pressure exponent (n) in

the empirical burning rate law:

Burning Rate= a ⋅ Pn

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

50

Where a is the pre-exponential constant and n indicates how strongly

burn rate depends on pressure. Future work should include pressure

measurements to validate combustion efficiency, thermal stability, and ignition

consistency across the various formulations studied here.

5.2 Suggested Future Experiments

To comprehensively evaluate and optimize the performance of these

propellants, the following experimental extensions are recommended:

Strand Burner Testing Under Pressure

Conduct strand burn rate experiments across a range of pressures (1–10

atm) to obtain accurate pressure-dependent burn profiles. This would help

assess whether a formulation is suitable for low-thrust or high-thrust

applications.

Thermal Analysis: TGA & DSC

Use Thermogravimetric Analysis (TGA) and Differential Scanning

Calorimetry (DSC) to study the decomposition kinetics, phase transitions, and

thermal stability of each formulation. These techniques reveal critical

information about heat release, ignition temperature, and compatibility of

components.

Microstructural Studies (SEM/EDX)

Apply Scanning Electron Microscopy (SEM) and Energy Dispersive X-

ray Analysis (EDX) to visualize and chemically analyze the dispersion of

oxidizer and catalysts in the cured binder. Poor dispersion can cause uneven

combustion and performance instability.

Spectral Flame Diagnostics at Different Conditions

Expand 2D and 3D emission spectroscopy to different pressure and

temperature environments to study changes in species evolution. This will help

in better identifying metal–ion interactions and combustion efficiency under

flight-like conditions.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

51

Chemical Compatibility & Stability Studies

Long-term storage tests under humidity and temperature cycles can help

determine the shelf-life and chemical compatibility of propellant components.

5.3 Research Opportunities for Future Work

For researchers interested in continuing this work or exploring its

practical applications, the following directions are highly recommended:

New Catalyst Exploration

In addition to CuO and Co₃O₄, catalysts like nano-Fe₂O₃, MnO₂, NiO, or

TiO₂ can be studied for their ability to alter flame temperature, burn rate, and

sensitivity.

Alternative Binder Systems

Exploration of other binders such as:

 GAP (Glycidyl Azide Polymer) – Energetic and gas-generating

 PBAN (Polybutadiene Acrylonitrile) – More rigid and thermally stable

 HTPE (Hydroxyl-Terminated Polyether) – Improved mechanical

properties

These systems may improve performance or reduce environmental

impact.

Incorporation of Metallic Fuels

Adding aluminum or magnesium powders to the formulation could

significantly enhance energy output and specific impulse. However, this must

be balanced with issues of slag formation and safety.

Green Propulsion Materials

Working toward chlorine-free oxidizers (such as Ammonium Nitrate

(AN), Ammonium Dinitramide (ADN)) and lead-free catalysts would make the

system eco-friendlier and more compliant with future regulations.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

52

Computational Simulation

Use computational fluid dynamics (CFD) and reaction kinetics

simulations to model flame spread, pressure wave propagation, and regression

rate of the propellant. This can be useful for designing scalable rocket motors.

5.4 Potential Applications and Real-World Impact

The formulations developed in this study—particularly those using TDI-

CuO and TDI-Co₃O₄—show promising combustion characteristics and thermal

energy output. With further optimization, such propellants can be applied to:

 Model rocketry and student satellite launch vehicles (CanSat, Sounding

rockets)

 Laboratory demonstration of safe solid propulsion

 Low-cost booster stages for UAVs or expendable drones

 Green propulsion systems in educational and test-bed missions

By refining the combustion parameters, improving safety, and reducing

environmental impact, this study lays the groundwork for future work in the

field of sustainable solid propulsion.

6. LIMITATIONS OF THE PRESENT STUDY

Despite providing valuable insights into the formulation and combustion

behavior of KNO₃–HTPB based composite solid propellants, the present study

is subject to certain limitations that should be acknowledged. The experimental

investigations were primarily conducted under ambient pressure conditions,

and pressure-dependent burning rate measurements were not performed. As a

result, key combustion parameters such as the pressure exponent and steady-

state burning behavior under realistic motor chamber pressures could not be

evaluated. These parameters are critical for predicting performance in actual

rocket motor applications.

The study was limited to laboratory-scale strand combustion tests, and

no motor-scale or static firing experiments were conducted. Consequently,

thrust characteristics, chamber pressure evolution, erosive burning effects, and

nozzle–propellant interactions were not assessed.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

53

In addition, the concentration range of burn rate catalysts (CuO and

Co₃O₄) was restricted, and the influence of varying catalyst particle size,

morphology, or nano-scale additives was not explored.

Mechanical properties such as tensile strength, elongation at break, and

viscoelastic behavior of the cured propellant grains were not evaluated. These

properties are essential for assessing structural integrity during handling,

storage, and operation, particularly under thermal and vibrational loads.

Furthermore, long-term aging, compatibility, and environmental stability

studies were beyond the scope of the present work.

Spectral diagnostics were limited by the resolution of the available

instrumentation, restricting the detection of certain transient radical species in

the ultraviolet region. Finally, numerical modeling and combustion simulations

were not incorporated, limiting the ability to generalize the experimental

findings across a broader range of operating conditions.

Addressing these limitations in future investigations will enable a more

comprehensive understanding of KNO₃–HTPB propellant systems and support

their optimization for practical aerospace propulsion applications.

CONCLUSION

This experimental study successfully demonstrated the preparation,

processing, and performance evaluation of HTPB-based composite solid

propellants using potassium nitrate (KNO₃) as the oxidizer and various

combinations of curing agents (TDI and IPDI) and burn rate catalysts (CuO and

Co₃O₄). Through a series of controlled experiments, the effect of these variables

on key performance metrics such as burning rate, combustion temperature, and

calorific value was thoroughly assessed.

Among the formulations tested, the TDI–Cupric Oxide sample achieved

the highest combustion temperature of 1034 °C, indicating the most thermally

energetic behavior. However, the TDI–Cobalt Oxide sample demonstrated the

highest calorific value of 2598.8 cal/g, confirming its superior energy output

per unit mass. On the other hand, the IPDI-based formulations consistently

showed lower combustion efficiency and energy release, with the IPDI–Cobalt

Oxide sample producing the lowest combustion temperature (813 °C) and

calorific value.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

54

Burning rate analysis revealed that cobalt oxide catalysts significantly

enhance the combustion rate, particularly in IPDI–Cobalt and TDI–Cobalt

systems, suggesting a strong catalytic influence on decomposition kinetics. In

contrast, cupric oxide, while slightly slower in burn rate, produced higher

combustion temperatures and cleaner spectral signatures.

In summary, both the choice of isocyanate (curing agent) and metal oxide

catalyst play a pivotal role in tailoring the performance of composite

propellants. TDI-based systems, especially when combined with CuO or Co₃O₄,

emerged as the most effective combinations for high-energy applications.

These findings provide valuable insight into the optimization of green and

stable propellant formulations for academic, industrial, and defense-related

propulsion technologies.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

55

REFERENCES

Ghosh, A., & Sengupta, S. (2022). Advanced composite propellants: Recent

developments and challenges. Materials Today: Proceedings, 61, 140–

148.

Jani, S. P., & Shah, R. P. (2016). Optical emission spectroscopy of composite

propellant flames. Defence Science Journal, 66(2), 161–168.

Kubota, N. (2002). Propellants and explosives: Thermochemical aspects of

combustion (2nd ed.). Wiley-VCH.

