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PREFACE 

This book brings together innovative research that highlights the 

growing role of intelligent systems, embedded platforms, and advanced signal 

analysis in modern engineering applications. The chapters reflect a 

convergence of hardware, software, and data-driven methodologies aimed at 

improving perception, performance, and decision-making in complex 

technological environments. 

The chapter Road Sign Recognition Using BNN in PYNQ-Z2 Board 

explores the implementation of efficient neural networks on embedded 

hardware for real-time visual recognition, demonstrating practical solutions 

for intelligent transportation systems. Complementing this, Preparation and 

Characterization Studies of KNO₃-HTPB Based Solid Rocket Propellant with 

Different Plasticizers presents an experimental investigation into materials 

and formulation techniques critical for propulsion performance and reliability. 

The final chapter, Signal to Insight: AI-Driven Signal Processing, 

broadens the scope by examining how artificial intelligence transforms raw 

signals into meaningful insights across diverse domains. Together, these 

chapters offer readers a concise yet comprehensive perspective on the 

integration of intelligent computation, hardware innovation, and advanced 

engineering analysis, making the book a valuable resource for researchers, 

engineers, and students alike. 

 

Editorial Team 

January 19, 2026 

Türkiye 
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INTRODUCTION 

Recognition is a fundamental and challenging task in computer vision, 

with wide-ranging applications such as autonomous driving, crowd counting, 

and face recognition (Bhatt et al., 2022), (Fang et al., 2022). It involves both 

object classification and localization, typically achieved by identifying objects 

in images and drawing bounding boxes around them. Object recognition can be 

implemented using machine learning and deep learning techniques. Traditional 

machine learning approaches rely on handcrafted features such as color 

histograms, edges, or texture descriptors to identify groups of pixels 

corresponding to objects (Saha et al., 2012). In contrast, deep learning 

techniques automatically learn hierarchical feature representations directly 

from raw image data, leading to superior accuracy and robustness (Hadjam et 

al., 2022), (Zhao et al., 2022). 

PYNQ (Python Productivity for Zynq) is an open-source framework that 

enables high-level programming of FPGA-based systems using Python (Mándi 

et al., 2021). The PYNQ-Z2 is an FPGA development platform based on the 

Zynq-7000 XC7Z020 SoC, designed specifically to support the PYNQ 

framework. It integrates programmable logic (PL) with a processing system 

(PS), allowing designers to develop, deploy, and test hardware-accelerated 

applications using Python through Jupyter Notebook environments. This 

approach significantly simplifies FPGA programming and accelerates rapid 

prototyping of embedded vision applications (Mándi et al., 2021).  

Binarized Neural Networks (BNNs) are a class of neural networks in 

which both weights and activations are constrained to binary values (Rastegari 

et al., 2016), (Jaiswal et al., 2021). This binarization dramatically reduces 

memory usage, computational complexity, and power consumption, making 

BNNs particularly well suited for deployment on resource-constrained 

platforms such as FPGAs (Zhang et al., 2022), (Jokic et al., 2018). Despite their 

simplicity, BNNs can achieve competitive performance for real-time 

applications such as road sign recognition, where low latency and energy 

efficiency are critical (Liang et al., 2018), (Fiscaletti et al., 2020). 

The proposed work involves dataset collection, preprocessing, training, 

and deployment of BNN models using road-sign and street-view datasets (Bhatt 

et al., 2022), (Saha et al., 2012).  
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Two BNN architectures—one based on fully connected layers and the 

other using convolutional layers—are developed and trained on the same 

dataset to enable a fair comparison. The trained models are synthesized and 

deployed on the PYNQ-Z2 FPGA using the Vivado Design Suite. Performance 

metrics such as accuracy, memory utilization, processing time, and hardware 

resource consumption are analyzed to evaluate the trade-offs between fully 

connected and convolutional BNN architectures (Zhang et al., 2022), (Yuan & 

Agaian, 2023). This comparative study provides practical insights into selecting 

appropriate BNN structures for FPGA-based embedded vision applications. 

 

Neural Networks 

Neural networks are a subset of machine learning inspired by the 

structure and functioning of the human brain (Qin et al., 2020), (Zhu et al., 

2020). They consist of interconnected processing units called neurons, 

organized into layers, which collectively learn to map inputs to outputs through 

training. Neural networks are widely used in tasks such as image recognition, 

speech processing, and pattern classification, often outperforming traditional 

algorithms in complex problem domains (Zhao et al., 2022). Each neuron 

processes input signals using weighted connections and a bias term, followed 

by an activation function such as sigmoid or ReLU. During training, the 

network adjusts weights and biases using backpropagation to minimize 

prediction error. Neural networks can efficiently model complex nonlinear 

relationships, enabling rapid and accurate decision-making in large-scale data-

driven applications (Zhu et al., 2020). 

 

Types of Neural Networks 

Several neural network architectures are commonly used, including 

Artificial Neural Networks (ANNs), Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RNNs), and Binarized Neural Networks (BNNs) 

(Qin et al., 2020), (Zhu et al., 2020). ANNs are general-purpose models 

composed of fully connected layers. CNNs are optimized for image processing 

tasks by exploiting spatial locality through convolutional operations (Bhatt et 

al., 2022), (Zhang et al., 2021). RNNs are designed for sequential and time-

dependent data.  
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BNNs, which use binary weights and activations, offer significant 

advantages in terms of hardware efficiency and energy consumption (Rastegari 

et al., 2016), (Jaiswal et al., 2021) (Jokic et al., 2018). 

 

Fully Connected Layers 

A fully connected (dense) layer connects every input neuron to every 

output neuron, performing a linear transformation followed by an activation 

function. While fully connected layers are flexible and simple to implement, 

they require a large number of parameters, leading to higher memory usage and 

computational cost (Zhang et al., 2022), (Zhang et al., 2021). 

 

Convolutional Layers 

Convolutional layers employ sparse connectivity and shared weights, 

significantly reducing the number of parameters compared to fully connected 

layers (Bhatt et al., 2022), (Zhang et al., 2021). By applying convolution kernels 

across the input, CNNs efficiently capture spatial features such as edges, 

shapes, and textures.  

 

1. LITERATURE SURVEY 

Hardware-Optimized CNN and BNN Architectures on FPGA 

One of the primary challenges in Advanced Driver Assistance Systems 

(ADAS) is the high memory footprint and computational complexity of 

Convolutional Neural Networks (CNNs). To address this issue, early efforts 

focused on reducing numerical precision. Integer-based and quantized CNN 

implementations have demonstrated significant reductions in computational 

overhead while maintaining high classification accuracy, highlighting the 

feasibility of low-cost hardware CNN accelerators for real-time applications 

(Bhatt et al., 2022). 

Rastegari et al. introduced XNOR-Net, demonstrating that binary 

convolutional networks can achieve competitive accuracy while drastically 

reducing memory usage and arithmetic complexity (Rastegari et al., 2016). 

Building upon this concept, Zhang et al. proposed a time-domain FPGA-based 

BNN architecture that reduced storage requirements by approximately 75% by 

maintaining intermediate computations in 1-bit form (Zhang et al., 2022).  
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Practical FPGA-based implementations using BNNs have also been 

demonstrated on PYNQ platforms. Mándi et al. implemented a hardware-

accelerated image processing pipeline on the PYNQ-Z2 board, achieving 

reduced power consumption and memory usage (Mándi et al., 2021). However, 

increased latency was reported under complex road conditions. 

 

System-Level Implementations and Hybrid Models 

System-level design choices play a crucial role in real-time TSR 

performance. CNN-based real-time TSR systems using hybrid datasets have 

demonstrated effective trade-offs between accuracy and speed, though frame-

rate adaptation and data throughput remain bottlenecks (Bhatt et al., 2022). 

Hybrid neural architectures have also been explored to reduce 

complexity. Saha et al. combined local image sampling with Artificial Neural 

Networks, achieving approximately 98% accuracy for a limited set of traffic 

signs, but with limited scalability (Saha et al., 2012), (Mándi et al., 2021), 

(Jokic et al., 2018). 

Recent surveys and reviews of BNNs emphasize ongoing research in 

architecture search, robustness enhancement, and mixed-precision optimization 

to close the accuracy gap between binary and full-precision models (Qin et al., 

2020), (Zhu et al., 2020), (Shen et al., 2020), (Phan et al., 2020). These studies 

confirm that BNNs are well suited for FPGA-based embedded vision systems 

when carefully designed. 

 

Table 1. Comparison Analysis of Existing Works 

Ref. 
Authors 

/ Year 

Model 

Type 

Hardware 

Platform 

Key 

Contribution 
Limitations 

[1] 
Fang et 

al., 2022 
CNN 

FPGA / 

GPU 

High-accuracy 

deep CNN for 

image 

classification 

High 

computational 

and memory 

cost 

[3] 
Saha et 

al., 2012 
ANN CPU 

Early NN-based 

TSR with ~98% 

accuracy 

Limited 

scalability, 

handcrafted 

features 

[4] 
Bhatt et 
al., 2022 

CNN 
Embedded 
system 

Real-time TSR 
using hybrid 

datasets 

Frame-rate and 
throughput 

bottlenecks 
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[6] 
Mándi et 

al., 2021 

Image 

Processing 

+ BNN 

PYNQ-Z2 

FPGA 

Low power and 

memory-

efficient FPGA 

pipeline 

Increased 

latency in 

complex scenes 

[7] 

Rastegari 

et al., 

2016 

BNN 

(XNOR-

Net) 

GPU / 

FPGA-

ready 

Binary weights 

& activations, 

major 

complexity 
reduction 

Accuracy drop 

vs full-

precision CNN 

[9] 
Zhang et 

al., 2022 

BNN 

(Time-

domain) 

FPGA 

~75% storage 

reduction, low 

power design 

Higher 

hardware 

design 

complexity 

[10] 
Liang et 

al., 2018 
BNN FPGA 

Optimized 

dataflow for 

binary inference 

Limited 

flexibility for 

deep models 

[11] 
Jokic et 

al., 2018 
BNN 

FPGA 

camera 

system 

Real-time (20 

kfps) on-device 

recognition 

Task-specific 

architecture 

[14] 

Yuan & 

Agaian, 

2023 

Survey 

(BNN) 
— 

Comprehensive 

BNN review & 

challenges 

No hardware 

implementation 

[15] 
Qin et 
al., 2020 

Survey 
(BNN) 

— 

Analysis of 

accuracy–
efficiency trade-

offs 

Theoretical 
focus 

 

Table 1 provides the reviews of FPGA-based CNN and BNN 

implementations for real-time traffic sign recognition, highlighting that BNNs 

significantly reduce memory, power, and computation while maintaining 

competitive accuracy, making them suitable for embedded vision systems when 

carefully architected. 

 

Identified Research Gap 

A systematic, hardware-level comparison between fully connected and 

convolutional BNN architectures on PYNQ-Z2—evaluating accuracy, resource 

utilization, and latency—remains insufficiently explored. 

 

2. BINARY NEURAL NETWORK 

The majority of network binarization techniques follow the BNN 

methodology developed by Courbariaux.  
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Binarization is used in BNNs for both the weights and activations. Using 

bitwise operations, this lowers the memory requirement for BNNs and the 

computational complexity. Except for the fact that everything is binarized to 

either +1 or -1, the architecture of BNN is similar to any normal DNN design. 

Here is a straightforward inference pseudo-code. (forward operation)  

for k = 1 to L do 

                 𝑊𝑘
−𝑏 ←Binarize (𝑊𝑘) 

               𝑆𝑘 ← 𝑎𝑘−1
𝑏 𝑊𝑘

−𝑏 

               𝑎𝑘 ← BatchNorm (𝑠𝑘.∅𝑘) 

if k < L then 

                             𝑎𝑘
𝑏← Binarize (𝑎𝑘) 

                 end if 

                        end for  

The aforementioned pseudo-code illustrates how a BNNs network works 

in the forward direction. L stands for the number layer, k for the layer index, ak 

for the activation after batchnorm, Sk for the activation prior to batchnorm, and 

Wk for the binarized weight. 

 

2.1 Binarization of Weights 

First, Courbariaux offers a technique for training with binary weights 

utilising backpropagation and a gradient descent algorithm. As contrast to just 

binarizing a network once training is complete, using binary data during 

training results in a more representative loss to train against (Zhang et al., 2022) 

(Jokic et al., 2018) (Yuan & Agaian, 2023), (Qin et al., 2020). It is not difficult 

to compute the gradient of the loss with respect to binary weights using back 

propagation. Binary weights, however, make gradient reasonable approaches 

for updating the weights unfeasible. Gradient descent methods allow for minor 

weight value adjustments, which are not possible with binary values. 

Courbariaux maintains a set of real valued weights, WR, which are 

binarized within the network to produce binary weights, WB, in order to resolve 

this issue. Then, WR can be modified using backprop and gradient descent for 

incremental updates. The only weights recorded and used during inference are 

the binary weights because WR is not required. A straightforward sign function 

is used for binarization. 
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WB=sign (WR)     ….(1) 

Generates a tensor with the values +1 and -1. Because to the sign function 

employed in binarization, calculating the gradient of the loss with respect to the 

real valued directly weights have no practical application. At every point, the 

gradient of the sign function is zero or undefined. Courbariaux employs a 

technique known as the straight through estimator to circumvent this issue. By 

skipping over the gradient of the layer in question, this technique approximates 

a gradient. Just transform the troublesome gradient into an identity function. 

𝜕𝐿

𝜕𝑊𝑅
=

𝜕𝐿

𝜕𝑊𝐵
            ….(2) 

where L is the output loss. The weights with real values are updated using 

this gradient approximation. Sometimes, this binarization is considered to be a 

layer unto itself. The weights are sent via a binarization layer that, during the 

forward pass, determines the sign of the values, and, during the backward pass, 

executes an identity function. An illustration of the Straight-Through Estimator 

with sign layer (STE). The gradient of the binary weights is simply passed 

through to the real valued weights, while the sign function processes the real 

values of the weights in the forward pass. 

The real valued weights can be adjusted using the STE and an 

optimization technique like SDG or Adam. If values in WR are not constrained, 

they can add up to very large amounts because the gradient updates can change 

the real valued weights WR without modifying the binary values WB. For 

instance, if a positive value of WR is assessed to have a positive gradient over 

a significant chunk of training, every update will raise that value. This may 

result in high WR values. Because of this, BNNs cut WR values between 1 and 

+1. As a result, WR and WB values remain nearby. 