Lee, J., Kim, S. H., & Park, J. (2011). Catalytic effects of transition metal

oxides on the combustion of composite solid propellants. Journal of

Energetic Materials, 29(3), 219–234.

Nguyen, Q. T., & Wang, W. (2010). Influence of isocyanate curing agents on

the mechanical and thermal properties of HTPB-based polyurethane

binders. (2), 198–204.

Raghu, K., Rao, K. V. S., & Reddy, B. R. (2014). Studies on potassium nitrate

based composite solid propellants. Defence Technology, 10(4), 345–351.

Ramakrishna, R. V., Rao, K. V. S., & Sarwade, D. B. (2002). HTPB-based

composite solid propellants—A review. Defence Science Journal, 52(3),

335–349.

Reddy, T. S., Prasad, M. V. R., & Chakravarthy, S. R. (2021). Green propellants

for future space propulsion systems. Aerospace Science and Technology,

109, 106416.

Shrivastava, P., & Kulkarni, P. S. (2011). Curing behavior of HTPB with

aromatic and aliphatic diisocyanates. Journal of Applied Polymer

Science, 120(3), 1565–1573.

Smith, A. L., & Anderson, R. L. (2002). Polymer binders in solid rocket

propulsion. Progress in Aerospace Sciences, 38(8), 695–736.

Tiwari, M., & Jain, R. (2013). Spectral emission analysis of composite

propellant combustion. Defence Science Journal, 63(2), 188–194.

Yang, V., Brill, T. B., & Ren, W. Z. (2000). Solid propellant chemistry,

combustion, and motor interior ballistics. American Institute of

Aeronautics and Astronautics.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

56

Zhang, Y., Li, S., & Zhu, W. (2016). Effects of metal oxide catalysts on the

burning rate of HTPB-based composite propellants. Propellants,

Explosives, Pyrotechnics, 41(5), 837–844.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

57

CHAPTER 3

SIGNAL TO INSIGHT: AI-DRIVEN SIGNAL

PROCESSING

Mrunmayee V. DAITHANKAR1

Dr. Suhas S. PATIL2

1Electronics Engineering, Shivaji University, Kolhapur, Maharashtra, India,
mrunmayeed30@gmail.com, ORCID: 0000-0003-3180 491X.
2Electronics Engineering, Ex. I/C Principal, KBP College of Engineering, Satara. Maharashtra,
India.

mailto:mrunmayeed30@gmail.com

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

58

INTRODUCTION

Intelligent Signal Processing (ISP) combines established signal

processing methods with artificial intelligence and machine learning techniques

to build systems that can understand and respond to complex forms of data,

including speech signals, images, and sensor outputs. Rather than depending

solely on predefined mathematical models, these systems learn patterns directly

from data, allowing them to perform tasks such as pattern identification, fault

analysis, adaptive control, and intelligent decision-making (Chen, 2023). As a

result, ISP has found applications across diverse fields, like healthcare

diagnostics, communication systems, energy monitoring, and automation.

The fundamental idea behind ISP lies in integrating traditional digital

signal processing with learning-based models such as neural networks and deep

learning frameworks. This integration enables systems to automatically extract

relevant features from raw, high-dimensional signals and adapt their behaviour

as operating conditions change (Wang, 2023). By learning system

characteristics from observed data instead of rigid analytical formulations, ISP

offers improved flexibility and resilience in uncertain environments, supporting

advanced applications including smart power system supervision and enhanced

speech recognition technologies.

1. LIMITATIONS OF CONVENTIONAL SIGNAL

PROCESSING IN NON-LINEAR, NON-STATIONARY

ENVIRONMENTS

Conventional signal processing methods are based on the hypotheses

of linearity and stationarity. These assumptions become substantial limitations

when dealing with real-world, complex signals that exhibit non-linear and non-

stationary behaviour (Proakis, 2006).

Limitations in Non-Stationary Environments

Limited Representation of Temporal Variability: Conventional

techniques such as the classical Fourier Transform focus solely on frequency

information and implicitly assume that signal characteristics remain unchanged

over time. As a result, they fail to reflect evolving spectral or statistical

behaviour within dynamic signals.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

59

Inherent Time–Frequency Compromise: To address partial non-

stationarity, the Short-Time Fourier Transform introduces windowed analysis;

however, the use of a fixed window length imposes an unavoidable compromise

between temporal and spectral resolution. (Cohen, 1995) Longer windows

improve frequency discrimination but obscure short-lived events, whereas

shorter windows enhance time localisation at the expense of frequency detail

(Sejdic, 2009). This constraint hampers effective analysis of signals containing

both abrupt transients and slowly varying components.

Inadequacy of Classical Modelling Approaches: Linear statistical

models, including autoregressive and ARMA frameworks, are generally

insufficient for representing the complex, time-dependent nature of non-

stationary data. Consequently, they provide oversimplified descriptions of real-

world signals, such as biomedical recordings (e.g., EEG) or structural response

measurements.

Limitations in Non-Linear Environments

Violation of the Superposition Assumption: Traditional linear models

are built on the principle that system responses add linearly. However, many

real-world systems, particularly in physical devices and biological processes,

exhibit non-linearity, where the output generates additional frequency

components such as harmonics and intermodulation terms that are absent in the

original input (Akkaya, 2025).

Limitations of Conventional Linear Filtering: Linear filtering

techniques are inherently incapable of accurately representing or suppressing

these non-linearity-induced spectral components, which restricts their

effectiveness in practical signal analysis.

Absence of a Generalised Non-Linear Framework: In contrast to

linear system theory, non-linear systems lack a comprehensive, universally

applicable theoretical foundation. As a result, modelling strategies are often

tailored to specific forms of non-linearity, necessitating specialised and

frequently complex analytical or computational methods.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

60

Risk of Model Instability and Overfitting: While simple non-linear

representations, such as polynomial-based models, offer increased flexibility,

they often introduce challenges, including unstable behaviour, sensitivity to

noise, and a heightened risk of overfitting. These issues limit their practical

usability unless supported by advanced regularisation or optimisation

techniques.

1.1 Motivation for AI Integration in Modern Signal Processing

The inspiration for AI integration in modern signal processing pipelines

stems primarily from the demand to overcome the limitations of conventional,

model-based methods when dealing with complex, real-world data and

dynamic environments. AI offers superior adaptability, enhanced accuracy,

automation, and predictive capabilities that transform raw data into actionable

intelligence (Wang, 2009).

Significant Inspirations Include (Bishop, 2006)

Handling Complexity and Non-Linearity: Many contemporary signal

sources exhibit irregular, non-linear behaviour that cannot be adequately

described using fixed analytical models. In areas such as next-generation wireless

systems and industrial sensing, data-driven AI methods—especially deep

learning—are better suited to capturing such complexity by learning patterns

directly from large-scale observations.

Superior Performance and Accuracy: Hybrid systems that combine AI

with classical signal processing frequently deliver improved results in tasks

including denoising, pattern classification, and feature discovery. Learning-

based models are capable of identifying weak or hidden structures that may be

overlooked by conventional algorithms, enhancing reliability in fields such as

healthcare diagnostics and fault analysis.

Automation and Efficiency: AI reduces manual intervention by

automating routine and computation-heavy processes such as preprocessing and

feature extraction. This allows specialists to concentrate on interpretation and

decision-making, leading to more efficient analytical workflows.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

61

Adaptability and Real-Time Operation: AI-enabled signal processing

systems can adjust continuously to evolving operating conditions, supporting

real-time applications such as autonomous platforms, adaptive networks, and

continuous health monitoring.