 

2.2 Binarization of Activations 

In his initial BNN study, Courbariaux introduced the binarization of the 

activation values. Similar to how the weights are binarized, the activations are 

binarized by passing them through a sign function with a STE in the backwards 

pass. The network's activation function is this sign function. If the input to the 

activation was too large, Courbariaux discover that they need to use the 

backwards pass to cancel out the gradient in order to get decent results. 
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𝜕𝐿

𝜕𝑎𝑅
=

𝜕𝐿

𝜕𝑎𝐵
∗ 1|𝑎𝑅|≤1       …. (3) 

where aR is the activation function's real-valued input and aB is the 

function's binarized output. The indicator function 1|aR|1 returns 1 when |aR|1 

and 0 when it does not. If the input to the activation function is too large, this 

zeroes out the gradient. It is possible to add a hard tanh function before the sign 

activation function to provide this capability, however this layer would only be 

effective in the backwards pass and not the forward pass. 

𝑋𝑏 = sin(𝑋) = {
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

1, 𝑖𝑓 𝑥 ≥ 0
      …. (4) 

 

2.3 Bitwise Operations 

The dot product between weights and activations can be broken down 

into bitwise operations when employing binary values. There are two possible 

binary values: -1 and +1 for the Figure 3.1. The encoding of these signed binary 

values uses a 0 for -1 and a 1 for +1. In order to be unambiguous, by refer to 

the signed numbers 1 and +1 as binary "values" and 0 and 1 as binary 

"encodings" for these numbers. As seen in Table 3.1, applying an XNOR 

logical operation to the binary encodings is equal to multiplying the binary 

values. 

 

 
Figure 1. XNOR Gate 

 

All the products between values must be added up to create a dot product. 

Bitwise multiplication can be accomplished with XNOR as shown in Figure 1; 

however, accumulating the results of the XNOR operation necessitates a 

summation. This can be done using the binary encodings produced by the 

XNOR operation by counting the number of 1 bit in a collection of XNOR 

products, multiplying this number by 2, and then taking away the number of 

bits that result in an integer value. To count the number of ones in a binary 

value, pop count instructions are frequently included in processor instruction 

sets as shown in Table 2. 
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Table 2. XNOR Operation's Counterpart 
 

A B OUTPUT 

-1 -1 1 

-1 1 -1 

1 -1 -1 

1 1 1 

 

A B OUTPUT 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

 

Comparatively to multi-bit floating-point or fixed-point multiplication 

and accumulation, these bitwise operations are substantially easier to compute. 

This may result in quicker execution times and/or a need for less hardware 

resources. It is not always easy to theories efficient speedups, though. For 

instance, some of the publications referred studied here use the number of 

instructions as a metric of execution time when examining the CPU's execution 

time. A CPU may perform a bitwise XNOR operation between two 64-bit 

registers thanks to the 64-bit x86 instruction set. One instruction is required for 

this procedure. Two 32-bit floating point multiplications could be achieved on 

a 64-bit CPU with a comparable architecture.  

The bitwise operations would be 32 times faster than the floating-point 

operations, one could infer. However, the quantity of instructions does not 

reflect the speed of execution. The time it takes to complete each command can 

vary depending on the clock cycle. A modern CPU core's dynamic instruction 

and resource scheduling means that the number of cycles required to complete 

an instruction relies on the results of earlier instructions. Some kinds of 

instruction profiles are better suited to CPUs and GPUs than others. It is 

preferable to look at the actual execution times as a metric of efficiency rather 

than the total amount of instructions. While optimizing their code for bitwise 

operations, Courbariaux notice a 23 speedup. BNNs require less hardware in 

digital designs than bitwise operations, which also enable faster execution times 

in software-based implementations. 

 

2.4 Batch Normalization 

Deep learning commonly uses batch normalization (BN) layers. They 

serve as a sort of regularization and condition the values within a network for 

quicker training. They are viewed as crucial in BNNs.  
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BN layers contain gain and bias terms that the network learns as well as 

conditions for the values utilized during training. These acquired terms enable 

BNN become more complicated, without which it would suffer. 

 

3. PROPOSED METHODOLOGY 

Every input neuron and every output neuron are connected in a fully 

connected layer, also known as a linear layer, in commonly used neural 

networks. Bigger parameters typically enable improved efficiency and 

parallelization. Via the use of weights, the neuron makes a linear transformation 

to the input vector. 

 

 
Figure 2. Fully Connected Layer Flow Chart 

 

As shown in Figure 2, the input image is given the completely linked 

state from the above flowchart. In other words, the number of neurons 

employed in the network equals the number of pixels, and each node is given a 

different value. And after multiplying by the appropriate weights, each value is 

added together. The bias value is once more added to the additional value before 

being sent to the activation function, which determines whether the node is 

active or not. After classification is complete, a final check is made to see if the 

given image is recognized in the dataset or classes. 
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Figure 3. Fully Connected Layer 

 

Layer to layer, all potential connections are present. Fully linked 

networks have the main benefit of being "structure agnostic," or not requiring 

any additional assumptions to be made about the input. As a result, these 

networks typically perform worse than special purpose networks that are 

customized to a problem's structure. Hence, there are many neurons as shown 

in Figure 3. 

 

3.1 Using Convolutional Layer 

In a neural network where not all input nodes are connected to output, 

there is a convolutional layer (Rastegari et al., 2016), (Jaiswal et al., 2021). 

Convolutional layers now have additional learning flexibility as a result. 

Moreover, there are a lot less weights per layer, which is beneficial for high-

dimensional inputs like image data.  
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Figure 4. Convolutional Layer Flow Chart 

 

As shown in Figure 4, the convolutional layer receives the input image 

from the previous computation; where the 3*3 kernel matrix is multiplied by 

the input image matrix to create images with distinct edges. To minimise the 

size of the image, pooling or sub-sampling is used. Thereafter, the number of 

pixels is decreased, and various values are assigned to each node. And after 

multiplying by the appropriate weights, each value is added together. The bias 

value is once more added to the additional value before being sent to the 

activation function, which determines whether the node is active or not. After 

classification is complete, a final check is made to see if the given image is 

recognised in the dataset or classes. 
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Figure 5. Convolutional Layer 

 

With the kernel shifting along the input matrix and us taking the dot 

product between the two as though they were vectors, convolutional is 

essentially a sliding dot product. The model design can encode attributes since 

it explicitly assumes that the inputs are images. Every layer of a basic CNN is 

a sequence layer that translates activation volume from one layer to another 

using a differential function (Mándi et al., 2021), (Rastegari et al., 2016) as 

shown in Figure 5.  

 

 
Figure 6. Convolutional Layer Using Subsampling 
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Sub-sampling shown in Figure 6 is a technique for reducing the amount 

of data by choosing only a portion of the original data. The process that 

identifies the highest values within each patch of a feature map and utilizes 

these values to generate down-sampled outputs. Typically, it comes after the 

convolutional layer. Sub sampling allows for faster processing and storage 

reduction. 

 

3.2 Fully Connected Layer Vs Convolutional Layer 

Compared to a fully linked layer, a convolutional layer is significantly 

more efficient and specialised. Each connection between neurons in a layer that 

is fully connected has its own weight since every neuron is linked to every other 

neuron in the layer above it. This connection design is entirely general-purpose 

and doesn't make any assumptions about the characteristics of the data. Also, 

the cost of memory (weights) and computation is relatively high (connections). 

Contrarily, in a convolutional layer, every neuron has the same set of 

weights (and local connection structure) and is only connected to a small 

number of neighbouring (also known as local) neurons in the previous layer. 

This connection pattern only makes sense in situations when the data can be 

perceived as spatial, the features to be extracted are local in space (thus, only 

local connections are acceptable), and the likelihood of occurrence at any input 

position is equal (hence same weights at all positions OK). Convolutional layers 

are typically applied to image data where the features are local (e.g., a "nose" 

is made up of a group of neighbouring pixels rather than being dispersed 

throughout the entire image) and equally likely to occur anywhere. 

The density of the connections is the primary distinction between the two 

types of layers. Every neuron in the output is coupled to every neuron in the 

input in the FC layers because of their high connectivity. The neurons in a 

convolutional layer, on the other hand, are only coupled to nearby neurons 

within the convolutional kernel's width and are not densely connected. Hence, 

a Conv layer is more appropriate when the input is a picture and there are many 

neurons. They also differ significantly in terms of how they share weight. Every 

output neuron in an FC layer is coupled to every input neuron by a unique 

weight(w).  
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The weights in a Conv layer, however, are distributed among various 

neurons. This is also another feature of Conv layers that makes them suitable 

for use when dealing with many neurons. 

 

4. FUNCTIONAL MODULES 

A data set is a collection of related, discrete items of related data that 

may be accessed individually or in combination or managed as a whole entity. 

A data set is organized into some type of data structure. In a database, 

for example, a data set might contain a collection of business data (names, 

salaries, contact information, sales figures, and so forth). The database itself 

can be considered a data set, as can bodies of data within it related to a particular 

type of information, such as sales data for a particular corporate department. 

The term data set originated with IBM, where its meaning was similar to 

that of file. In an IBM mainframe operating system, a data set s a named 

collection of data that contains individual data units organized (formatted) in a 

specific, IBM-prescribed way and accessed by a specific access method based 

on the data set organization. Types of data set organization include sequential, 

relative sequential, indexed sequential, and partitioned. Access methods 

include the Virtual Sequential Access Method (VSAM) and the Indexed 

Sequential Access Method (ISAM). 

 

 
Figure 7. Sample Traffic Sign Dataset 
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A total of 50,000 images are used to test the detection phase of the 

models. Of these,43 traffic sign class from online sources with traffic sign 

having different viewing angle and position on image as shown in Figure 7. The 

German Traffic Sign Benchmark is a multi-class, single-image classification 

challenge held at the International Joint Conference on Neural Networks 

(IJCNN) 2011.And cordially invite researchers from relevant fields to 

participate: The competition is designed to allow for participation without 

special domain knowledge. Our benchmark has the following properties: 

 Single-image, multi-class classification problem 

 More than 40 classes 

 More than 50,000 images in total 

 Large, lifelike database 

 

4.1 Classifier Evaluation 

The categorization displays how many layers were utilised to discover 

the picture and how much the image's size was decreased throughout the 

processing procedure. According to the table below, recognition is complete 

after the input picture, which has a resolution of 1024 pixels, has gone through 

five convolutional layers and been reduced to 256 pixels. The complete 

Classification of Convolutional Layer has been provided in Table 4.  

 

Table 3. Set Of Images Given as Input 

S. No. Road sign 
Name of the 

road sign 

No. of 

images 
S. No. Road sign 

Name of the 

road sign 

N.o of 

images 

1 

 

20km/hr 10 18 

 

End of all 
restrictions 

10 

2 

 

30km/hr 10 19 

 

End of no passing 
zone 

10 

3 

 

50km/hr 10 20 

 

Give away 10 

4 

 

60km/hr 10 21 

 

Left turn 10 

5 

 

70km/hr 10 22 

 

No entry 10 
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S. No. Road sign 
Name of the 

road sign 

No. of 

images 
S. No. Road sign 

Name of the 

road sign 

N.o of 

images 

6 

 

80km/hr 10 23 

 

No overtaking 10 

7 

 

100km/hr 10 24 

 

No overtaking for 
large trucks 

10 

8 

 

120km/hr 10 25 

 

pass by left 10 

9 

 

Ahead only 
right 

10 26 

 

pass by right 10 

10 

 

Bicycle 
crossing 

10 27 

 

Pedestrian 
crossing 

10 

11 

 

caution 10 28 
 

Priority cross 
roads 

10 

12 

 

Priority road 10 29 

 

stop 10 

13 
 

Road about 10 30 

 

Traffic signal 
ahead 

10 

14 
 

Road work 10 31 

 

Truck crossing 10 

15 
 

Slippery 10 32 

 

Right turn 10 

16 

 

Snow 10 33 
 

Watch for 

children 
10 

17 
 

Speed breaker 10 34 
 

Wild animals 
crossing 

10 

 

Table 4. Classification of Convolutional Layer 

Layers Size 

Input image resolution 32x32 

Convolutional Layer 1 30x30 

Convolutional Layer 2 28x28 

Sub sampling / Maxpool 1 14x14 

Convolutional Layer 3 12x12 

Convolutional Layer 4 10x10 
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Sub sampling / Maxpool 2 5x5 

Convolutional Layer 5 3x3 

Fully Connected Layer 1 256 

Fully Connected Layer 2 64 

Fully Connected Layer 3 8 

 

5. FPGA REALIZATION 

By utilising a convolutional layer, one can may reduce the size of the 

picture and analyse it more quickly because employing a fully linked layer may 

require more data and processing. To decrease the size of the picture, there are 

three to five convolutional layers, and the BNNs technique is used to identify 

the road sign. Version 2019.1 of Vivado is the programme in use. (Jaiswal et 

al., 2021) The software is implemented using the PYNQ-Z2 board. The Xilinx 

Zynq-7000 SoC, which includes a dual-core ARM Cortex-A9 CPU and 

programmable logic that can be programmed using the Xilinx Vivado Design 

Suite, is installed on the PYNQ-Z2 board. 

 

 
Figure 8. PYNQ-Z2 Board 

 

5.1 Steps to Create and Implement a Project 

Step 1: Create a Vivado Project 

Vivado "projects" are directory structures that have every file a certain 

design requires. Several of these files are system files made by Vivado to 

control project design, simulation, and implementation. Others of these files are 

user-created source files that explain and limit the design.  no need to worry 

about the user-created source files in a typical design.  
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But in the future, this may access to the other files as well if it require 

additional details about our design or more fine control over certain 

implementation aspects. Based on the sort of project need to develop, the 

"project type" configures certain design tools and the IDE look. They will often 

select "RTL Project" to set up the tools for creating a new design in all Real 

Digital courses. (RTL stands for Register Transfer Language, which is a phrase 

occasionally used to denote a hardware design language like Verilog). 

 

 
Figure 9. ZYNQ 7000 part 

 

There are several components made by Xilinx, and the synthesizer needs 

to know precisely which one is using in order to create the appropriate 

programming file. The device family, packaging, and speed and temperature 

grades—which solely impact special-purpose simulation results and have no 

bearing on the synthesizer's capacity to build accurate circuits—must be known 

in order to identify the right item.  It is necessary and check select the proper 

component for the equipment mounted on PYNQ Z2 BOARD as shown in 

Figure 9 and Table 5. 