Enhanced Decision-Making and Predictive Insights: Through real-

time analysis and forecasting, AI facilitates anticipatory actions, such as early

detection of equipment degradation, thereby minimizing downtime and

maintenance costs.

Feature Engineering and Dimensionality Reduction: Established

transforms, including Fourier and wavelet methods, remain effective for compact

signal representation. When integrated with AI models, they improve

computational efficiency and robustness.

Addressing Data Volume Challenges: The rapid growth of sensor-

driven data exceeds the capacity of traditional techniques, making AI essential

for scalable processing and meaningful insight extraction.

1.2 Transition from Model-Driven to Data-Driven Paradigms

In AI-Based Signal Processing

The shift from model-driven to data-driven AI signal processing moves

from traditional mathematical models to learning patterns directly from vast

datasets, driven by deep learning's success. It offers superior performance in

complex tasks but demands huge data, while hybrid approaches combining both

are emerging to gain robustness, efficiency, and explainability by integrating

domain knowledge, moving towards "Smarter AI" for better real-world

automation and insights (Gannot, 2024).

Model-Driven Paradigm (Traditional)

The core idea uses established scientific laws, equations (like Fourier and

Laplace), and system understanding to build explicit models. It requires less

data, offers strong guarantees (stability, performance), is interpretable, and

leverages expert knowledge. The limitation of this approach is struggles with

extreme complexity, noise, and unmodeled dynamics; building models is slow

and expensive (requires scarce experts). The examples are traditional filters,

spectral analysis based on known physics (Shlezinger, 2023).

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

62

Data-Driven Paradigm (Modern)

The core idea leverages machine learning (ML) and deep learning (DL)

to learn features and mappings directly from data, often end-to-end. The

advantage is the achievement of the state-of-the-art performance, automates

feature extraction, and handles high complexity (e.g., computer vision, NLP).

The difficulty is the need for massive, high-quality datasets; it can be black-box

(hard to interpret); it struggles with out-of-distribution data (Razzaq, 2025). The

examples are CNNs for image/audio, RNNs for time-series, etc.

Table 1: Comparison Of Model and Data-Driven Paradigms

Aspect Model Driven Paradigm Data Driven Paradigm

Core Principle Relies on explicit

mathematical and physical

models of the signal
generation process

Learns signal characteristics

directly from data without

predefined models

Knowledge

Source

Domain expertise, physics-

based equations, and

analytical assumptions

Large volumes of labelled or

unlabelled data

Flexibility

Limited adaptability to

complex, time-varying, or

nonlinear environments

Highly flexible and adaptive

to diverse and evolving signal

conditions

Handling non-

linearity

Often struggles with strong

non-linearities

Excels at modeling complex

non-linear relationships

Interpretability

High interpretability due to

transparent mathematical

structure

Often low interpretability

(black-box nature of deep

models)

Data

Requirement

Requires relatively small

datasets

Requires large and

representative datasets for

effective learning

Computational

Complexity

Typically, lower

computational cost

High computational demand

during training and inference

Robustness to

Noise

Performance degrades if

model assumptions are

violated

Can be robust to noise when

trained on diverse data

Generalization
Generalizes well within

assumed model constraints

Generalization depends

heavily on training data

quality

Real-Time

Implementation

Easier to deploy in real-

time systems

Real-time deployment may be

challenging due to latency

Adaptability
Limited self-learning

capability

Strong self-learning and

adaptation capabilities

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

63

Examples
Kalman filters, Wiener

filters, matched filtering

Deep neural networks, CNNs,

RNNs, transformers

Typical

Applications

Radar, sonar, and classical

communication systems

5G/6G, speech recognition,

biomedical, and IoT signal

analysis

Scalability
Less scalable to high-

dimensional data

Highly scalable to large-scale,

high-dimensional signals

Design Effort
Requires careful manual

model design

Requires extensive data

collection and training

2. MACHINE LEARNING PARADIGMS FOR SIGNAL

PROCESSING

Machine learning paradigms in signal processing use core ML types-

Supervised, Unsupervised, and Reinforcement Learning. They're applied to

signals (audio, biomedical, sensor data) through stages: pre-processing

(denoising), processing (feature extraction), and application

(classification/clustering), often leveraging techniques like Fourier transforms

for frequency analysis and neural networks for complex pattern

recognition. ML models, especially deep learning, learn representations similar

to Fourier transforms (spectral analysis) to understand frequency content in

audio or communications. Models like Recurrent Neural Networks (RNNs)

excel at capturing the time-dependent nature of signals (e.g., speech, sensor

streams) (Razzaq, 2025). Instead of manual methods (like autocorrelation), ML

automatically learns relevant features from raw signals for tasks like pattern

recognition.

Comparison of Supervised, Unsupervised, Semi-Supervised, and

Reinforcement Learning For Signals

Table 2 gives a detailed comparison of the machine learning paradigms

for signal processing.

Table 2. Comparison of Supervised, Unsupervised, Semi-Supervised, and

Reinforcement Learning

Aspect
Supervised

Learning

Unsupervise

d Learning

Semi-

Supervised

Learning

Reinforcemen

t Learning

Definition
Learns a

mapping from

Discovers

hidden

Combines a

small

Learns by

interacting

https://www.google.com/search?q=Reinforcement+Learning&oq=Machine+Learning+Paradigms+for+Signal+Processing+&gs_lcrp=EgZjaHJvbWUyBggAEEUYOdIBCTU4NTZqMGoxNagCCLACAfEFOGlTjIdL4q0&sourceid=chrome&ie=UTF-8&mstk=AUtExfAvZJY1WM0yVJ6Mkyj1J159pwz5r6FFxBsuiUzNFu4AaU7eZt1KboxQPSlio45FZN7cYlH8q8gw9EP13zEn6_mROYxCzxO79AC3CPu0u8YGo1JtDdj4Q7ppUBb-5kyocW4ocPnADKLktCkACaVho_rPva084iZi1iSLlYyUH3dKpwo&csui=3&ved=2ahUKEwiyxJLQqeORAxWYc_UHHfp5CpAQgK4QegQIAxAF
https://www.google.com/search?q=Reinforcement+Learning&oq=Machine+Learning+Paradigms+for+Signal+Processing+&gs_lcrp=EgZjaHJvbWUyBggAEEUYOdIBCTU4NTZqMGoxNagCCLACAfEFOGlTjIdL4q0&sourceid=chrome&ie=UTF-8&mstk=AUtExfAvZJY1WM0yVJ6Mkyj1J159pwz5r6FFxBsuiUzNFu4AaU7eZt1KboxQPSlio45FZN7cYlH8q8gw9EP13zEn6_mROYxCzxO79AC3CPu0u8YGo1JtDdj4Q7ppUBb-5kyocW4ocPnADKLktCkACaVho_rPva084iZi1iSLlYyUH3dKpwo&csui=3&ved=2ahUKEwiyxJLQqeORAxWYc_UHHfp5CpAQgK4QegQIAxAF

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

64

inputs to

outputs using

labelled data

patterns or

structures

from

unlabelled

data

amount of

labelled data

with a large

amount of

unlabelled

data

with an

environment

and receiving

rewards or

penalties

Data

Requirement

Fully labelled
dataset

Completely
unlabelled

dataset

Few labelled

+ many
unlabelled

samples

No labelled

dataset; uses
feedback

(reward

signal)

Learning

Objective

Minimize

prediction

error

Identify

inherent

structure or

distribution

Improve

learning

accuracy

using limited

labels

Maximize

cumulative

reward over

time

Feedback

Mechanism

Direct

feedback via

correct labels

No explicit

feedback

Partial

feedback

from

labelled data

Delayed and

scalar reward

feedback

Typical Tasks
Classification,
regression

Clustering,

dimensionalit
y reduction,

anomaly

detection

Classificatio
n with

scarce labels

Decision-

making,
control,

optimization

Common

Algorithms

Linear/Logisti

c Regression,

SVM, k-NN,

Decision

Trees, Neural

Networks

k-Means,

Hierarchical

Clustering,

DBSCAN,

PCA,

Autoencoders

Self-

training, Co-

training,

Label

Propagation,

Semi-

Supervised

SVM

Q-Learning,

SARSA, Deep

Q-Networks

(DQN), Policy

Gradient

Computationa

l Complexity

Moderate to

high (depends
on dataset

size)

Generally

lower, but

may scale
poorly with

high

dimensions

Higher than

supervised
due to

hybrid

processing

High due to

continuous
interaction and

exploration

Advantages

High accuracy

when labels

are reliable

No labelling

cost; reveals

hidden data

structure

Reduces

labelling

cost while

improving

performance

Suitable for

sequential and

dynamic

environments

Limitations

Requires large

labelled

datasets

No direct

prediction

targets

Sensitive to

incorrectly

labelled data

Training can

be unstable

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

65

and time-

consuming

Real-World

Applications

Image

recognition,

medical

diagnosis,

spam

detection

Market

segmentation,

topic

modeling,

and fraud

detection

Speech

recognition,

web content

classificatio

n

Robotics,

game playing,

and

autonomous

vehicles

Suitability for

Real-Time

Systems

Limited
(depends on

model)

Limited Limited
Highly
suitable

Feature-Based ML Vs. End-To-End Learning

Feature-based machine learning (ML) relies on manual feature

engineering to extract relevant information from raw data, while end-to-end

(E2E) learning automatically learns features directly from the raw input using

deep neural networks.

Feature-Based ML: In feature-based ML, domain experts use their

knowledge to manually identify, extract, and select valuable features from the

raw input data. These crafted features are then fed into a traditional ML

algorithm (e.g., support vector machines, logistic regression, decision trees) to

train a model. The key characteristics are:

 Requires Human Expertise: Performance heavily relies on the quality of

human-engineered features and domain-specific knowledge.

 Interpretable: The models are often considered "white boxes" because

the features used in decision-making are explicit and understandable.

 Data Efficiency: Can work effectively with smaller datasets, as the

manual feature engineering helps focus the model's learning on relevant

aspects.

End-to-End (E2E) Learning: E2E learning, typically using deep

learning models like Convolutional Neural Networks (CNNs), bypasses manual

feature engineering. The model takes raw data as input and learns hierarchical

feature representations through its many layers, from basic features in early

layers to complex, abstract features in deeper layers, producing an output

directly. The key characteristics are:

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

66

 Automated Feature Extraction: Features are learned automatically,

reducing the need for manual intervention and extensive domain

expertise during the feature engineering phase.

 Less Interpretable: These models are often considered "black boxes"

due to their complex, non-linear structure, making it difficult for humans

to fully understand how decisions are made.

 High Performance in Complex Tasks: Excels in complex tasks like

image recognition and natural language processing, often achieving

state-of-the-art results (Aburakhia, 2024).

Bias - Variance Trade-Off in Signal Datasets

The Bias-Variance Trade-off in signal datasets is the fundamental

challenge of balancing a model's simplicity (low complexity, high bias, low

variance) against its ability to capture intricate patterns (low bias, high variance,

potential overfitting), aiming for minimal total prediction error on new data by

finding a "sweet spot" in model complexity, crucial for building robust signal

processing models that generalize well. High bias means underfitting (too

simple), while high variance means overfitting (too sensitive to training noise)

(Geman, 1992).

 Bias: Error from overly simplistic assumptions; the model consistently

misses the true signal (underfitting).

 Variance: Error from model sensitivity to training data fluctuations;

predictions change wildly with new data (overfitting).

 Total Error: Sum of Bias², Variance, and Irreducible Error (noise). In

signal datasets, the following are some important concepts related to bias

and complexity.

 Low Complexity (High Bias): A simple model (e.g., linear) might miss

subtle signal trends but will be consistent.

 High Complexity (High Variance): A complex model (e.g., deep neural

net) can fit the training signal perfectly but might mistake noise for real

patterns, failing on new signals.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

67

3. DEEP LEARNING ARCHITECTURES FOR SIGNAL

PROCESSING

Convolutional Neural Network For 1D, 2D, And 3D Signals

Convolutional Neural Networks (CNNs) are adapted for signals by

matching the dimensionality of the learnable kernels to the inherent structure

of the data. While 2D CNNs are standard for images, 1D and 3D variants are

essential for sequential and volumetric signal processing.

1D CNNs: Sequential Signals: 1D CNNs use kernels that slide along a

single axis, making them ideal for time-series and periodic data where local

temporal patterns are critical. The architecture consists of 1D convolutional

layers, pooling (typically max-pooling), and fully connected layers (Kiranyaz,

2021). They are computationally efficient and suitable for real-time mobile or

edge device applications. The key applications are: Biomedical signals like

ECG, EEG, and EMG, etc. Audio/Speech signals, industrial signals like

vibration analysis or fault detection, etc.

2D CNNs: Spatial and Time-Frequency Signals: 2D CNNs process

grid-like data by sliding kernels across height and width. Beyond standard

images, they are often applied to signals that have been converted into 2D

representations. In architectures, standard deep frameworks like Res-

Net or LeNet-5 are common. The key applications are; Spectrogram Analysis,

remote sensing, healthcare, etc. (Krizhevsky, 2012)

3D CNNs: Volumetric and Spatiotemporal Signals: 3D CNNs use

cubic kernels (width × height × depth) to capture spatial dependencies across

multiple slices or time steps simultaneously. The architecture is

computationally intensive due to the extra dimension. Modern 2025 approaches

often utilize "Integrated CNNs" (3D-2D-1D hybrids) to strike a balance

between accuracy and efficiency, reducing training time by up to 60%

compared to pure 3D models. The key applications are; Medical imaging, video

analytics, autonomous systems, etc. (Ji, 2013)

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

68

Recurrent Neural Networks (Rnns), LSTM, And GRU For

Temporal Signals

Recurrent Neural Networks (RNNs) and their advanced variants, LSTMs

and GRUs, are specifically designed to process temporal signals where the

order and timing of data points are critical. Best for modeling temporal

dependencies in sequential signals, crucial for tasks like predicting remaining

useful life (RUL) or understanding time-series data. LSTMs & GRUs

are popular extensions that solve the vanishing gradient problem, allowing the

model to capture long-term dependencies in signals like speech or vibration

data. (Mienye, 2024)

Vanilla RNNs (Classic): Simple RNNs maintain a hidden state that

captures information from previous time steps, acting as an internal "memory".

 Architecture: Uses feedback loops to pass information from one step to

the next.

 Limitation: Highly susceptible to the vanishing gradient problem,

which prevents them from learning long-term dependencies in signals.

 Best For: Short sequences and low-resource environments.

Long Short-Term Memory (LSTM): LSTMs solve the vanishing

gradient problem by introducing a specialized cell state and a complex gating

mechanism. (Chambers, 2024).

Gating Mechanism:

 Forget Gate: Decides which information to discard from the cell state.

 Input Gate: Determines which new information to store in the cell state.