 

Table 5. PYNQ-Z2 Package in Vivado 

Part number Xc7z007sclg400-1 

Family Zynq-7000 

Package Clg400 

Speed Grade -1 

Temperature Grade C 
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Step 2: Edit the Project - Create source files 

A constraints file that gives the synthesizer the details it needs to map the 

circuit into the target chip and an HDL file (Verilog or VHDL) that describes 

the circuit are both required for every project. It is possible to immediately 

replicate the Verilog source file after it has been prepared. Before spending the 

effort to create a circuit in a real device, and test its functionality using 

simulation (explained in greater depth later). The simulator enables allows to 

test that the outputs respond as anticipated in all circumstances by driving all 

of the circuit's inputs with a variety of patterns over time. 

 

Step 3: Synthesize, Implement, and Generate Bitstream 

By Synthesizing the design project after execution of Verilog and 

constraint files are finished. Verilog code is converted into a "netlist," which 

specifies all the necessary circuit components, during the synthesis process 

(these components are the programmable parts of the targeted logic device - 

more on that later). By selecting the Run Synthesis button in the Flow Navigator 

window as illustrated, this may begin the Synthesize procedure. When synthesis 

is active, can able to access the Project Manager log panel at the bottom to view 

a log of the processes that are now operating. The log will include a description 

of any synthesis-related mistakes that take place. When the design has been 

synthesized, the Implementation phase must be conducted. The synthesized 

design is mapped onto the Xilinx chip that it is intended for during the 

implementation phase. On the Flow Navigator window, click the Run 

Implementation button as displayed. The log panel at the bottom of Project 

Manager will provide information about any mistakes that happen while the 

implementation process is underway. 

By selecting the Create Bitstream procedure in the Flow Navigator panel 

as shown, this may produce a bit file after the design has been successfully 

executed. The method converts the implemented design into a bitstream that 

can be directly programmable into the hardware on PYNQ Z2 BOARD. 
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5.2 Board connection and Download Bitstream 

Use a micro-USB cord to connect Blackboard to your computer. Be 

careful to attach the micro-USB cable to the "PROG UART" port. By turning 

the switch in the top-left corner to the on position, now turn on the board. When 

it turns on, a red LED will start to glow near the switch. Make sure the blue 

jumper near the port marked "EXTP" is set to "USB" if the board won't turn on. 

The image depicts a Blackboard that is powered on and has the proper jumper 

settings. 

The Hardware panel, which is found in the upper left corner of Hardware 

Manager, will display the board's logic device component number if Vivado 

successfully recognizes the board (For the Blackboard this will be xc7z007s). 

Right-click on the device to be programmed, then choose Program Device. The 

produced bit file will be chosen in the text box when a Program Device pop-up 

dialogue window appears. To download the bitstream to the board, choose 

Program. 

 

5.3 Design Implemented and Block Generated 

To test the picture, downloaded the "GTSRB" dataset. (Zhang et al., 

2022), (Jokic et al., 2018) (Liang et al., 2018), (Fiscaletti et al., 2020) Following 

the creation of the HDL wrapper in Vivado, the processing system developed 

an IP and picked the ZYNQ7 chip since the PYNQ-Z2 board supports the 

ZYNQ 7000 series. AXI connection has been employed, which employs several 

slave and master nodes before using a reset system to restart the procedure. The 

output is then sent to the processing system once the IP block has been linked 

to two AXI interconnect blocks. 

 

 
Figure 10. Generated Block Diagram 
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Synthesis and implementation follow the generation of the block as 

generated in Figure 10. The implementation results demonstrate how Vivado 

uses time, power, and register. The bit files are then copied to the board after 

the bit stream has been created. On our computer, intercommon port 5 is used 

to connect the PYNQ-Z2. As the board boots up, a default IP may be configured 

in the settings, and the Jupyter page will appear instantly. From there, in order 

to view results in real time application, must upload our files. Vivado generates 

a report for two ways, and a comparison is made. 

 

 
Figure 11. Simple Block Diagram 

 

The ZYNQ7 Processing System and its peripherals, such as the AXI 

Interconnect and the IP Generator, which oversee facilitating communication 

between the processing system and the programmable logic of the PYNQ Z2 

board, are reset using the processor system reset. Although the IP Generator 

oversees gathering data on the accelerator's performance, the AXI Connector 

handles communication between the processing systems. The simplified 

version of the generated block is shown in Figure 11.  

 

6. RESULTS AND DISCUSSIONS 

Binarized neural network (BNN) is designed and synthesised utilising a 

completely linked and convolutional layer. Implementation is carried out on the 

Vivado platform using the ZYNQ 70000 series PYNQ-Z2 board. 

 

6.1 Synthesis and Implementation Results 

Timing Summary 

Worst Negative Slack (WNS): For maximum delay analysis, this number 

represents the worst slack of all time pathways.  
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It could be favorable or unfavorable. When considering only the worst 

violation of each timing route endpoint, Total Negative Slack (TNS) is the total 

of all WNS violations. When all timing requirements are satisfied for the max 

delay analysis, its value is 0 ns. The delay will be greatest if the worst negative 

slack value turns negative the total number of endpoints that failed (WNS< 0ns) 

is referred to as the number of failing endpoints. The total number of endpoints 

that have been examined. 

Worst Hold Slack (WHS): Refers to the timing routes' worst slack for the 

min delay analysis. It could be favorable or unfavorable. When just considering 

the worst violation of each timing route endpoint, Total Hold Slack (THS) is 

the total of all WHS violations. When all timing requirements are satisfied for 

the minimum delay analysis, its value is 0 ns. The delay will be greatest if the 

worst negative slack value turns negative. The total number of endpoints that 

failed (WHS<0 ns) is known as the number of failing endpoints. The total 

number of endpoints that have been examined. 

Worst Pulse Width Slack (WPWS): When utilizing both the min and max 

delays, corresponds to the worst slack of all the timing tests stated above. By 

just considering the worst violation of each pin in the design, Total Pulse Width 

Slack (TPWS) is the total of all WPWS infractions. When all pertinent 

restrictions are satisfied, its value is set to 0. The delay will be greatest if the 

worst negative slack value turns negative. The total number of pins with a 

violation (WPWS< 0 ns) is referred to as the number of failing endpoints. The 

total number of endpoints that have been examined. 

 

Timing Summary of Fully Connected Layer 

Worst Negative Slack (WNS) - 0.101ns 

Total Negative Slack (TNS) Total Endpoints -131755 

Worst Hold Slack (WHS) -0.009ns 

Total Hold Slack (THS) Total Endpoints -131755 

Worst Pulse Width Slack (WPWS) -3.750ns 

Total Pulse Width Slack (TPWS) Total Endpoints -49520 

 

Timing Summary of Convolutional Layer 

Worst Negative Slack (WNS) - 0.166ns 
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Total Negative Slack (TNS) Total Endpoints -101307 

Worst Hold Slack (WHS) -0.019ns 

Total Hold Slack (THS) Total Endpoints -101307 

Worst Pulse Width Slack (WPWS) -3.750ns 

Total Pulse Width Slack (TPWS) Total Endpoints -41013 

 

Power Analysis 

The post-synthesis, post-placement, and post-routing stages of the flow 

are all powered estimated using the Vivado ® power analysis tool. Since it can 

read the precise logic and routing resources from the implemented design, post-

route is when it is most accurate. The Summary power report and the many 

perspectives of your design that you may explore—by clock domain, by 

resource type, and by design hierarchy—are shown in the accompanying image. 

You can modify environment settings and design activities in the Vivado 

Integrated Design Environment (IDE) to assess how to lower your design 

supply and thermal power usage. In order to evaluate and identify the design's 

high power-consuming hierarchy and resources, you may also cross-probe into 

the design from the power report. 

 

 
Figure 12. Power Analysis Using Fully Connected Layer 

 

From Figure 12, the power analysis for a completely linked layer is 

successfully obtained from the given graphic. 2.21W of the chip's total power 

is utilized by clocks, signals, logic, Memory, DSP, and PS7. The junction 

temperature is 50.6°C, while the thermal margin temperature is 34.4°C, or 

2.8W. 
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Figure 13. Power Analysis Using Convolutional Layer 

 

From Figure 13, the power analysis for a completely linked layer is 

successfully obtained from the given graphic. 1.703W of the chip's total power 

is utilized by clocks, signals, logic, Memory, DSP, and PS7. The junction 

temperature is 44.4°C, while the thermal margin temperature is 40.4°C, or 

3.3W. 

 

Synthesis Results 

The functionally verified HDL codes are implemented in FPGA platform 

for prototype hardware generation. The synthesis results Fully connected layer 

and convolutional layer are shown in Table 6 and Table 7. 

 

Table 6. Implementation Result of Fully Connected Layer 

Device Utilization Summary 

Site Type Used Available Util% 

Slice LUTs 40946 53200 76.97 

LUT as Logic 36190 53200 68.21 

LUT as Memory 4791 
17400 27.53 LUT as Distributed RAM 4362 

LUT as Shift Register 429 

Slice Registers 45338 106400 42.61 

Register as Flip Flop 45338 106400 42.61 

F7 Muxes 903 26600 3.39 

F8 Muxes 128 13300 0.96 

 

To examined the outcomes and power use on the device utilizing fully 

linked layer BNNs.  
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In addition to using the F7 mux, which may multiply some inputs, the 

slice register and block ram memory are also utilized. The utilization statistics 

and design summary for the completely linked layer are shown in the 

implementation results above; the worst time is 0.101ns, and the power use is 

around 2.221W. 

In order to examined the outcomes and power use on the device utilizing 

convolutional layer BNNs. In addition to using the F7 mux, which may multiply 

some inputs, the slice register and block ram memory are also utilized. The 

utilization statistics and design summary for the completely linked layer are 

shown in the implementation results below; the worst time is 0.166ns, and the 

power use is around 1.703W. 

 

Table 7. Implementation Result of Convolutional Layer 

Device Utilization Summary 

Site Type Used Available Util% 

Slice LUTs 24395 53200 45.86 

LUT as Logic 22472 53200 42.24 

LUT as Memory       1923 

17400 11.05 LUT as Distributed RAM 1578 

LUT as Shift Register 345 

Slice Registers 38506 106400 36.19 

Register as Flip Flop 38506 106400 36.19 

F7 Muxes 857 26600 3.22 

F8 Muxes 240 13300 1.80 

 

The resource utilization for the BNN algorithm using the Fully connected 

layer and convolutional layer is listed in a Table 8. 

 

Table 8. Comparison of Fully Connected and Convolutional Layer 

Resources FCL CNL % of Reduction 

Slice LUTs 40946 24395 40.4 

LUT as Logic 36190 22472 37.9 

LUT as Memory       4791 1923 59.8 

LUT as Distributed RAM 4362 1578 63.8 

LUT as Shift Register 429 345 19.5 

Slice Registers 45338 38506 15 

F7 Muxes 903 857 5 

POWER 2.221W 1.703W 23.3 
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The resource utilization for the BNN algorithm using the Fully connected 

layer and convolutional layer is compared using a bar graph in the Figure 14 

and found that the resource is utilized minimally in Convolutional layer than 

the Fully connected layer which uses the resources comparatively higher. The 

usage of slice LUTs and LUT flip flop pairs are 31% comparatively lower in 

Convolutional layer than in Fully connected layer which utilizes the area 

efficiently. The timing constraints and area utilization ensures the efficiency of 

Convolutional layer. 

 

 
Figure 14. Comparison Of Two Layers 

 

Jupyter Output for Traffic Sign Recognition 

Using https://192.168.2.99 as the default IP, connect the PYNZQ-Z2 

board to the Jupyter notebook. The Jupyter notebook requires the username and 

password to be entered after the connection. Both the username and password 

are Xilinx. After that, you must upload the zip file or folder containing the 

dataset and the codes. The PYNQ-Z2 board must have the BNN package 

installed in order to carry out the operation. First determine how many datasets 

there are and how many classes are included in the supplied dataset. So, the 

GTSTB dataset, which includes 50,000 photos and the 42 classes stated in the 

previous chapter, for determining the inference time and classification rate 

using the 340 input photos provided as shown in Figure 15. The sign's name 

and the class to which the image belongs will be included in the output. Also, 

the program's operating speed varies across hardware and software. 
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Figure 15. Input Images Uploaded 

 

 
Figure 16. Classification in Hardware 

 

The provided Figure 16 illustrates the inference results and performance 

benchmarks of a convolutional neural network (CNN) trained for traffic sign 

classification, likely utilizing the German Traffic Sign Recognition Benchmark 

(GTSRB) dataset. The execution block demonstrates a batch processing 

approach where the classify_images function predicts class indices for a series 

of input images, which are subsequently mapped to human-readable labels such 

as "Priority Road," "Give way," and various speed limit indicators.  
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High-performance efficiency is a key highlight of this output, with the 

model achieving a classification rate of 2,667.20 images per second and a mean 

inference time of approximately 374.92 microseconds per image. Furthermore, 

the inclusion of a "Not a roadsign" classification category suggests the 

implementation of a robust filtering mechanism to handle non-relevant 

background data, which is critical for the reliability of real-time autonomous 

driving systems. 

 

 
Figure 17. Classification in Software 

 

The following figure illustrates the performance characteristics of a 

traffic sign classification model specifically operating under a software-only 

runtime environment (bnn. RUNTIME_SW). While the model maintains 

consistent classification accuracy—correctly identifying a diverse array of 

regulatory and warning signs such as "No overtaking," "Give way," and various 

speed limits—the computational overhead of the software-based inference is 

substantial. The system recorded an inference time of approximately 

63,640,255.00 microseconds, translating to a significantly reduced throughput 

of 0.63 images per second and a latency of 1,591,006.38 microseconds per 

image. This performance metric highlights the inherent limitations of standard 

software execution for complex neural network operations in real-time 

scenarios, serving as a critical baseline for evaluating the acceleration provided 

by dedicated hardware runtimes or FPGA-based implementations. 
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Table 9. Comparison between Software and Hardware BNN 

Metric 

Software Runtime 

(SW) 

Hardware Runtime 

(BNN) Improvement 

Throughput 0.63 FPS 2667.20 FPS ~4,233x 

Inference Latency 1,591,006.38 μs 374.92 μs >99.9% reduction 

Resource 

Efficiency N/A 

31% Reduction in 

LUTs 

Optimized for 

FPGA 

Power 

Consumption N/A 1.703W Energy Efficient 

 

The performance comparison between the software runtime (SW) and 

hardware runtime (BNN) highlights significant improvements in both speed 

and resource efficiency as shown in Table 9. Throughput increases by 

approximately 4,233 times, with the hardware achieving 2,667.20 FPS 

compared to the software’s 0.63 FPS. Inference latency is reduced by over 

99.9%, from 1,591,006.38 μs in software to just 374.92 μs in hardware. 