 Output Gate: Controls what parts of the cell state are passed to the next

hidden state.

Best For: Complex signals with very long-range dependencies, such as

full speech sentences or long-term financial trends.

Gated Recurrent Units (GRU): GRUs are a streamlined, more efficient

version of LSTMs that offer comparable performance with fewer parameters.

 Simplified Architecture: Merges the input and forget gates into a

single update gate and uses a reset gate.

 Performance Benefits: Typically trains 25–40% faster and uses

roughly 25% less memory than LSTMs, making them ideal for real-time

edge devices.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

69

 Best For: Real-time signal processing, resource-constrained IoT devices,

and short-to-medium-length sequences. (Rivas, 2025)

Transformers For Long-Range Signal Dependencies

Transformers have surpassed traditional Recurrent Neural Networks

(RNNs) in signal processing due to their self-attention mechanism, which

explicitly computes relationships between all-time steps in a signal

simultaneously. Unlike LSTMs, which can "forget" information over long

sequences due to sequential processing, Transformers maintain a global view,

making them ideal for identifying long-range patterns in complex signals like

vibration, audio, and RF. (Thundiyil, 2025)

Key Advantages for Signal Processing

Global Contextual Awareness: Transformers do not rely on a hidden

state passed step-by-step. Instead, they use multi-head attention to "see" the

entire signal window at once, capturing dependencies between events that may

be separated by thousands of samples.

Parallelization: Because they process the entire sequence in one forward

pass, Transformers are significantly faster to train than RNNs on modern GPU

hardware.

Handling Non-Stationarity: Advanced variants like Auto-former and

FED-former are specifically designed to decompose complex signals into

seasonal and trend components, making them more robust for long-term

forecasting than standard models. (Nazari, 2025)

Standard Transformers face a "quadratic complexity" challenge, where

memory usage grows exponentially with signal length. In 2025, specialized

versions address this for real-time signal processing:

Informer: Uses a "ProbSparse" attention mechanism that only focuses

on the most significant signal features, reducing computational cost from O(L2)

to 𝑂(𝐿log𝐿).

Auto-former: Replaces standard self-attention with an Auto-Correlation

block, utilizing the inherent periodicity of signals (via Fast Fourier Transforms)

to find dependencies more efficiently. (Wu,2021).

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

70

Autoencoders and Latent Signal Representations

Autoencoders (AEs) are critical in signal processing for their ability to

compress high-dimensional raw signals into a low-dimensional latent

representation (or "bottleneck"). This latent space captures the most essential,

underlying features of a signal while discarding noise and redundancies. Acts

as a "proxy" for the signal's core parameters. For instance, in MRI signal

evolution, a single latent variable can represent complex tissue relaxation

properties as effectively as multiple linear coefficients. The

decoders reconstruct the original signal from the latent vector. In 2025,

decoders are increasingly integrated directly into forward models for tasks like

high-speed MRI reconstruction. (Ahmadi, 2025)

Specialised Autoencoder Variants are;

 Denoising Autoencoders (DAE): Trained to recover clean signals from

inputs corrupted by synthetic or real-world noise (e.g., ambient

underwater noise or sensor interference). Recent 2025 research shows

DAEs can improve signal-to-noise ratios (SNR) in sonobuoy systems by

effectively "modulating" data into more secure, low-bit-rate latent

vectors.

 Variational Autoencoders (VAE): Unlike standard AEs, VAEs learn

a probabilistic latent space (mean and variance). This allows them to

generate new, synthetic signal samples that mirror the distribution of

real-world data, which is useful for data augmentation in medical studies

or simulating wireless channel effects. (Liu, 2025).

 Convolutional Autoencoders (CAE): Use 1D or 2D convolutional

layers to extract local temporal or spectral features, making them highly

effective for compressing complex biomedical signals like EMG or

ECG.

Generative Adversarial Networks (GANs)

GANs are a transformative class of deep learning architectures in signal

processing, primarily used for data augmentation and signal enhancement.

They consist of two competing neural networks: a generator that creates

synthetic signals and a discriminator that attempts to distinguish them from

real-world data. (Chakraborty, 2024).

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

71

Common Architectures for Signals:

 1D-DGANs: Specifically tailored 1-dimensional denoising GANs for

temporal data like vibration sensors or heart rhythms.

 WGAN-GP: Utilizes Wasserstein distance with a gradient penalty to

ensure more stable training and avoid "mode collapse," a common issue

where the generator produces a limited variety of signals.

 Conditional GANs (cGANs): The most common variant in 2025; they

use additional information (like class labels or clean signal templates) to

guide and control the generation process.

 SynSigGAN: An emerging architecture in 2025 specifically designed

for biomedical signal synthesis (EEG, PPG, EMG).

Key Performance Benefits (2025 Benchmarks):

 Accuracy Improvement: GAN-driven denoising has been shown to

reduce Mean Squared Error (MSE) by over 30% in industrial sensor data

compared to traditional filters.

 Realism: In medical imaging Turing tests, GAN-generated signals often

prove indistinguishable from real data, allowing them to effectively

supplement training sets and improve diagnostic sensitivity by

nearly 10%.

Table 3. Comparative Summary of Deep Learning Architectures

Architect

ure

Primary

Signal Type

Tempo

ral

Reach

Efficie

ncy

(Trainin

g)

Key

Advantag

e in 2025

Core

Limitation

CNN Spatial/

Spectrogram

Short

(Local)
Very

High

Superior

at local

feature

extraction

and

pattern

recognitio
n in 2D

spectrogra

ms.

Lacks inherent

long-range

temporal

memory.

Vanilla

RNN

Sequential Short High Simplest

design;

good for

short

Susceptible to

vanishing/expl

oding

gradients; poor

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

72

sequences

on low-

power

edge

devices.

long-term

memory.

LSTM Sequential Long Modera

te

Robustly

handles

long-term
dependenc

ies;

mitigates

gradient

issues.

High

computational

complexity and
memory usage.

GRU Sequential Modera

te-Long
High Achieves

LSTM-

like

accuracy

with

~25%

fewer
parameter

s and

faster

training.

May capture

long-term

dependencies

slightly less

effectively than

LSTMs in very

complex
signals.

Transfor

mer

Contextual/Glo

bal
Infinite Low

(High

GPU)

Global

contextual

awareness

via self-

attention;

no

"forgetting

" over

long
sequences.

Quadratic

computational

cost; requires

massive

datasets to

outperform

RNNs.

Autoenco

der

Compressed/La

tent

Variabl

e

Modera

te

Efficient

signal

denoising

and

compressi

on into

low-

dimension

al latent

spaces.

Quality highly

sensitive to the

bottleneck size

(latent

dimension).

GAN Synthetic/Gene

rative

N/A Low SOTA for

high-
quality

Hardest to train

due to
instability and

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

73

data

augmentat

ion and

synthetic

signal

generation

(e.g.,
radar,

MRI).

potential mode

collapse.

4. AI-EMBEDDED SIGNAL PROCESSING

APPLICATIONS

AI-embedded signal processing is integrated into edge devices across

many fields, enabling real-time autonomous decision-making with low latency

and enhanced privacy. These applications process various signals, such as

images, sound, and biomedical data, locally on resource-constrained hardware,

including FPGAs and specialized microcontrollers.