Additionally, resource usage is optimized for FPGA, with a 31% reduction in 

LUTs. Power consumption is notably lower in the hardware implementation, 

with the system consuming just 1.703W, demonstrating its energy efficiency. 

 

CONCLUSION 

This method can be effectively applied to a variety of real-time 

applications, offering significant performance benefits. The approach 

demonstrates impressive efficiency, particularly in the classification of traffic 

signs, with the system capable of classifying them in under 0.5 seconds. A 

generalized recognition system for road signs was developed using a 3x3 kernel 

and a 64x64 feature matrix. A comparison of resource usage between the BNN 

algorithm's fully connected layer and convolutional layer revealed that the 

convolutional layer consumes significantly fewer resources. Specifically, the 

convolutional layer uses 31% less slice LUTs and LUT flip-flop pairs, 

effectively optimizing space usage. The convolutional layer's efficiency is 

further validated by its ability to meet strict time constraints and minimize area 

usage. Despite being less densely connected, with some input nodes not 

affecting all output nodes, convolutional layers outperform fully connected 

layers in terms of resource consumption and learning flexibility.  
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Implementation results in Vivado show that the fully connected layer has 

higher resource utilization, but the convolutional layer exhibits a lower power 

consumption of 1.703W. Additionally, the road sign recognition process is 

completed in just 3527 microseconds, with 1417.64 images classified per 

second. In conclusion, this approach proves to be both resource-efficient and 

effective for real-time applications, offering significant advantages in speed, 

power consumption, and overall performance. 
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INTRODUCTION 

Composite solid propellants remain central to contemporary propulsion 

systems owing to their reliability, scalability, and tunable performance. The 

present work reports an expanded experimental investigation into potassium 

nitrate (KNO₃)–based composite propellants employing hydroxyl-terminated 

polybutadiene (HTPB) as the polymeric fuel–binder. In contrast to 

conventional ammonium perchlorate (AP) formulations, KNO₃ offers enhanced 

safety, reduced environmental impact, and improved handling characteristics, 

albeit at the expense of energetic performance. To address this limitation, 

catalytic additives and optimized curing systems were systematically explored. 

Propellant formulations were prepared using HTPB with plasticizers (dioctyl 

adipate, dioctyl phthalate, and dibutyl phthalate), cured with either toluene 

diisocyanate (TDI) or isophorone diisocyanate (IPDI), and catalyzed using 

cupric oxide (CuO) and cobalt (II, III) oxide (Co₃O₄). 

A comprehensive experimental methodology encompassing controlled 

mixing, casting, vacuum degassing, and multi-stage thermal curing was 

adopted. Thermophysical and combustion-related properties—including 

density, moisture content, calorific value, burning rate, flame temperature, and 

emission spectra—were evaluated using standardized laboratory techniques. 

Results demonstrate that TDI-based formulations consistently outperform 

IPDI-based systems in terms of combustion temperature and calorific value, 

attributable to higher crosslink density and aromatic rigidity. Among the 

catalysts investigated, CuO significantly increased peak flame temperature (up 

to 1034 °C), while Co₃O₄ enhanced calorific value (up to 2598.8 cal g⁻¹) and 

promoted smoother combustion behavior. Spectral emission analysis 

confirmed the presence of characteristic K⁺ and Cu²⁺ species, validating 

catalytic participation during combustion. 

The expanded dataset and discussion provide deeper insight into 

structure–property–performance relationships in KNO₃–HTPB propellants. 

The findings highlight the feasibility of developing safer, chlorine-free, and 

environmentally benign solid propellants for educational, experimental, and 

small-scale aerospace applications. The work contributes to the growing body 

of research on green propulsion materials and establishes a foundation for 

future pressure-dependent and motor-scale studies. 
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Solid rocket propulsion has played a decisive role in the advancement of 

aerospace and defense technologies due to its inherent simplicity, mechanical 

robustness, and operational reliability. Unlike liquid propulsion systems, solid 

propellants integrate fuel and oxidizer into a single grain, eliminating complex 

feed systems and enabling long-term storability. Composite solid propellants, 

comprising a crystalline oxidizer dispersed within a polymeric binder matrix, 

dominate modern applications ranging from tactical missiles to space launch 

vehicle boosters (Kubota, 2002; Yang et al., 2000). 

Hydroxyl-terminated polybutadiene (HTPB) has emerged as one of the 

most widely adopted binders for composite propellants since the 1960s. Its 

popularity stems from its favorable mechanical flexibility, chemical 

compatibility with a wide range of oxidizers, and ability to form polyurethane 

networks when cured with diisocyanates (Ramakrishna et al., 2002). 

Traditionally, ammonium perchlorate (AP) has been the oxidizer of choice due 

to its high oxygen balance and energetic output. However, AP-based 

propellants generate environmentally harmful chlorine-containing exhaust 

species and pose handling and disposal challenges. 

 

Figure 1. Chemical structure of HTPB. 
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Figure 2. HTPB/IPDI 

 

Figure 3. HTPB/TDI 

 

In recent years, increasing emphasis on environmental sustainability and 

operational safety has motivated the exploration of alternative oxidizers such 

as ammonium nitrate (AN), ammonium dinitramide (ADN), and potassium 

nitrate (KNO₃) (Reddy et al., 2021).  
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KNO₃, though less energetic than AP, offers distinct advantages 

including low sensitivity to impact and friction, ease of availability, and 

reduced environmental impact. These attributes make KNO₃-based propellants 

particularly attractive for academic research, educational demonstrations, and 

small-scale propulsion systems. 

Despite these advantages, KNO₃-based propellants often suffer from 

lower burning rates and reduced flame temperatures. To mitigate these 

drawbacks, burn rate modifiers and catalysts—typically transition metal 

oxides—are incorporated to tailor combustion characteristics. Cupric oxide 

(CuO) and cobalt oxide (Co₃O₄) are among the most studied catalysts due to 

their redox activity and ability to alter oxidizer decomposition pathways (Lee 

et al., 2011; Zhang et al., 2016). 

The curing chemistry of HTPB also plays a critical role in determining 

final propellant properties. Diisocyanates such as toluene diisocyanate (TDI) 

and isophorone diisocyanate (IPDI) react with hydroxyl groups in HTPB to 

form a crosslinked polyurethane matrix. The molecular structure of the curing 

agent influences curing kinetics, crosslink density, mechanical integrity, and 

thermal stability (Nguyen & Wang, 2010). 

The present study expands upon prior work by providing a detailed, data-

rich investigation of KNO₃–HTPB composite propellants formulated with 

different plasticizers, curing agents, and catalysts. Beyond basic 

characterization, this paper emphasizes combustion diagnostics, spectral 

analysis, and comparative performance evaluation, with the aim of contributing 

a comprehensive reference for green composite propellant development. 

 

1. CLASSIFICATION OF SOLID ROCKET 

PROPELLANTS 

Solid rocket propellants are commonly classified based on their chemical 

composition, energetic mechanism, and physical structure. Broadly, they are 

categorized into homogeneous and heterogeneous (composite) propellants. 

Homogeneous propellants consist of fuel and oxidizer combined at the 

molecular level. These include double-base propellants, primarily composed of 

nitrocellulose and nitroglycerin, which offer smooth combustion and low 

smoke but limited performance and scalability.  
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Modified double-base (MDB) propellants incorporate energetic 

additives such as RDX or HMX to enhance performance, though they often 

present increased sensitivity and processing complexity. 

Heterogeneous or composite propellants consist of a crystalline oxidizer 

dispersed within a polymeric binder matrix that also acts as a fuel. This category 

dominates modern aerospace applications due to its superior mechanical 

strength, formulation flexibility, and higher specific impulse. Conventional 

composite propellants typically employ ammonium perchlorate (AP) as the 

oxidizer and hydroxyl-terminated polybutadiene (HTPB) as the binder. 

However, environmental and safety concerns associated with AP have driven 

research into alternative oxidizers such as ammonium nitrate (AN), ammonium 

dinitramide (ADN), and potassium nitrate (KNO₃). Based on oxidizer 

chemistry, composite propellants may further be classified as chlorine-based 

(e.g., AP systems) and chlorine-free or green propellants (e.g., AN-, ADN-, or 

KNO₃-based systems). Green propellants offer reduced environmental impact, 

lower toxicity, and enhanced handling safety, albeit at reduced energetic 

performance. Additionally, solid propellants can be classified by burning rate 

modifiers, where metallic or metal oxide catalysts are introduced to tailor 

combustion behavior, and by binder chemistry, depending on curing agents and 

plasticizers used to optimize mechanical and thermal properties. This study 

focuses on chlorine-free composite solid propellants, specifically KNO₃–HTPB 

formulations, representing a safer and environmentally benign alternative for 

small-scale and experimental propulsion applications. 

 

2. LITERATURE REVIEW 

Evolution of Composite Solid Propellants 

The evolution of composite solid propellants has been closely linked to 

advances in polymer chemistry and materials science. Early propellants relied 

on asphalt and polysulfide binders, which were gradually replaced by synthetic 

polymers offering superior mechanical and thermal properties.  HTPB emerged 

as a dominant binder due to its controllable molecular weight, terminal 

hydroxyl functionality, and excellent compatibility with energetic additives 

(Smith & Anderson, 2002). 
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Oxidizer Selection and Environmental Considerations 

While AP-based propellants remain unmatched in performance, 

environmental concerns have prompted significant research into chlorine-free 

alternatives. Raghu et al. (2014) demonstrated that KNO₃-based formulations 

exhibit enhanced safety and stability, though at reduced energetic efficiency. 

Recent reviews emphasize the importance of balancing performance with 

environmental impact, particularly for future aerospace systems subject to 

stricter emission regulations (Ghosh & Sengupta, 2022). 

 

Curing Chemistry of HTPB 

The curing reaction between hydroxyl-terminated polymers and 

diisocyanates forms the structural backbone of composite propellants. TDI-

based systems cure rapidly and produce rigid networks, whereas IPDI-based 

systems cure more slowly and impart improved flexibility and weather 

resistance (Nguyen & Wang, 2010; Shrivastava & Kulkarni, 2011). The 

NCO:OH ratio, curing temperature, and presence of catalysts critically 

influence the final properties. 

 

Role of Burn Rate Catalysts 

Transition metal oxides have been extensively studied as combustion 

catalysts. CuO has been shown to enhance flame temperature and energy 

release, while Co₃O₄ promotes smoother combustion and modifies burn rate 

behavior (Lee et al., 2011; Zhang et al., 2016). Spectroscopic studies reveal that 

these catalysts participate actively in redox reactions during combustion, 

altering gas-phase and condensed-phase kinetics (Tiwari & Jain, 2013). 

 

Combustion Diagnostics and Spectroscopy 

Advanced diagnostic techniques such as 2D and 3D emission 

spectroscopy provide valuable insight into combustion mechanisms by 

identifying intermediate species and tracking temporal evolution of flames. The 

detection of K⁺, Cu²⁺, and OH* emissions has been widely used to correlate 

chemical reactions with macroscopic performance metrics (Jani & Shah, 2016). 
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3. MATERIALS AND METHODS 

Materials 

 

Table 1. Propellant Material Composition 

Component Chemical Name Formula Function 
Wt% 

Range 

HTPB 
Hydroxyl-Terminated 
Polybutadiene 

HO–
(C₄H₆)ₙ–OH 

Fuel & Binder 12% 

KNO₃ Potassium Nitrate KNO₃ Oxidizer 65–75% 

CuO Cupric Oxide CuO 
Burn Rate 

Catalyst 
1% 

Co₃O₄ Cobalt (II, III) Oxide Co₃O₄ 
Burn Rate 

Catalyst 
0.5% 

DOA/DOP/DBP Plasticizers Various 
Process 
Aid/Flexibility 

8% 

IPDI/TDI Diisocyanates Various Curing Agent 1–2% 

 

Preparation Procedure 

The preparation process began with the drying of potassium nitrate 

(KNO₃) at 100 °C for 2 hours, after which it was sieved to obtain a particle size 

finer than 150 mesh. Hydroxyl-terminated polybutadiene (HTPB) was then 

blended with selected plasticizers, such as dioctyl adipate (DOA), dioctyl 

phthalate (DOP), or dibutyl phthalate (DBP), at 40 °C.  

This was followed by the sequential addition of catalysts, including 

cupric oxide (CuO) and cobalt oxide (Co₃O₄), along with the sieved KNO₃, in 

a vacuum mixer to ensure homogeneous dispersion. The curing agent, either 

isophorone diisocyanate (IPDI) or toluene diisocyanate (TDI), was introduced 

at the final mixing stage, with dibutyltin dilaurate optionally added to accelerate 

the curing process. The resulting mixture was cast into Teflon-lined molds and 

subjected to vacuum degassing to remove entrapped air bubbles.  

Finally, the samples were thermally cured, initially at room temperature 

for 24 hours, followed by an extended curing period of 48–72 hours at 50–60 

°C to achieve complete polymerization. 
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Characterization Techniques 

Density, moisture content, and calorific value were measured using 

standard analytical instruments. Burning rate was determined via strand burner 

tests. Combustion temperature and emission spectra were recorded using 

thermocouples and flame emission spectroscopy. 

 

4. RESULTS AND DISCUSSION 

Calorific Value: Measured using a LABTRONICS bomb calorimeter 

with oxygen at 400 psi, calibrated with benzoic acid. 

 

Table 2. Calorific Value Results Of Propellant Formulations 

Sample Max Temp Rise (°C) Calorific Value (cal/g) 

IPDI Cupric 0.745 1849.23 

IPDI Cobalt 0.746 1779.30 

TDI Normal 0.939 2356.90 

TDI Cupric 0.940 2275.50 

TDI Cobalt 0.999 2598.80 

 

The TDI–Cobalt formulation exhibited the highest calorific value 

(2598.8 cal/g), indicating superior energy release, likely due to enhanced 

catalytic activity of Co₃O₄. 

Density: Determined using a WENSAR Digital Analytical Weighing 

Balance (accuracy 0.001 g) by dividing sample weight by volume. 

 

Table 3. Density Of Propellant Samples 

Sample Density (g/cm³) 

IPDI Cupric 1.333 

IPDI Cobalt 1.491 

TDI Normal 1.234 

TDI Cupric 1.285 

TDI Cobalt 1.670 

 

Higher densities in TDI–Cobalt suggests better packing of oxidizer and 

catalyst particles. 
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Moisture Content: Analyzed via a moisture balance using the loss-on-

drying method. 

 

Table 4. Propellant Moisture Results 

Sample Moisture (%) 

IPDI Cupric 0.85 

IPDI Cobalt 0.43 

TDI Normal 0.90 

TDI Cupric 0.96 

TDI Cobalt 0.68 

 

Low moisture content (<1%) indicates effective drying and sealing, 

critical for propellant stability. 

Burning Rate: Calculated by timing the combustion of 1 cm and 2 cm 

cylindrical strands with a stopwatch. 

 

Sample Length (cm) Time (s) Burn Rate (cm/s) 

TDI Cobalt 1 58.5008 0.0170940 

TDI Cupric 1 45.9325 0.0217710 

TDI Normal 1 35.705 0.0280073 

IPDI Cobalt 1 68.6625 0.0145639 

IPDI Cupric 1 43.4175 0.0230322 

 

TDI Normal exhibited the highest burning rate (0.0280 cm/s), likely due 

to the absence of catalysts slowing decomposition. Co₃O₄ significantly 

enhanced burn rates in both TDI and IPDI systems, while CuO produced higher 

combustion temperatures. 

Combustion Analysis: Conducted using 2D/3D emission spectroscopy 

(Avantes spectrometer) to identify species like K⁺ and Cu²⁺. 

 

Tablo 5. Combustion Temperature 

Sample Temperature (°C) 

TDI Cupric 1034 

TDI Normal 900.4 
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Sample Temperature (°C) 

TDI Cobalt 927.5 

IPDI Cupric 860.1 

IPDI Cobalt 813 

 

TDI–Cupric achieved the highest temperature (1034°C), confirming 

CuO’s role in enhancing thermal energy release. In below, the first graph, 

"Refined Burning Rate of Various Propellant Formulations", shows that the 

TDI Base formulation exhibits the highest burning rate at 0.028007 cm/s, 

followed by IPDI Cupric (0.023032 cm/s) and TDI Cupric (0.021771 cm/s). 

The lowest burning rates are observed in TDI Cobalt (0.017094 cm/s) and IPDI 

Cobalt (0.014564 cm/s), indicating that cobalt oxide generally slows down the 

combustion rate compared to cupric oxide.  

 

Figure 1. Combustion Characteristics Of Propellant Formulations 
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The second graph, "Maximum Combustion Temperature of Various 

Propellant Formulations", reveals that TDI + Cupric Oxide achieves the highest 

combustion temperature at 1034°C, while IPDI + Cobalt Oxide has the lowest 

at 813°C. Overall, formulations containing cupric oxide tend to produce higher 

combustion temperatures than those with cobalt oxide, and TDI-based 

propellants generally outperform IPDI-based ones in terms of thermal output. 

From the graph we can say that-   

TDI + Cupric Oxide (1034°C) has the highest temperature, confirming 

that: TDI as a binder and CuO as a catalyst, significantly improve combustion 

performance, confirming it as the most thermally energetic composition. 

TDI without catalyst (900°C) still performs well, better than any IPDI-

based formulation. This suggests that TDI alone contributes to higher energy 

release due to its aromatic structure and better crosslinking properties.  

TDI + Cobalt Oxide (927.5°C) performs better than TDI alone. 

 IPDI + Cupric Oxide (860.1°C) performs moderately, confirming CuO 

helps, but IPDI’s lower reactivity limits max temperature compared to TDI. 

IPDI + Cobalt Oxide (813°C) is the least energetic formulation among 

the four. This shows both: 

 IPDI is less reactive 

 Co₃O₄ is a weaker catalyst than CuO in this system. 

Spectral Analysis: Emission spectroscopy revealed K⁺ (766 nm) and 

Cu²⁺ (510–530 nm) peaks, with TDI–Cupric showing stronger emissions, 

indicating more energetic combustion. 
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Figure 2. Combustion Emission Spectra Of Propellant Samples 

 

The spectral analysis of different fuel formulations was carried out using 

3D spectra (Wavelength vs. Intensity vs. Time or Measurement Index) offers a 

dynamic representation of how these emissions evolve throughout the 

combustion event. Among all, the catalyzed samples (especially TDI Cupric) 

exhibited more complex and multi-peaked spectra, indicating a more energetic 

and chemically diverse combustion environment due to catalytic enhancement. 

These observations affirm the role of metallic additives in modifying the 

thermal decomposition pathways and increasing energy release rates in 

composite propellants. 

 

Table 6. Emission Peaks Of Propellant Samples 

Sample Peak (nm) Functional Group 

IPDI Cobalt 766 Potassium ion (K⁺) 

IPDI Cupric 766, 515–525 K⁺, Cu²⁺ (from CuO) 

TDI Base 765 K⁺ 

TDI Cupric 766, 510–530 K⁺, Cu²⁺(stronger emission than IPDI Cupric) 

  



INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS 

49 
 

Table 7. Functional Group / Species Reference Mapping 

Species Wavelength 

(nm) 

Comment 

Potassium (K⁺) 766.5, 769.9 Strong doublet lines, dominant in 

combustion of KNO₃ 

Copper (Cu²⁺) 510–530 Green-blue emission of copper 

compounds 

Cobalt (Co²⁺) 345–375 Weak violet-blue emission; not resolved in 

current graphs 

CH 

(methylidyne) 

~431 From hydrocarbon combustion HTPB not 

clearly visible.  

OH Radical ~309 UV region, often seen in flame — not 
resolved here 

 

5. FUTURE SCOPE OF THE PRESENT WORK 

The present study has established a foundational understanding of the 

combustion characteristics of HTPB-based composite solid propellants using 

KNO₃ as the oxidizer and metallic catalysts such as CuO and Co₃O₄. While key 

parameters like calorific value, density, moisture content, and combustion 

temperature have been evaluated, several important aspects remain unexplored, 

which presents valuable opportunities for further research and development. 

 

5.1 Unperformed Pressure Measurement Study 

A significant experimental limitation in this study is the absence of 

chamber pressure measurement during combustion. Measuring pressure–time 

profiles is crucial for characterizing the real-world performance of solid 

propellants in rocket motors. This experiment, typically conducted using a 

closed bomb calorimeter or strand burner under controlled pressure, provides 

data such as: 

 Peak pressure generation 

 Burning rate dependence on pressure 

 Ignition delay and pressure rise time 

 Stability of combustion under confined conditions 

These results would enable determination of the pressure exponent (n) in 

the empirical burning rate law: 

Burning Rate= a ⋅ Pn 
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Where a is the pre-exponential constant and n indicates how strongly 

burn rate depends on pressure. Future work should include pressure 

measurements to validate combustion efficiency, thermal stability, and ignition 

consistency across the various formulations studied here. 

 

5.2 Suggested Future Experiments 

To comprehensively evaluate and optimize the performance of these 

propellants, the following experimental extensions are recommended: 

 

Strand Burner Testing Under Pressure 

Conduct strand burn rate experiments across a range of pressures (1–10 

atm) to obtain accurate pressure-dependent burn profiles. This would help 

assess whether a formulation is suitable for low-thrust or high-thrust 

applications. 

 

Thermal Analysis: TGA & DSC 

Use Thermogravimetric Analysis (TGA) and Differential Scanning 

Calorimetry (DSC) to study the decomposition kinetics, phase transitions, and 

thermal stability of each formulation. These techniques reveal critical 

information about heat release, ignition temperature, and compatibility of 

components. 

 

Microstructural Studies (SEM/EDX) 

Apply Scanning Electron Microscopy (SEM) and Energy Dispersive X-

ray Analysis (EDX) to visualize and chemically analyze the dispersion of 

oxidizer and catalysts in the cured binder. Poor dispersion can cause uneven 

combustion and performance instability. 

 

Spectral Flame Diagnostics at Different Conditions 

Expand 2D and 3D emission spectroscopy to different pressure and 

temperature environments to study changes in species evolution. This will help 

in better identifying metal–ion interactions and combustion efficiency under 

flight-like conditions.  
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Chemical Compatibility & Stability Studies 

Long-term storage tests under humidity and temperature cycles can help 

determine the shelf-life and chemical compatibility of propellant components. 

 

5.3 Research Opportunities for Future Work 

For researchers interested in continuing this work or exploring its 

practical applications, the following directions are highly recommended: 

 

New Catalyst Exploration 

In addition to CuO and Co₃O₄, catalysts like nano-Fe₂O₃, MnO₂, NiO, or 

TiO₂ can be studied for their ability to alter flame temperature, burn rate, and 

sensitivity. 

 

Alternative Binder Systems 

Exploration of other binders such as: 

 GAP (Glycidyl Azide Polymer) – Energetic and gas-generating 

 PBAN (Polybutadiene Acrylonitrile) – More rigid and thermally stable 

 HTPE (Hydroxyl-Terminated Polyether) – Improved mechanical 

properties 

These systems may improve performance or reduce environmental 

impact. 

 

Incorporation of Metallic Fuels 

Adding aluminum or magnesium powders to the formulation could 

significantly enhance energy output and specific impulse. However, this must 

be balanced with issues of slag formation and safety. 

 

Green Propulsion Materials 

Working toward chlorine-free oxidizers (such as Ammonium Nitrate 

(AN), Ammonium Dinitramide (ADN)) and lead-free catalysts would make the 

system eco-friendlier and more compliant with future regulations. 
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Computational Simulation 

Use computational fluid dynamics (CFD) and reaction kinetics 

simulations to model flame spread, pressure wave propagation, and regression 

rate of the propellant. This can be useful for designing scalable rocket motors. 

 

5.4 Potential Applications and Real-World Impact 

The formulations developed in this study—particularly those using TDI-

CuO and TDI-Co₃O₄—show promising combustion characteristics and thermal 

energy output. With further optimization, such propellants can be applied to: 

 Model rocketry and student satellite launch vehicles (CanSat, Sounding 

rockets) 

 Laboratory demonstration of safe solid propulsion 

 Low-cost booster stages for UAVs or expendable drones 

 Green propulsion systems in educational and test-bed missions 

By refining the combustion parameters, improving safety, and reducing 

environmental impact, this study lays the groundwork for future work in the 

field of sustainable solid propulsion. 

 

6. LIMITATIONS OF THE PRESENT STUDY 

Despite providing valuable insights into the formulation and combustion 

behavior of KNO₃–HTPB based composite solid propellants, the present study 

is subject to certain limitations that should be acknowledged. The experimental 

investigations were primarily conducted under ambient pressure conditions, 

and pressure-dependent burning rate measurements were not performed. As a 

result, key combustion parameters such as the pressure exponent and steady-

state burning behavior under realistic motor chamber pressures could not be 

evaluated. These parameters are critical for predicting performance in actual 

rocket motor applications. 

The study was limited to laboratory-scale strand combustion tests, and 

no motor-scale or static firing experiments were conducted. Consequently, 

thrust characteristics, chamber pressure evolution, erosive burning effects, and 

nozzle–propellant interactions were not assessed. 
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In addition, the concentration range of burn rate catalysts (CuO and 

Co₃O₄) was restricted, and the influence of varying catalyst particle size, 

morphology, or nano-scale additives was not explored. 

Mechanical properties such as tensile strength, elongation at break, and 

viscoelastic behavior of the cured propellant grains were not evaluated. These 

properties are essential for assessing structural integrity during handling, 

storage, and operation, particularly under thermal and vibrational loads. 

Furthermore, long-term aging, compatibility, and environmental stability 

studies were beyond the scope of the present work. 

Spectral diagnostics were limited by the resolution of the available 

instrumentation, restricting the detection of certain transient radical species in 

the ultraviolet region. Finally, numerical modeling and combustion simulations 

were not incorporated, limiting the ability to generalize the experimental 

findings across a broader range of operating conditions. 

Addressing these limitations in future investigations will enable a more 

comprehensive understanding of KNO₃–HTPB propellant systems and support 

their optimization for practical aerospace propulsion applications. 

 

CONCLUSION 

This experimental study successfully demonstrated the preparation, 

processing, and performance evaluation of HTPB-based composite solid 

propellants using potassium nitrate (KNO₃) as the oxidizer and various 

combinations of curing agents (TDI and IPDI) and burn rate catalysts (CuO and 

Co₃O₄). Through a series of controlled experiments, the effect of these variables 

on key performance metrics such as burning rate, combustion temperature, and 

calorific value was thoroughly assessed. 

Among the formulations tested, the TDI–Cupric Oxide sample achieved 

the highest combustion temperature of 1034 °C, indicating the most thermally 

energetic behavior. However, the TDI–Cobalt Oxide sample demonstrated the 

highest calorific value of 2598.8 cal/g, confirming its superior energy output 

per unit mass. On the other hand, the IPDI-based formulations consistently 

showed lower combustion efficiency and energy release, with the IPDI–Cobalt 

Oxide sample producing the lowest combustion temperature (813 °C) and 

calorific value. 
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Burning rate analysis revealed that cobalt oxide catalysts significantly 

enhance the combustion rate, particularly in IPDI–Cobalt and TDI–Cobalt 

systems, suggesting a strong catalytic influence on decomposition kinetics. In 

contrast, cupric oxide, while slightly slower in burn rate, produced higher 

combustion temperatures and cleaner spectral signatures. 

In summary, both the choice of isocyanate (curing agent) and metal oxide 

catalyst play a pivotal role in tailoring the performance of composite 

propellants. TDI-based systems, especially when combined with CuO or Co₃O₄, 

emerged as the most effective combinations for high-energy applications. 

These findings provide valuable insight into the optimization of green and 

stable propellant formulations for academic, industrial, and defense-related 

propulsion technologies. 
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INTRODUCTION 

Intelligent Signal Processing (ISP) combines established signal 

processing methods with artificial intelligence and machine learning techniques 

to build systems that can understand and respond to complex forms of data, 

including speech signals, images, and sensor outputs. Rather than depending 

solely on predefined mathematical models, these systems learn patterns directly 

from data, allowing them to perform tasks such as pattern identification, fault 

analysis, adaptive control, and intelligent decision-making (Chen, 2023). As a 

result, ISP has found applications across diverse fields, like healthcare 

diagnostics, communication systems, energy monitoring, and automation. 