AI in Image and Video Signal Processing

AI-powered image and video processing uses machine learning

algorithms, particularly Convolutional Neural Networks (CNNs) and Vision

Transformers, to enable computers to understand, interpret, and generate visual

content. This technology has a wide range of applications, from medical

diagnostics to autonomous vehicles. (Tian, 2025). The computer vision that

gives machines the ability to "see" and interpret information from images and

videos. The machine learning models are CNNs, Vision Transformers, and

GANs. The key techniques include object detection, image segmentation,

activity recognition, image enhancement, and video compression.

AI is used in many sectors to automate and improve visual tasks. These

include:

 Surveillance and Security: Automating real-time video analysis for

change detection and security monitoring.

 Content Creation: Generating new images and videos from text

prompts (e.g., using tools like OpenAI's Sora or Google's Gemini) for

media production and marketing.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

74

 Healthcare: Improving the accuracy of medical imaging analysis and

diagnostics.

 Autonomous Systems: Enabling self-driving cars and drones to

recognise objects and navigate their environment in real-time.

 Image and Video Restoration and Enhancement: Current models

utilise diffusion models and transformers to outperform traditional

GANs in denoising and deblurring. In 2025, research is specifically

targeting RAW image restoration to integrate AI earlier in the image

signal processing (ISP) pipeline, handling unknown noise directly from

sensor data. Improving the quality of existing media, such as upscaling

low-resolution video, denoising old footage, and enhancing low-light

performance. Modern architectures, such as SISR (Single-Image Super-

Resolution) , utilize deep residual networks and self-attention to

synthesize realistic textures rather than merely interpolating pixels. A

major focus is on Real-Time SR for IoT, optimising these heavy models

for deployment on low-power devices. (Chakraborty, 2024)

 Several software libraries and commercial tools facilitate AI-powered

image and video processing: Open-Source Libraries like OpenCV,

TensorFlow, PyTorch, Scikit-Image, and Commercial Software Topaz

Video AI for video enhancement and upscaling, RunwayML for

generative video creation from text, Midjourney, and Google Gemini for

AI image generation.

Biomedical Signal Processing Using AI

Biomedical signal processing using Artificial Intelligence (AI) leverages

machine learning (ML) and deep learning (DL) algorithms to analyse complex

physiological data for enhanced diagnosis, monitoring, and personalised

treatment. AI systems can optimise traditional signal processing tasks, such as

noise reduction and feature extraction, and provide computer-aided diagnosis

(CAD) to assist physicians. The core concepts in biomedical signal processing

are as follows:

 Signal Acquisition & Preprocessing: Biomedical signals (e.g., ECG,

EEG) are often weak, noisy, and distorted.

https://www.midjourney.com/

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

75

Traditional methods like filters (e.g., FIR, Butterworth) are used for

noise reduction, but AI can employ adaptive filtering to improve signal

quality based on real-time data dynamically.

 Feature Extraction & Analysis: AI algorithms, particularly neural

networks, can automatically identify complex patterns and extract vital

information from raw data that might be difficult for human experts to

discern.

 Modelling & Interpretation: Machine learning models can be trained

to classify signals, detect anomalies, and predict health outcomes,

enabling proactive health monitoring and reducing the need for

continuous high-power processing.

AI in biomedical signal processing has numerous applications across

various medical fields:

 Cardiology: Analysis of electrocardiogram (ECG) signals to detect

heart abnormalities and identify specific heartbeats with greater

precision.

 Neurology: Processing of electroencephalogram (EEG) signals for

diagnosing conditions like epilepsy, sleep disorders, Alzheimer's, and

Parkinson's disease.

 Rehabilitation: Using AI to interpret EEG signals for motor imagery in

stroke patients, aiding neurological rehabilitation and personalised

therapy planning.

 Patient Monitoring: Real-time analysis of various signals (blood

pressure, respiration) in intensive care units (ICUs) or through remote

monitoring systems to guide treatment decisions and optimize patient

care. (Alqudah, 2025)

AI for Communication and Radar Signal Processing

Artificial intelligence (AI), particularly deep learning, is revolutionizing

communication and radar signal processing by providing data-driven solutions

to complex challenges that exceed the capabilities of traditional model-based

techniques. AI is used to address the need for robust, efficient, and adaptive

systems in modern applications like autonomous vehicles, 5G networks, and

electronic warfare.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

76

 Applications in Communication Systems: AI-driven signal processing

enhances communication systems by improving efficiency, robustness,

and spectral efficiency. (Li, 2025).

 Channel Coding and Modulation Optimization: AI can optimize

signal parameters for different dynamic transmission environments and

hardware impairments, improving the reliability and efficiency of

information exchange.

 Spectrum Management: AI helps manage the radio frequency spectrum

more efficiently by identifying available bands, predicting usage, and

dynamically allocating resources. Antenna design and beamforming: AI

aids in designing complex antenna arrays and optimizing beamforming

techniques, especially for advanced systems like 5G networks, enabling

targeted and efficient signal transmission. Noise reduction and signal

restoration: Machine learning models can adaptively eliminate various

types of background noise, leading to much clearer and higher-fidelity

signals than traditional fixed methods.

 Applications in Radar Signal Processing: AI is used across the entire

radar signal processing chain, from raw data interpretation to target

identification and resource management (Ayaz, 2025).

 Automatic Target Recognition (ATR): Deep learning enables

improved classification, identification, and recognition of targets (e.g.,

in automotive radar for self-driving cars) by extracting complex patterns

from radar data.

 Imaging Techniques: AI enhances synthetic aperture radar (SAR) and

inverse SAR (ISAR) imaging, providing better resolution and more

accurate mapping of target characteristics.

 Waveform and Array Design: AI assists in the design and optimization

of radar waveforms and antenna arrays to achieve better performance in

specific scenarios. Clutter and jamming suppression: Traditional anti-

jamming techniques often struggle with sophisticated, deceptive active

jamming. AI algorithms help in recognizing and suppressing complex

jamming signals and unwanted sea/ground clutter.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

77

5. RESEARCH FRONTIERS IN AI-BASED SIGNAL

PROCESSING

Research frontiers in AI-based signal processing (SP) focus on bridging

the gap between classical mathematical signal modeling and the black-box

nature of deep learning to create more efficient, interpretable, and robust

systems.

Generalization Challenges in Real-World Signal Environments

Generalization challenges in real-world signal environments stem

primarily from the inherent variability, uncertainty, and complexity of these

settings compared to controlled laboratory or simulated conditions (Rohlfs,

2024). Key issues include:

 Sensor Noise and Artifacts: Real-world data from sensors (e.g.,

physiological signals, environmental sensors) are susceptible to various

types of noise, missing values, and artifacts caused by movement, device

positioning, or environmental interference. Models trained on clean,

simulated data often fail to perform reliably when faced with this

inherent "noisiness".

 Data Discrepancies (Sim-To-Real Gap): A significant hurdle is the

difference in data distributions between simulated environments (where

models are often initially trained) and actual deployment settings.

Features that are relevant in simulation may not hold the same

importance in reality, leading to performance degradation.

 Dynamic and Unpredictable Conditions: Real-world environments are

constantly changing, with dynamic factors such as varying weather,

different user behaviours, or unexpected obstacles. Models must be

robust enough to handle these unseen, out-of-distribution (OOD)

scenarios without compromising performance.

 Partial Observability and Hidden States: In many real-world

scenarios, the system or agent may not have access to the full state of the

environment, operating instead on partial or incomplete observations.

This hidden information makes it difficult for models to reason

effectively and generalize their behaviour.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

78

 Communication Reliability and Latency: In distributed systems, such

as smart traffic networks, the reliability of communication channels can

be a major issue. Poor signal strength often results in data loss or

increased latency, which can severely impact the real-time performance

and coordination of signal processing systems.