The fundamental idea behind ISP lies in integrating traditional digital 

signal processing with learning-based models such as neural networks and deep 

learning frameworks. This integration enables systems to automatically extract 

relevant features from raw, high-dimensional signals and adapt their behaviour 

as operating conditions change (Wang, 2023). By learning system 

characteristics from observed data instead of rigid analytical formulations, ISP 

offers improved flexibility and resilience in uncertain environments, supporting 

advanced applications including smart power system supervision and enhanced 

speech recognition technologies. 

 

1. LIMITATIONS OF CONVENTIONAL SIGNAL 

PROCESSING IN NON-LINEAR, NON-STATIONARY 

ENVIRONMENTS 

Conventional signal processing methods are based on the hypotheses 

of linearity and stationarity. These assumptions become substantial limitations 

when dealing with real-world, complex signals that exhibit non-linear and non-

stationary behaviour (Proakis, 2006).  

 

Limitations in Non-Stationary Environments 

Limited Representation of Temporal Variability: Conventional 

techniques such as the classical Fourier Transform focus solely on frequency 

information and implicitly assume that signal characteristics remain unchanged 

over time. As a result, they fail to reflect evolving spectral or statistical 

behaviour within dynamic signals. 
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Inherent Time–Frequency Compromise: To address partial non-

stationarity, the Short-Time Fourier Transform introduces windowed analysis; 

however, the use of a fixed window length imposes an unavoidable compromise 

between temporal and spectral resolution. (Cohen, 1995) Longer windows 

improve frequency discrimination but obscure short-lived events, whereas 

shorter windows enhance time localisation at the expense of frequency detail 

(Sejdic, 2009). This constraint hampers effective analysis of signals containing 

both abrupt transients and slowly varying components. 

Inadequacy of Classical Modelling Approaches: Linear statistical 

models, including autoregressive and ARMA frameworks, are generally 

insufficient for representing the complex, time-dependent nature of non-

stationary data. Consequently, they provide oversimplified descriptions of real-

world signals, such as biomedical recordings (e.g., EEG) or structural response 

measurements. 

 

Limitations in Non-Linear Environments 

Violation of the Superposition Assumption: Traditional linear models 

are built on the principle that system responses add linearly. However, many 

real-world systems, particularly in physical devices and biological processes, 

exhibit non-linearity, where the output generates additional frequency 

components such as harmonics and intermodulation terms that are absent in the 

original input (Akkaya, 2025). 

Limitations of Conventional Linear Filtering: Linear filtering 

techniques are inherently incapable of accurately representing or suppressing 

these non-linearity-induced spectral components, which restricts their 

effectiveness in practical signal analysis. 

Absence of a Generalised Non-Linear Framework: In contrast to 

linear system theory, non-linear systems lack a comprehensive, universally 

applicable theoretical foundation. As a result, modelling strategies are often 

tailored to specific forms of non-linearity, necessitating specialised and 

frequently complex analytical or computational methods. 
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Risk of Model Instability and Overfitting: While simple non-linear 

representations, such as polynomial-based models, offer increased flexibility, 

they often introduce challenges, including unstable behaviour, sensitivity to 

noise, and a heightened risk of overfitting. These issues limit their practical 

usability unless supported by advanced regularisation or optimisation 

techniques. 

 

1.1 Motivation for AI Integration in Modern Signal Processing 

The inspiration for AI integration in modern signal processing pipelines 

stems primarily from the demand to overcome the limitations of conventional, 

model-based methods when dealing with complex, real-world data and 

dynamic environments. AI offers superior adaptability, enhanced accuracy, 

automation, and predictive capabilities that transform raw data into actionable 

intelligence (Wang, 2009).  

 

Significant Inspirations Include (Bishop, 2006) 

Handling Complexity and Non-Linearity: Many contemporary signal 

sources exhibit irregular, non-linear behaviour that cannot be adequately 

described using fixed analytical models. In areas such as next-generation wireless 

systems and industrial sensing, data-driven AI methods—especially deep 

learning—are better suited to capturing such complexity by learning patterns 

directly from large-scale observations. 

Superior Performance and Accuracy: Hybrid systems that combine AI 

with classical signal processing frequently deliver improved results in tasks 

including denoising, pattern classification, and feature discovery. Learning-

based models are capable of identifying weak or hidden structures that may be 

overlooked by conventional algorithms, enhancing reliability in fields such as 

healthcare diagnostics and fault analysis. 

Automation and Efficiency: AI reduces manual intervention by 

automating routine and computation-heavy processes such as preprocessing and 

feature extraction. This allows specialists to concentrate on interpretation and 

decision-making, leading to more efficient analytical workflows. 
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Adaptability and Real-Time Operation: AI-enabled signal processing 

systems can adjust continuously to evolving operating conditions, supporting 

real-time applications such as autonomous platforms, adaptive networks, and 

continuous health monitoring. 

Enhanced Decision-Making and Predictive Insights: Through real-

time analysis and forecasting, AI facilitates anticipatory actions, such as early 

detection of equipment degradation, thereby minimizing downtime and 

maintenance costs. 

Feature Engineering and Dimensionality Reduction: Established 

transforms, including Fourier and wavelet methods, remain effective for compact 

signal representation. When integrated with AI models, they improve 

computational efficiency and robustness. 

Addressing Data Volume Challenges: The rapid growth of sensor-

driven data exceeds the capacity of traditional techniques, making AI essential 

for scalable processing and meaningful insight extraction. 

 

1.2 Transition from Model-Driven to Data-Driven Paradigms 

In AI-Based Signal Processing 

The shift from model-driven to data-driven AI signal processing moves 

from traditional mathematical models to learning patterns directly from vast 

datasets, driven by deep learning's success. It offers superior performance in 

complex tasks but demands huge data, while hybrid approaches combining both 

are emerging to gain robustness, efficiency, and explainability by integrating 

domain knowledge, moving towards "Smarter AI" for better real-world 

automation and insights (Gannot, 2024).  

 

Model-Driven Paradigm (Traditional) 

The core idea uses established scientific laws, equations (like Fourier and 

Laplace), and system understanding to build explicit models. It requires less 

data, offers strong guarantees (stability, performance), is interpretable, and 

leverages expert knowledge. The limitation of this approach is struggles with 

extreme complexity, noise, and unmodeled dynamics; building models is slow 

and expensive (requires scarce experts). The examples are traditional filters, 

spectral analysis based on known physics (Shlezinger, 2023).  
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Data-Driven Paradigm (Modern) 

The core idea leverages machine learning (ML) and deep learning (DL) 

to learn features and mappings directly from data, often end-to-end. The 

advantage is the achievement of the state-of-the-art performance, automates 

feature extraction, and handles high complexity (e.g., computer vision, NLP). 

The difficulty is the need for massive, high-quality datasets; it can be black-box 

(hard to interpret); it struggles with out-of-distribution data (Razzaq, 2025). The 

examples are CNNs for image/audio, RNNs for time-series, etc. 

 

Table 1: Comparison Of Model and Data-Driven Paradigms 

Aspect Model Driven Paradigm Data Driven Paradigm 

Core Principle Relies on explicit 

mathematical and physical 

models of the signal 
generation process 

Learns signal characteristics 

directly from data without 

predefined models 

Knowledge 

Source 

Domain expertise, physics-

based equations, and 

analytical assumptions 

Large volumes of labelled or 

unlabelled data 

Flexibility 

Limited adaptability to 

complex, time-varying, or 

nonlinear environments 

Highly flexible and adaptive 

to diverse and evolving signal 

conditions 

Handling non-

linearity 

Often struggles with strong 

non-linearities 

Excels at modeling complex 

non-linear relationships 

Interpretability 

High interpretability due to 

transparent mathematical 

structure 

Often low interpretability 

(black-box nature of deep 

models) 

Data 

Requirement 

Requires relatively small 

datasets 

Requires large and 

representative datasets for 

effective learning 

Computational 

Complexity 

Typically, lower 

computational cost 

High computational demand 

during training and inference 

Robustness to 

Noise 

Performance degrades if 

model assumptions are 

violated 

Can be robust to noise when 

trained on diverse data 

Generalization 
Generalizes well within 

assumed model constraints 

Generalization depends 

heavily on training data 

quality 

Real-Time 

Implementation 

Easier to deploy in real-

time systems 

Real-time deployment may be 

challenging due to latency 

Adaptability 
Limited self-learning 

capability 

Strong self-learning and 

adaptation capabilities 
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Examples 
Kalman filters, Wiener 

filters, matched filtering 

Deep neural networks, CNNs, 

RNNs, transformers 

Typical 

Applications 

Radar, sonar, and classical 

communication systems 

5G/6G, speech recognition, 

biomedical, and IoT signal 

analysis 

Scalability 
Less scalable to high-

dimensional data 

Highly scalable to large-scale, 

high-dimensional signals 

Design Effort 
Requires careful manual 

model design 

Requires extensive data 

collection and training 

 

2. MACHINE LEARNING PARADIGMS FOR SIGNAL 

PROCESSING 

Machine learning paradigms in signal processing use core ML types- 

Supervised, Unsupervised, and Reinforcement Learning. They're applied to 

signals (audio, biomedical, sensor data) through stages: pre-processing 

(denoising), processing (feature extraction), and application 

(classification/clustering), often leveraging techniques like Fourier transforms 

for frequency analysis and neural networks for complex pattern 

recognition. ML models, especially deep learning, learn representations similar 

to Fourier transforms (spectral analysis) to understand frequency content in 

audio or communications. Models like Recurrent Neural Networks (RNNs) 

excel at capturing the time-dependent nature of signals (e.g., speech, sensor 

streams) (Razzaq, 2025). Instead of manual methods (like autocorrelation), ML 

automatically learns relevant features from raw signals for tasks like pattern 

recognition. 

 

Comparison of Supervised, Unsupervised, Semi-Supervised, and 

Reinforcement Learning For Signals 

Table 2 gives a detailed comparison of the machine learning paradigms 

for signal processing.  

 

Table 2. Comparison of Supervised, Unsupervised, Semi-Supervised, and 

Reinforcement Learning 

Aspect 
Supervised 

Learning 

Unsupervise

d Learning 

Semi-

Supervised 

Learning 

Reinforcemen

t Learning 

Definition 
Learns a 

mapping from 

Discovers 

hidden 

Combines a 

small 

Learns by 

interacting 

https://www.google.com/search?q=Reinforcement+Learning&oq=Machine+Learning+Paradigms+for+Signal+Processing+&gs_lcrp=EgZjaHJvbWUyBggAEEUYOdIBCTU4NTZqMGoxNagCCLACAfEFOGlTjIdL4q0&sourceid=chrome&ie=UTF-8&mstk=AUtExfAvZJY1WM0yVJ6Mkyj1J159pwz5r6FFxBsuiUzNFu4AaU7eZt1KboxQPSlio45FZN7cYlH8q8gw9EP13zEn6_mROYxCzxO79AC3CPu0u8YGo1JtDdj4Q7ppUBb-5kyocW4ocPnADKLktCkACaVho_rPva084iZi1iSLlYyUH3dKpwo&csui=3&ved=2ahUKEwiyxJLQqeORAxWYc_UHHfp5CpAQgK4QegQIAxAF
https://www.google.com/search?q=Reinforcement+Learning&oq=Machine+Learning+Paradigms+for+Signal+Processing+&gs_lcrp=EgZjaHJvbWUyBggAEEUYOdIBCTU4NTZqMGoxNagCCLACAfEFOGlTjIdL4q0&sourceid=chrome&ie=UTF-8&mstk=AUtExfAvZJY1WM0yVJ6Mkyj1J159pwz5r6FFxBsuiUzNFu4AaU7eZt1KboxQPSlio45FZN7cYlH8q8gw9EP13zEn6_mROYxCzxO79AC3CPu0u8YGo1JtDdj4Q7ppUBb-5kyocW4ocPnADKLktCkACaVho_rPva084iZi1iSLlYyUH3dKpwo&csui=3&ved=2ahUKEwiyxJLQqeORAxWYc_UHHfp5CpAQgK4QegQIAxAF


INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS 

64 

 

inputs to 

outputs using 

labelled data 

patterns or 

structures 

from 

unlabelled 

data 

amount of 

labelled data 

with a large 

amount of 

unlabelled 

data 

with an 

environment 

and receiving 

rewards or 

penalties 

Data 

Requirement 

Fully labelled 
dataset 

Completely 
unlabelled 

dataset 

Few labelled 

+ many 
unlabelled 

samples 

No labelled 

dataset; uses 
feedback 

(reward 

signal) 

Learning 

Objective 

Minimize 

prediction 

error 

Identify 

inherent 

structure or 

distribution 

Improve 

learning 

accuracy 

using limited 

labels 

Maximize 

cumulative 

reward over 

time 

Feedback 

Mechanism 

Direct 

feedback via 

correct labels 

No explicit 

feedback 

Partial 

feedback 

from 

labelled data 

Delayed and 

scalar reward 

feedback 

Typical Tasks 
Classification, 
regression 

Clustering, 

dimensionalit
y reduction, 

anomaly 

detection 

Classificatio
n with 

scarce labels 

Decision-

making, 
control, 

optimization 

Common 

Algorithms 

Linear/Logisti

c Regression, 

SVM, k-NN, 

Decision 

Trees, Neural 

Networks 

k-Means, 

Hierarchical 

Clustering, 

DBSCAN, 

PCA, 

Autoencoders 

Self-

training, Co-

training, 

Label 

Propagation, 

Semi-

Supervised 

SVM 

Q-Learning, 

SARSA, Deep 

Q-Networks 

(DQN), Policy 

Gradient 

Computationa

l Complexity 

Moderate to 

high (depends 
on dataset 

size) 

Generally 

lower, but 

may scale 
poorly with 

high 

dimensions 

Higher than 

supervised 
due to 

hybrid 

processing 

High due to 

continuous 
interaction and 

exploration 

Advantages 

High accuracy 

when labels 

are reliable 

No labelling 

cost; reveals 

hidden data 

structure 

Reduces 

labelling 

cost while 

improving 

performance 

Suitable for 

sequential and 

dynamic 

environments 

Limitations 

Requires large 

labelled 

datasets 

No direct 

prediction 

targets 

Sensitive to 

incorrectly 

labelled data 

Training can 

be unstable 
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and time-

consuming 

Real-World 

Applications 

Image 

recognition, 

medical 

diagnosis, 

spam 

detection 

Market 

segmentation, 

topic 

modeling, 

and fraud 

detection 

Speech 

recognition, 

web content 

classificatio

n 

Robotics, 

game playing, 

and 

autonomous 

vehicles 

Suitability for 

Real-Time 

Systems 

Limited 
(depends on 

model) 

Limited Limited 
Highly 
suitable 

 

Feature-Based ML Vs. End-To-End Learning  

Feature-based machine learning (ML) relies on manual feature 

engineering to extract relevant information from raw data, while end-to-end 

(E2E) learning automatically learns features directly from the raw input using 

deep neural networks.  