 Resource Constraints: Real-time systems deployed in edge computing

environments, like IoT devices or autonomous vehicles, often have

limited computational resources. Models need to be highly efficient to

operate within these constraints while maintaining accuracy and low

latency, a challenge for complex models.

 Ethical and Safety Constraints: In high-stakes domains like healthcare

or autonomous systems, it can be difficult to generate data for all possible

abnormal or dangerous conditions due to safety and ethical constraints.

This data sparseness limits the models' exposure to critical scenarios

during training, impacting their generalization to rare but important

events.

Current Research Frontiers

Researchers are moving beyond pure data-driven approaches by

integrating mathematical priors (e.g., physical laws or geometric constraints)

with generative learning:

 Diffusion Models for 3D Imaging: Scaling diffusion models to 3D and

multimodal imaging for medicine and astronomy.

 Physics-Informed Neural Networks (PINNs): These are used to ensure

that signal reconstructions adhere to physical reality, reducing data

requirements and computational costs.

The convergence of foundational models (like Large Language Models)

and multimedia signal processing is a primary 2025 research topic:

 Cross-Modal Data Fusion: Developing algorithms that can

simultaneously process and correlate video, audio, and sensor data

(e.g., radar and LiDAR for autonomous driving).

 Multimodal VLMs in Healthcare: Using Vision-Language Models

(VLMs) for smart healthcare to reason across medical images and textual

patient records.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

79

Deep integration between neuroscience and signal processing is leading

to "Brain-in-the-Loop" technologies:

 Closed-Loop Neuromodulation: Real-time decoding of cortical signals

for neuro-prosthetics to mitigate neurological injury.

 Neuromorphic Engineering: Developing AI hardware that mimics the

brain’s energy-efficient signal processing, suitable for wearable ECG or

EEG devices.

Trustworthy, Explainable, and Responsible AI (XAI): A major

frontier involves "unveiling the decision veil" to make AI signal processing

transparent, especially in high-stakes fields. Current models often

explain what they detected but not why. Future research must develop

frameworks that provide causal reasoning for SP decisions, especially

in medical diagnostics (e.g., detecting cognitive decline or heart anomalies).

Evaluation Metrics and Performance Analysis in AI-Based

Signal Processing

Evaluating AI models in signal processing requires a combination

of quantitative metrics (specific to the task, such as classification or regression)

and performance analysis techniques (focusing on speed, resource utilization,

and reliability). The choice of metrics depends heavily on the specific

application and its goals (e.g., medical diagnosis vs. spam detection).

Evaluation Metrics

Metrics are generally divided by the type of machine learning task:

Classification Metrics: These metrics are used when the AI model

categorizes signals, such as detecting a pattern or identifying a disease. Key

metrics include (Powers, 2011):

 Accuracy: Overall proportion of correct predictions.

 Precision: Proportion of correctly classified positive instances among all

predicted positives, important when false positives are costly.

 Recall (Sensitivity): Proportion of actual positive instances correctly

identified, critical when false negatives are costly.

 F1-Score: A balanced measure using the harmonic mean of precision

and recall, especially for imbalanced datasets.

https://www.frontiersin.org/research-topics/40402/artificial-intelligence-in-bioimaging-and-signal-processing/magazine

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

80

 Specificity: Proportion of true negatives correctly identified.

 AUC-ROC: Evaluates the model's ability to distinguish between classes

across thresholds.

Regression Metrics: These are applied when models predict continuous

values, such as forecasting time series or estimating signal amplitudes.

(Willmott, 2005) Common metrics include:

 Mean Absolute Error (MAE): Average magnitude of errors.

 Mean Squared Error (MSE) / Root Mean Squared Error

(RMSE): Average of squared errors, sensitive to outliers.

 R² Score: Proportion of variance in the target variable explained by the

model.

Domain-Specific Signal Processing Metrics: Some metrics are specific

to signal processing (Kay, 1993) tasks:

 Signal-to-Noise Ratio (SNR): Measures signal clarity after processing.

 Echo Return Loss Enhancement (ERLE): Evaluates echo cancellation.

 Peak Signal-to-Noise Ratio (PSNR): Used for quality evaluation in

image/video processing.

 Perceptual Evaluation of Speech Quality (PESQ): A human-centric

measure for speech quality.

Performance Analysis in AI Systems

Performance analysis examines operational aspects beyond prediction

accuracy (Sokolova, 2009). This includes:

 Latency: Time for processing input and producing output, vital for real-

time systems.

 Throughput: Number of tasks handled per unit time.

 Resource Utilization: Monitoring CPU, GPU, and memory usage for

efficiency.

 Reliability & Robustness: How well the model handles unexpected

inputs or noisy conditions.

 Scalability: Ability to maintain performance with increased workload or

data.

Effective performance analysis involves defining clear goals, using

diverse datasets, combining multiple metrics for a comprehensive view,

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

81

incorporating human judgment for subjective tasks, and continuous monitoring

after deployment. The advanced performance analysis can be done with the

help of the following metrics:

 Closed-Loop Evaluation: In 2025, systems use "auto-raters" (AI acting

as a judge) to detect and correct errors in real-time before they cascade.

 Robustness & Fairness: Models are stress-tested against adversarial

inputs and audited for demographic parity to ensure ethical compliance.

 Drift Detection: Continuous monitoring is used to identify performance

degradation caused by changes in input signal patterns over time.

CONCLUSION

This chapter presents a comprehensive overview of intelligent signal

processing, emphasizing the evolution from conventional, model-driven

techniques to modern AI-enabled, data-driven approaches. It begins by

highlighting the limitations of classical signal processing in handling non-

linear, non-stationary, and high-dimensional signals, motivating the integration

of machine learning and deep learning methods. Various learning paradigms—

supervised, unsupervised, and self-supervised learning—are discussed

alongside the trade-offs between feature-based models and end-to-end learning,

with attention to the bias–variance dilemma in signal datasets. The chapter then

explores key deep learning architectures, including CNNs, RNNs, transformers,

autoencoders, and GANs, illustrating their suitability for spatial, temporal, and

generative signal modeling. Practical AI-embedded applications in image and

video processing, biomedical signals, and communication and radar systems

are reviewed. Finally, the chapter addresses research frontiers, generalization

challenges in real-world environments, and the role of evaluation metrics and

performance analysis in assessing AI-based signal processing systems.

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

82

REFERENCES

Aburakhia, S., Shami, A., & Karagiannidis, G. K. (2024). On the intersection

of signal processing and machine learning: A use case-driven analysis

approach. arXiv. https://doi.org/10.48550/arXiv.2403.17181.

Ahmadi, S., Rahmani, A. M., Abbasi, A., & Fathy, M. (2025). Deep

autoencoder neural networks: A comprehensive review and new

perspectives. Archives of Computational Methods in Engineering, 32(5),

16871–16882. https://doi.org/10.1007/s11831-025-10260-5.

Akkaya, S. (2025). Wavelet-based denoising strategies for non-stationary

signals in electrical power systems: An optimization perspective.

Electronics, 14(16), 3190. https://doi.org/10.3390/electronics14163190

Alqudah, A. M., & Moussavi, Z. (2025). A review of deep learning for

biomedical signals: Current applications, advancements, future

prospects, interpretation, and challenges. Computers, Materials &

Continua, 83(3), 3753–3841.

https://doi.org/10.32604/cmc.2025.063643A.

Ayaz, F., Alhumaily, B., Hussain, S., Imran, M. A., Arshad, K., Assaleh, K., &

Zoha, A. (2025). Radar signal processing and its impact on deep

learning-driven human activity recognition. Sensors, 25(3), 724.

https://doi.org/10.3390/s25030724 .

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Chakraborty, T., Reddy, U. R. K. S., Naik, S. M., Panja, M., & Manvitha, B.

(2024). Ten years of generative adversarial nets (GANs): A survey of the

state-of-the-art. Machine Learning: Science and Technology, 5(1),

011001. https://doi.org/10.1088/2632-2153/accb4a.

Chambers, J. D., Cook, M. J., Burkitt, A. N., & others. (2024). Using long

short-term memory (LSTM) recurrent neural networks to classify

unprocessed EEG for seizure prediction. Frontiers in Neuroscience.

https://doi.org/10.3389/fnins.2024.1472747.

Chen, K.C. J., Peng, W.H., & Lee, C. G. G. (2023). Overview of intelligent

signal processing systems. APSIPA Transactions on Signal and

Information Processing, 12(1), e36.

https://doi.org/10.1561/116.00000053

Cohen, L. (1995). Time-frequency analysis. Prentice Hall.

https://doi.org/10.48550/arXiv.2403.17181
https://doi.org/10.1007/s11831-025-10260-5
https://doi.org/10.3390/electronics14163190
https://doi.org/10.32604/cmc.2025.063643A
https://doi.org/10.3390/s25030724
https://doi.org/10.1088/2632-2153/accb4a
https://doi.org/10.3389/fnins.2024.1472747
https://doi.org/10.1561/116.00000053

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

83

Gannot, S., Kellermann, W., Koldovsky, Z., Araki, S., & Richard, G. (2024).

Special issue on model-based and data-driven audio signal processing

[From the guest editors]. IEEE Signal Processing Magazine, 41(6), 8–

11. https://doi.org/10.1109/MSP.2024.3497727

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the

bias/variance dilemma. Neural Computation, 4(1), 1–58.

https://doi.org/10.1162/neco.1992.4.1.1.

Ji, S., Xu, W., Yang, M., & Yu, K. (2013). 3D convolutional neural networks

for human action recognition. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 35(1), 221–231.

https://doi.org/10.1109/TPAMI.2012.59.

Kay, S. M. (1993). Fundamentals of statistical signal processing: Estimation

theory. Prentice Hall.

Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Mahoor, M.

(2021). 1D convolutional neural networks and applications: A survey.

Mechanical Systems and Signal Processing, 151, 107398.

https://doi.org/10.1016/j.ymssp.2020.107398.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification

with deep convolutional neural networks. Advances in Neural

Information Processing Systems, 25, 1097–1105.

Li, X., & Others. (2025). Signal processing technology of mobile

communication systems based on artificial intelligence. Procedia

Computer Science, 261, 1284–1290.

https://doi.org/10.1016/j.procs.2025.05.003.

Liu, C., Chen, Y., & Tao, D. (2025). Variational and adversarial autoencoders:

Latent signal representation and generation. Pattern Recognition, 145,

109291. https://doi.org/10.1016/j.patcog.2025.109291.

Mienye, I. D., Swart, T. G., & Obaido, G. (2024). Recurrent neural networks:

A comprehensive review of architectures, variants, and applications.

Information (Switzerland), 15(9), 517.

https://doi.org/10.3390/info15090517.

Nazari, M., & Cui, W. (2025). Transformers in speech processing: Overcoming

challenges and paving the future. Computer Science Review, 58, 100768.

https://doi.org/10.1016/j.cosrev.2025.100768.

https://doi.org/10.1109/MSP.2024.3497727
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1109/TPAMI.2012.59
https://doi.org/10.1016/j.ymssp.2020.107398
https://doi.org/10.1016/j.procs.2025.05.003
https://doi.org/10.1016/j.patcog.2025.109291
https://doi.org/10.3390/info15090517
https://doi.org/10.1016/j.cosrev.2025.100768

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

84

Powers, D. M. W. (2011). Evaluation: From precision, recall and F-measure to

ROC, informedness, markedness and correlation. Journal of Machine

Learning Technologies, 2(1), 37–63.

Proakis, J. G., & Manolakis, D. G. (2006). Digital signal processing:

Principles, algorithms, and applications (4th ed.). Prentice Hall.

Razzaq, K., & Shah, M. (2025). Machine learning and deep learning

paradigms: From techniques to practical applications and research

frontiers. Computers, 14(3), 93.

https://doi.org/10.3390/computers14030093

Rivas, F., Sierra-Garcia, J. E., & Camara, J. M. (2025). Comparison of LSTM-

and GRU-type RNN networks for attention and meditation prediction on

raw EEG data from low-cost headsets. Electronics, 14(4), 707.

https://doi.org/10.3390/electronics14040707.

Rohlfs, C. (2024). Generalization in neural networks: A broad survey.

Neurocomputing, 611, 128701.

https://doi.org/10.1016/j.neucom.2024.128701.

Sejdić, E., Djurović, I., & Jiang, J. (2009). Time-frequency feature

representation using energy concentration: An overview of recent

advances. Digital Signal Processing, 19(1), 153–183.

https://doi.org/10.1016/j.dsp.2008.03.004

Shlezinger, N., & Eldar, Y. C. (2023). Model-based deep learning. arXiv.

https://arxiv.org/abs/2306.04469.

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance

measures for classification tasks. Information Processing &

Management, 45(4), 427–437.

https://doi.org/10.1016/j.ipm.2009.03.002.

Thundiyil, S., Shalamzari, S. S., Picone, J., & McKenzie, S. (2025).

Transformers for modeling long-term dependencies in time series data:

A review. Proceedings of IEEE SPMB Conference.

Tian, C., Cheng, T., Peng, Z., Zuo, W., Zhang, Q., Wang, F.-Y., & Zhang, D.

(2025). A survey on deep learning fundamentals and applications across

image, video, and vision tasks. Artificial Intelligence Review, 58, 381–

412. https://doi.org/10.1007/s10462-025-11368-7.

https://doi.org/10.3390/computers14030093
https://doi.org/10.3390/electronics14040707
https://doi.org/10.1016/j.neucom.2024.128701
https://doi.org/10.1016/j.dsp.2008.03.004
https://arxiv.org/abs/2306.04469?utm_source=chatgpt.com
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1007/s10462-025-11368-7

INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS

85

Wang, B., Jiang, Z., Sun, Y., et al. (2023). An intelligent signal processing

method against impulsive noise interference in A IoT. EURASIP Journal

on Advances in Signal Processing, 2023, 104.

https://doi.org/10.1186/s13634-023-01061-8

Wang, Y., Li, Y., & Ding, Z. (2020). Deep learning in signal processing: A

survey. IEEE Signal Processing Magazine, 37(4), 36–51.

https://doi.org/10.1109/MSP.2020.2987025

Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error

(MAE) over the root mean square error (RMSE) in assessing average

model performance. Climate Research, 30(1), 79–82.

https://doi.org/10.3354/cr030079.

Wu, H., Xu, J., Wang, J., & Long, M. (2021). Autoformer: Decomposition

transformers with auto-correlation for long-term series forecasting.

arXiv. https://arxiv.org/abs/2106.13008.

https://doi.org/10.1186/s13634-023-01061-8
https://doi.org/10.1109/MSP.2020.2987025
https://doi.org/10.3354/cr030079
https://arxiv.org/abs/2106.13008?utm_source=chatgpt.com