Feature-Based ML: In feature-based ML, domain experts use their 

knowledge to manually identify, extract, and select valuable features from the 

raw input data. These crafted features are then fed into a traditional ML 

algorithm (e.g., support vector machines, logistic regression, decision trees) to 

train a model. The key characteristics are: 

 Requires Human Expertise: Performance heavily relies on the quality of 

human-engineered features and domain-specific knowledge. 

 Interpretable: The models are often considered "white boxes" because 

the features used in decision-making are explicit and understandable. 

 Data Efficiency: Can work effectively with smaller datasets, as the 

manual feature engineering helps focus the model's learning on relevant 

aspects.  

End-to-End (E2E) Learning: E2E learning, typically using deep 

learning models like Convolutional Neural Networks (CNNs), bypasses manual 

feature engineering. The model takes raw data as input and learns hierarchical 

feature representations through its many layers, from basic features in early 

layers to complex, abstract features in deeper layers, producing an output 

directly. The key characteristics are: 
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 Automated Feature Extraction: Features are learned automatically, 

reducing the need for manual intervention and extensive domain 

expertise during the feature engineering phase. 

 Less Interpretable: These models are often considered "black boxes" 

due to their complex, non-linear structure, making it difficult for humans 

to fully understand how decisions are made. 

 High Performance in Complex Tasks: Excels in complex tasks like 

image recognition and natural language processing, often achieving 

state-of-the-art results (Aburakhia, 2024).  

 

Bias - Variance Trade-Off in Signal Datasets  

The Bias-Variance Trade-off in signal datasets is the fundamental 

challenge of balancing a model's simplicity (low complexity, high bias, low 

variance) against its ability to capture intricate patterns (low bias, high variance, 

potential overfitting), aiming for minimal total prediction error on new data by 

finding a "sweet spot" in model complexity, crucial for building robust signal 

processing models that generalize well. High bias means underfitting (too 

simple), while high variance means overfitting (too sensitive to training noise) 

(Geman, 1992).  

 Bias: Error from overly simplistic assumptions; the model consistently 

misses the true signal (underfitting). 

 Variance: Error from model sensitivity to training data fluctuations; 

predictions change wildly with new data (overfitting). 

 Total Error: Sum of Bias², Variance, and Irreducible Error (noise). In 

signal datasets, the following are some important concepts related to bias 

and complexity.  

 Low Complexity (High Bias): A simple model (e.g., linear) might miss 

subtle signal trends but will be consistent. 

 High Complexity (High Variance): A complex model (e.g., deep neural 

net) can fit the training signal perfectly but might mistake noise for real 

patterns, failing on new signals. 
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3. DEEP LEARNING ARCHITECTURES FOR SIGNAL 

PROCESSING 

Convolutional Neural Network For 1D, 2D, And 3D Signals 

Convolutional Neural Networks (CNNs) are adapted for signals by 

matching the dimensionality of the learnable kernels to the inherent structure 

of the data. While 2D CNNs are standard for images, 1D and 3D variants are 

essential for sequential and volumetric signal processing.  

1D CNNs: Sequential Signals: 1D CNNs use kernels that slide along a 

single axis, making them ideal for time-series and periodic data where local 

temporal patterns are critical. The architecture consists of 1D convolutional 

layers, pooling (typically max-pooling), and fully connected layers (Kiranyaz, 

2021). They are computationally efficient and suitable for real-time mobile or 

edge device applications. The key applications are: Biomedical signals like 

ECG, EEG, and EMG, etc.  Audio/Speech signals, industrial signals like 

vibration analysis or fault detection, etc.  

2D CNNs: Spatial and Time-Frequency Signals: 2D CNNs process 

grid-like data by sliding kernels across height and width. Beyond standard 

images, they are often applied to signals that have been converted into 2D 

representations. In architectures, standard deep frameworks like Res-

Net or LeNet-5 are common. The key applications are; Spectrogram Analysis, 

remote sensing, healthcare, etc. (Krizhevsky, 2012) 

3D CNNs: Volumetric and Spatiotemporal Signals: 3D CNNs use 

cubic kernels (width × height × depth) to capture spatial dependencies across 

multiple slices or time steps simultaneously. The architecture is 

computationally intensive due to the extra dimension. Modern 2025 approaches 

often utilize "Integrated CNNs" (3D-2D-1D hybrids) to strike a balance 

between accuracy and efficiency, reducing training time by up to 60% 

compared to pure 3D models. The key applications are; Medical imaging, video 

analytics, autonomous systems, etc. (Ji, 2013) 
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Recurrent Neural Networks (Rnns), LSTM, And GRU For 

Temporal Signals 

Recurrent Neural Networks (RNNs) and their advanced variants, LSTMs 

and GRUs, are specifically designed to process temporal signals where the 

order and timing of data points are critical. Best for modeling temporal 

dependencies in sequential signals, crucial for tasks like predicting remaining 

useful life (RUL) or understanding time-series data. LSTMs & GRUs 

are popular extensions that solve the vanishing gradient problem, allowing the 

model to capture long-term dependencies in signals like speech or vibration 

data. (Mienye, 2024) 

Vanilla RNNs (Classic): Simple RNNs maintain a hidden state that 

captures information from previous time steps, acting as an internal "memory".  

 Architecture: Uses feedback loops to pass information from one step to 

the next. 

 Limitation: Highly susceptible to the vanishing gradient problem, 

which prevents them from learning long-term dependencies in signals. 

 Best For: Short sequences and low-resource environments.  

Long Short-Term Memory (LSTM): LSTMs solve the vanishing 

gradient problem by introducing a specialized cell state and a complex gating 

mechanism. (Chambers, 2024). 

Gating Mechanism: 

 Forget Gate: Decides which information to discard from the cell state. 

 Input Gate: Determines which new information to store in the cell state. 

 Output Gate: Controls what parts of the cell state are passed to the next 

hidden state. 

Best For: Complex signals with very long-range dependencies, such as 

full speech sentences or long-term financial trends.  

Gated Recurrent Units (GRU): GRUs are a streamlined, more efficient 

version of LSTMs that offer comparable performance with fewer parameters.  

 Simplified Architecture: Merges the input and forget gates into a 

single update gate and uses a reset gate. 

 Performance Benefits: Typically trains 25–40% faster and uses 

roughly 25% less memory than LSTMs, making them ideal for real-time 

edge devices. 
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 Best For: Real-time signal processing, resource-constrained IoT devices, 

and short-to-medium-length sequences.  (Rivas, 2025) 

 

Transformers For Long-Range Signal Dependencies 

Transformers have surpassed traditional Recurrent Neural Networks 

(RNNs) in signal processing due to their self-attention mechanism, which 

explicitly computes relationships between all-time steps in a signal 

simultaneously. Unlike LSTMs, which can "forget" information over long 

sequences due to sequential processing, Transformers maintain a global view, 

making them ideal for identifying long-range patterns in complex signals like 

vibration, audio, and RF. (Thundiyil, 2025) 

 

Key Advantages for Signal Processing  

Global Contextual Awareness: Transformers do not rely on a hidden 

state passed step-by-step. Instead, they use multi-head attention to "see" the 

entire signal window at once, capturing dependencies between events that may 

be separated by thousands of samples. 

Parallelization: Because they process the entire sequence in one forward 

pass, Transformers are significantly faster to train than RNNs on modern GPU 

hardware. 

Handling Non-Stationarity: Advanced variants like Auto-former and 

FED-former are specifically designed to decompose complex signals into 

seasonal and trend components, making them more robust for long-term 

forecasting than standard models. (Nazari, 2025) 

Standard Transformers face a "quadratic complexity" challenge, where 

memory usage grows exponentially with signal length. In 2025, specialized 

versions address this for real-time signal processing:  

Informer: Uses a "ProbSparse" attention mechanism that only focuses 

on the most significant signal features, reducing computational cost from O(L2) 

to 𝑂(𝐿log𝐿). 

Auto-former: Replaces standard self-attention with an Auto-Correlation 

block, utilizing the inherent periodicity of signals (via Fast Fourier Transforms) 

to find dependencies more efficiently. (Wu,2021).  
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Autoencoders and Latent Signal Representations 

Autoencoders (AEs) are critical in signal processing for their ability to 

compress high-dimensional raw signals into a low-dimensional latent 

representation (or "bottleneck"). This latent space captures the most essential, 

underlying features of a signal while discarding noise and redundancies.  Acts 

as a "proxy" for the signal's core parameters. For instance, in MRI signal 

evolution, a single latent variable can represent complex tissue relaxation 

properties as effectively as multiple linear coefficients. The 

decoders reconstruct the original signal from the latent vector. In 2025, 

decoders are increasingly integrated directly into forward models for tasks like 

high-speed MRI reconstruction. (Ahmadi, 2025) 

Specialised Autoencoder Variants are; 

 Denoising Autoencoders (DAE): Trained to recover clean signals from 

inputs corrupted by synthetic or real-world noise (e.g., ambient 

underwater noise or sensor interference). Recent 2025 research shows 

DAEs can improve signal-to-noise ratios (SNR) in sonobuoy systems by 

effectively "modulating" data into more secure, low-bit-rate latent 

vectors. 

 Variational Autoencoders (VAE): Unlike standard AEs, VAEs learn 

a probabilistic latent space (mean and variance). This allows them to 

generate new, synthetic signal samples that mirror the distribution of 

real-world data, which is useful for data augmentation in medical studies 

or simulating wireless channel effects. (Liu, 2025). 

 Convolutional Autoencoders (CAE): Use 1D or 2D convolutional 

layers to extract local temporal or spectral features, making them highly 

effective for compressing complex biomedical signals like EMG or 

ECG.  

 

Generative Adversarial Networks (GANs) 

GANs are a transformative class of deep learning architectures in signal 

processing, primarily used for data augmentation and signal enhancement. 

They consist of two competing neural networks: a generator that creates 

synthetic signals and a discriminator that attempts to distinguish them from 

real-world data. (Chakraborty, 2024).  
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Common Architectures for Signals: 

 1D-DGANs: Specifically tailored 1-dimensional denoising GANs for 

temporal data like vibration sensors or heart rhythms. 

 WGAN-GP: Utilizes Wasserstein distance with a gradient penalty to 

ensure more stable training and avoid "mode collapse," a common issue 

where the generator produces a limited variety of signals. 

 Conditional GANs (cGANs): The most common variant in 2025; they 

use additional information (like class labels or clean signal templates) to 

guide and control the generation process. 

 SynSigGAN: An emerging architecture in 2025 specifically designed 

for biomedical signal synthesis (EEG, PPG, EMG).  

Key Performance Benefits (2025 Benchmarks): 

 Accuracy Improvement: GAN-driven denoising has been shown to 

reduce Mean Squared Error (MSE) by over 30% in industrial sensor data 

compared to traditional filters. 

 Realism: In medical imaging Turing tests, GAN-generated signals often 

prove indistinguishable from real data, allowing them to effectively 

supplement training sets and improve diagnostic sensitivity by 

nearly 10%. 

 

Table 3. Comparative Summary of Deep Learning Architectures 

Architect

ure  

Primary 

Signal Type 

Tempo

ral 

Reach 

Efficie

ncy 

(Trainin

g) 

Key 

Advantag

e in 2025 

Core 

Limitation 

CNN Spatial/ 

Spectrogram 

Short 

(Local) 
Very 

High 

Superior 

at local 

feature 

extraction 

and 

pattern 

recognitio
n in 2D 

spectrogra

ms. 

Lacks inherent 

long-range 

temporal 

memory. 

Vanilla 

RNN 

Sequential Short High Simplest 

design; 

good for 

short 

Susceptible to 

vanishing/expl

oding 

gradients; poor 
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sequences 

on low-

power 

edge 

devices. 

long-term 

memory. 

LSTM Sequential Long Modera

te 

Robustly 

handles 

long-term 
dependenc

ies; 

mitigates 

gradient 

issues. 

High 

computational 

complexity and 
memory usage. 

GRU Sequential Modera

te-Long 
High Achieves 

LSTM-

like 

accuracy 

with 

~25% 

fewer 
parameter

s and 

faster 

training. 

May capture 

long-term 

dependencies 

slightly less 

effectively than 

LSTMs in very 

complex 
signals. 

Transfor

mer 

Contextual/Glo

bal 
Infinite Low 

(High 

GPU) 

Global 

contextual 

awareness 

via self-

attention; 

no 

"forgetting

" over 

long 
sequences. 

Quadratic 

computational 

cost; requires 

massive 

datasets to 

outperform 

RNNs. 

Autoenco

der 

Compressed/La

tent 

Variabl

e 

Modera

te 

Efficient 

signal 

denoising 

and 

compressi

on into 

low-

dimension

al latent 

spaces. 

Quality highly 

sensitive to the 

bottleneck size 

(latent 

dimension). 

GAN Synthetic/Gene

rative 

N/A Low SOTA for 

high-
quality 

Hardest to train 

due to 
instability and 
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data 

augmentat

ion and 

synthetic 

signal 

generation 

(e.g., 
radar, 

MRI). 

potential mode 

collapse. 

 

4. AI-EMBEDDED SIGNAL PROCESSING 

APPLICATIONS 

AI-embedded signal processing is integrated into edge devices across 

many fields, enabling real-time autonomous decision-making with low latency 

and enhanced privacy. These applications process various signals, such as 

images, sound, and biomedical data, locally on resource-constrained hardware, 

including FPGAs and specialized microcontrollers.  

 

AI in Image and Video Signal Processing  

AI-powered image and video processing uses machine learning 

algorithms, particularly Convolutional Neural Networks (CNNs) and Vision 

Transformers, to enable computers to understand, interpret, and generate visual 

content. This technology has a wide range of applications, from medical 

diagnostics to autonomous vehicles. (Tian, 2025). The computer vision that 

gives machines the ability to "see" and interpret information from images and 

videos. The machine learning models are CNNs, Vision Transformers, and 

GANs. The key techniques include object detection, image segmentation, 

activity recognition, image enhancement, and video compression.  

AI is used in many sectors to automate and improve visual tasks. These 

include:  

 Surveillance and Security: Automating real-time video analysis for 

change detection and security monitoring. 

 Content Creation: Generating new images and videos from text 

prompts (e.g., using tools like OpenAI's Sora or Google's Gemini) for 

media production and marketing. 
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 Healthcare: Improving the accuracy of medical imaging analysis and 

diagnostics. 

 Autonomous Systems: Enabling self-driving cars and drones to 

recognise objects and navigate their environment in real-time. 

 Image and Video Restoration and Enhancement: Current models 

utilise diffusion models and transformers to outperform traditional 

GANs in denoising and deblurring. In 2025, research is specifically 

targeting RAW image restoration to integrate AI earlier in the image 

signal processing (ISP) pipeline, handling unknown noise directly from 

sensor data. Improving the quality of existing media, such as upscaling 

low-resolution video, denoising old footage, and enhancing low-light 

performance.  Modern architectures, such as SISR (Single-Image Super-

Resolution) , utilize deep residual networks and self-attention to 

synthesize realistic textures rather than merely interpolating pixels. A 

major focus is on Real-Time SR for IoT, optimising these heavy models 

for deployment on low-power devices. (Chakraborty, 2024) 

 Several software libraries and commercial tools facilitate AI-powered 

image and video processing: Open-Source Libraries like OpenCV, 

TensorFlow, PyTorch, Scikit-Image, and Commercial Software Topaz 

Video AI for video enhancement and upscaling, RunwayML for 

generative video creation from text, Midjourney, and Google Gemini for 

AI image generation.  

 

Biomedical Signal Processing Using AI 

Biomedical signal processing using Artificial Intelligence (AI) leverages 

machine learning (ML) and deep learning (DL) algorithms to analyse complex 

physiological data for enhanced diagnosis, monitoring, and personalised 

treatment. AI systems can optimise traditional signal processing tasks, such as 

noise reduction and feature extraction, and provide computer-aided diagnosis 

(CAD) to assist physicians. The core concepts in biomedical signal processing 

are as follows: 

 Signal Acquisition & Preprocessing: Biomedical signals (e.g., ECG, 

EEG) are often weak, noisy, and distorted.  

https://www.midjourney.com/
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Traditional methods like filters (e.g., FIR, Butterworth) are used for 

noise reduction, but AI can employ adaptive filtering to improve signal 

quality based on real-time data dynamically. 

 Feature Extraction & Analysis: AI algorithms, particularly neural 

networks, can automatically identify complex patterns and extract vital 

information from raw data that might be difficult for human experts to 

discern. 

 Modelling & Interpretation: Machine learning models can be trained 

to classify signals, detect anomalies, and predict health outcomes, 

enabling proactive health monitoring and reducing the need for 

continuous high-power processing.  

AI in biomedical signal processing has numerous applications across 

various medical fields:  

 Cardiology: Analysis of electrocardiogram (ECG) signals to detect 

heart abnormalities and identify specific heartbeats with greater 

precision. 

 Neurology: Processing of electroencephalogram (EEG) signals for 

diagnosing conditions like epilepsy, sleep disorders, Alzheimer's, and 

Parkinson's disease. 

 Rehabilitation: Using AI to interpret EEG signals for motor imagery in 

stroke patients, aiding neurological rehabilitation and personalised 

therapy planning. 

 Patient Monitoring: Real-time analysis of various signals (blood 

pressure, respiration) in intensive care units (ICUs) or through remote 

monitoring systems to guide treatment decisions and optimize patient 

care. (Alqudah, 2025) 

 

AI for Communication and Radar Signal Processing  

Artificial intelligence (AI), particularly deep learning, is revolutionizing 

communication and radar signal processing by providing data-driven solutions 

to complex challenges that exceed the capabilities of traditional model-based 

techniques. AI is used to address the need for robust, efficient, and adaptive 

systems in modern applications like autonomous vehicles, 5G networks, and 

electronic warfare.  
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 Applications in Communication Systems: AI-driven signal processing 

enhances communication systems by improving efficiency, robustness, 

and spectral efficiency.  (Li, 2025). 

 Channel Coding and Modulation Optimization: AI can optimize 

signal parameters for different dynamic transmission environments and 

hardware impairments, improving the reliability and efficiency of 

information exchange. 

 Spectrum Management: AI helps manage the radio frequency spectrum 

more efficiently by identifying available bands, predicting usage, and 

dynamically allocating resources.  Antenna design and beamforming: AI 

aids in designing complex antenna arrays and optimizing beamforming 

techniques, especially for advanced systems like 5G networks, enabling 

targeted and efficient signal transmission. Noise reduction and signal 

restoration: Machine learning models can adaptively eliminate various 

types of background noise, leading to much clearer and higher-fidelity 

signals than traditional fixed methods. 

 Applications in Radar Signal Processing: AI is used across the entire 

radar signal processing chain, from raw data interpretation to target 

identification and resource management (Ayaz, 2025). 

 Automatic Target Recognition (ATR): Deep learning enables 

improved classification, identification, and recognition of targets (e.g., 

in automotive radar for self-driving cars) by extracting complex patterns 

from radar data. 

 Imaging Techniques: AI enhances synthetic aperture radar (SAR) and 

inverse SAR (ISAR) imaging, providing better resolution and more 

accurate mapping of target characteristics. 

 Waveform and Array Design: AI assists in the design and optimization 

of radar waveforms and antenna arrays to achieve better performance in 

specific scenarios. Clutter and jamming suppression: Traditional anti-

jamming techniques often struggle with sophisticated, deceptive active 

jamming. AI algorithms help in recognizing and suppressing complex 

jamming signals and unwanted sea/ground clutter. 
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5. RESEARCH FRONTIERS IN AI-BASED SIGNAL 

PROCESSING  

Research frontiers in AI-based signal processing (SP) focus on bridging 

the gap between classical mathematical signal modeling and the black-box 

nature of deep learning to create more efficient, interpretable, and robust 

systems.  

 

Generalization Challenges in Real-World Signal Environments 

Generalization challenges in real-world signal environments stem 

primarily from the inherent variability, uncertainty, and complexity of these 

settings compared to controlled laboratory or simulated conditions (Rohlfs, 

2024). Key issues include:  

 Sensor Noise and Artifacts: Real-world data from sensors (e.g., 

physiological signals, environmental sensors) are susceptible to various 

types of noise, missing values, and artifacts caused by movement, device 

positioning, or environmental interference. Models trained on clean, 

simulated data often fail to perform reliably when faced with this 

inherent "noisiness". 

 Data Discrepancies (Sim-To-Real Gap): A significant hurdle is the 

difference in data distributions between simulated environments (where 

models are often initially trained) and actual deployment settings. 

Features that are relevant in simulation may not hold the same 

importance in reality, leading to performance degradation. 

 Dynamic and Unpredictable Conditions: Real-world environments are 

constantly changing, with dynamic factors such as varying weather, 

different user behaviours, or unexpected obstacles. Models must be 

robust enough to handle these unseen, out-of-distribution (OOD) 

scenarios without compromising performance. 

 Partial Observability and Hidden States: In many real-world 

scenarios, the system or agent may not have access to the full state of the 

environment, operating instead on partial or incomplete observations. 

This hidden information makes it difficult for models to reason 

effectively and generalize their behaviour. 
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 Communication Reliability and Latency: In distributed systems, such 

as smart traffic networks, the reliability of communication channels can 

be a major issue. Poor signal strength often results in data loss or 

increased latency, which can severely impact the real-time performance 

and coordination of signal processing systems. 

 Resource Constraints: Real-time systems deployed in edge computing 

environments, like IoT devices or autonomous vehicles, often have 

limited computational resources. Models need to be highly efficient to 

operate within these constraints while maintaining accuracy and low 

latency, a challenge for complex models. 

 Ethical and Safety Constraints: In high-stakes domains like healthcare 

or autonomous systems, it can be difficult to generate data for all possible 

abnormal or dangerous conditions due to safety and ethical constraints. 

This data sparseness limits the models' exposure to critical scenarios 

during training, impacting their generalization to rare but important 

events.  

 

Current Research Frontiers 

Researchers are moving beyond pure data-driven approaches by 

integrating mathematical priors (e.g., physical laws or geometric constraints) 

with generative learning: 

 Diffusion Models for 3D Imaging: Scaling diffusion models to 3D and 

multimodal imaging for medicine and astronomy. 

 Physics-Informed Neural Networks (PINNs): These are used to ensure 

that signal reconstructions adhere to physical reality, reducing data 

requirements and computational costs.  

The convergence of foundational models (like Large Language Models) 

and multimedia signal processing is a primary 2025 research topic: 

 Cross-Modal Data Fusion: Developing algorithms that can 

simultaneously process and correlate video, audio, and sensor data 

(e.g., radar and LiDAR for autonomous driving). 

 Multimodal VLMs in Healthcare: Using Vision-Language Models 

(VLMs) for smart healthcare to reason across medical images and textual 

patient records.  



INTELLIGENT SIGNAL PROCESSING AND EMBEDDED AI SYSTEMS 

79 

 

Deep integration between neuroscience and signal processing is leading 

to "Brain-in-the-Loop" technologies: 

 Closed-Loop Neuromodulation: Real-time decoding of cortical signals 

for neuro-prosthetics to mitigate neurological injury. 

 Neuromorphic Engineering: Developing AI hardware that mimics the 

brain’s energy-efficient signal processing, suitable for wearable ECG or 

EEG devices.  

Trustworthy, Explainable, and Responsible AI (XAI): A major 

frontier involves "unveiling the decision veil" to make AI signal processing 

transparent, especially in high-stakes fields. Current models often 

explain what they detected but not why. Future research must develop 

frameworks that provide causal reasoning for SP decisions, especially 

in medical diagnostics (e.g., detecting cognitive decline or heart anomalies). 

 

Evaluation Metrics and Performance Analysis in AI-Based 

Signal Processing 

Evaluating AI models in signal processing requires a combination 

of quantitative metrics (specific to the task, such as classification or regression) 

and performance analysis techniques (focusing on speed, resource utilization, 

and reliability). The choice of metrics depends heavily on the specific 

application and its goals (e.g., medical diagnosis vs. spam detection).  

 

Evaluation Metrics 

Metrics are generally divided by the type of machine learning task:  

Classification Metrics: These metrics are used when the AI model 

categorizes signals, such as detecting a pattern or identifying a disease. Key 

metrics include (Powers, 2011):  

 Accuracy: Overall proportion of correct predictions. 

 Precision: Proportion of correctly classified positive instances among all 

predicted positives, important when false positives are costly. 

 Recall (Sensitivity): Proportion of actual positive instances correctly 

identified, critical when false negatives are costly. 

 F1-Score: A balanced measure using the harmonic mean of precision 

and recall, especially for imbalanced datasets. 

https://www.frontiersin.org/research-topics/40402/artificial-intelligence-in-bioimaging-and-signal-processing/magazine
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 Specificity: Proportion of true negatives correctly identified. 

 AUC-ROC: Evaluates the model's ability to distinguish between classes 

across thresholds.  

Regression Metrics: These are applied when models predict continuous 

values, such as forecasting time series or estimating signal amplitudes. 

(Willmott, 2005) Common metrics include:  

 Mean Absolute Error (MAE): Average magnitude of errors. 

 Mean Squared Error (MSE) / Root Mean Squared Error 

(RMSE): Average of squared errors, sensitive to outliers. 

 R² Score: Proportion of variance in the target variable explained by the 

model.  

Domain-Specific Signal Processing Metrics: Some metrics are specific 

to signal processing (Kay, 1993) tasks:  

 Signal-to-Noise Ratio (SNR): Measures signal clarity after processing. 

 Echo Return Loss Enhancement (ERLE): Evaluates echo cancellation. 

 Peak Signal-to-Noise Ratio (PSNR): Used for quality evaluation in 

image/video processing. 

 Perceptual Evaluation of Speech Quality (PESQ): A human-centric 

measure for speech quality.  

 

Performance Analysis in AI Systems 

Performance analysis examines operational aspects beyond prediction 

accuracy (Sokolova, 2009). This includes:  

 Latency: Time for processing input and producing output, vital for real-

time systems. 

 Throughput: Number of tasks handled per unit time. 

 Resource Utilization: Monitoring CPU, GPU, and memory usage for 

efficiency. 

 Reliability & Robustness: How well the model handles unexpected 

inputs or noisy conditions. 

 Scalability: Ability to maintain performance with increased workload or 

data.  

Effective performance analysis involves defining clear goals, using 

diverse datasets, combining multiple metrics for a comprehensive view, 
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incorporating human judgment for subjective tasks, and continuous monitoring 

after deployment. The advanced performance analysis can be done with the 

help of the following metrics:  

 Closed-Loop Evaluation: In 2025, systems use "auto-raters" (AI acting 

as a judge) to detect and correct errors in real-time before they cascade. 

 Robustness & Fairness: Models are stress-tested against adversarial 

inputs and audited for demographic parity to ensure ethical compliance. 

 Drift Detection: Continuous monitoring is used to identify performance 

degradation caused by changes in input signal patterns over time. 

 

CONCLUSION 

This chapter presents a comprehensive overview of intelligent signal 

processing, emphasizing the evolution from conventional, model-driven 

techniques to modern AI-enabled, data-driven approaches. It begins by 

highlighting the limitations of classical signal processing in handling non-

linear, non-stationary, and high-dimensional signals, motivating the integration 

of machine learning and deep learning methods. Various learning paradigms—

supervised, unsupervised, and self-supervised learning—are discussed 

alongside the trade-offs between feature-based models and end-to-end learning, 

with attention to the bias–variance dilemma in signal datasets. The chapter then 

explores key deep learning architectures, including CNNs, RNNs, transformers, 

autoencoders, and GANs, illustrating their suitability for spatial, temporal, and 

generative signal modeling. Practical AI-embedded applications in image and 

video processing, biomedical signals, and communication and radar systems 

are reviewed. Finally, the chapter addresses research frontiers, generalization 

challenges in real-world environments, and the role of evaluation metrics and 

performance analysis in assessing AI-based signal processing systems. 
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