

INTELLIGENT SYSTEMS: FROM DATA TO DECISIONS

Editor

Egor Vasilyevich Tumanik

**INTELLIGENT SYSTEMS: FROM DATA TO
DECISIONS- 2026**

ISBN: 978-625-93102-4-4

DOI: 10.5281/zenodo.18304972

Edited By
Egor Vasilyevich Tumanik

January / 2026
İstanbul, Türkiye

Copyright © Haliç Yayınevi

Date: 19.01.2026

Halic Publishing House

İstanbul, Türkiye

www.halicyayinevi.com

All rights reserved no part of this book may be reproduced in any form, by photocopying or by any electronic or mechanical means, including information storage or retrieval systems, without permission in writing from both the copyright owner and the publisher of this book.

© Halic Publishers 2025

The Member of International Association of Publishers

The digital PDF version of this title is available Open Access and distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 license (<http://creativecommons.org/licenses/by-nc/4.0/>) which permits adaptation, alteration, reproduction and distribution for noncommercial use, without further permission provided the original work is attributed. The derivative works do not need to be licensed on the same terms.

adopted by Esma AKSAKAL

ISBN: 978-625-93102-4-4

Copyright © 2025 by Haliç Academic Publishers All rights reserved

INTELLIGENT SYSTEMS: FROM DATA TO DECISIONS

EDITOR

Egor Vasilyevich Tumanik

AUTHORS

Dr. Tejaswi Potluri

Abdelkrim MEBARKI

Sarra Samra BENHARRATS

Bochra BOUDJELLAL

Imene DAHANE

Hanane Hadjira NEDJAR

Shah Tania Akter SUJANA

Mahafuzur RAHMAN

Vinayakalakshmi THIYAGARAJAN

Mohanavel T.

Vladimir SAVELJEV

TABLE OF CONTENTS

PREFACE	i
CHAPTER 1	
MULTILINGUAL SENTIMENT ANALYSIS FOR	
INTELLIGENT PRODUCT RECOMMENDATIONS	
Dr. Tejaswi Potluri	1
CHAPTER 2	
MENTAL HEALTH INFORMATICS IN ALGERIA: BRIDGING	
PSYCHIATRY AND COMPUTER SCIENCE	
Abdelkrim MEBARKI	
Sarra Samra BENHARRATS	
Bochra BOUDJELLAL	
Imene DAHANE	
Hanane Hadjira NEDJAR	15
CHAPTER 3	
MACHINE LEARNING FOR HEALTHCARE PREDICTION	
Shah Tania Akter SUJANA	
Mahafuzur RAHMAN	37
CHAPTER 4	
CLOUD COMPUTING AND DISTRIBUTED SYSTEMS	
Vinayakalakshmi THIYAGARAJAN	
Mohanavel T.....	63

CHAPTER 5

COMBINED PHYSICAL AND COMPUTATIONAL SIMULATION OF THE MOIRÉ EFFECT IN 3D OBJECTS AND DISPLAYS

Vladimir SAVELJEV 93

PREFACE

This book brings together a diverse yet interconnected set of studies that reflect the growing convergence of computer science, data analytics, and real-world societal needs. The chapters collectively highlight how advanced computational methods are being applied across domains such as intelligent commerce, healthcare, mental health, cloud infrastructure, and digital simulation.

Beginning with multilingual sentiment analysis for intelligent product recommendations, the book explores how language technologies and artificial intelligence can enhance user-centric decision-making in global markets. The focus then shifts to mental health informatics in Algeria, offering an interdisciplinary perspective that bridges psychiatry and computer science to address locally grounded yet globally relevant healthcare challenges. Complementing this, the chapter on machine learning for healthcare prediction demonstrates the potential of data-driven models to support early diagnosis, risk assessment, and informed clinical decisions.

The technical foundations enabling these applications are further examined in the chapter on cloud computing and distributed systems, which discusses scalable, efficient infrastructures essential for modern data-intensive solutions. Finally, the book concludes with an advanced study on the combined physical and computational simulation of the moiré effect in 3D objects and displays, illustrating the role of simulation and modeling in solving complex visual and engineering problems.

Together, these chapters offer readers a concise yet comprehensive view of contemporary research at the intersection of computation, innovation, and societal impact, making the book a valuable resource for researchers, practitioners, and students alike.

Editorial Team

January 19, 2026

Türkiye

CHAPTER 1
MULTILINGUAL SENTIMENT ANALYSIS FOR
INTELLIGENT PRODUCT RECOMMENDATIONS

¹Dr. Tejaswi Potluri

¹VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India,
tejaswi_p@vnrvjiet.in, ORCID ID: 0000-0003-3384-6507

INTRODUCTION

Businesses are increasingly utilizing cutting-edge technologies to improve client experiences and optimize their services in today's quickly changing digital market. Multilingual Sentiment Analysis is a cutting-edge field of study and application that enables companies to comprehend and analyze client feelings in a variety of languages. Businesses may better understand client emotions by integrating multilingual sentiment analysis with intelligent product recommendations, which also makes it easier to give highly tailored and contextually relevant product recommendations. The Flask and Python-created Multilingual Sentiment Analysis-based E-commerce Website provides a wide selection of products together with detailed information such as name, price, and user reviews. Sentiment analysis provides a sentiment score based on user comments for every product, enabling customers to make well-informed decisions. The website's most notable feature is its backend translation of user evaluations, which allows it to function in over 12 languages, including

English, Hindi, Telugu, and French. This inclusion promotes interaction across linguistic barriers by guaranteeing accessibility for a worldwide audience.

The user experience is improved by features like sentiment score-based dynamic sorting, category filters, and product name search. Combining multilingual support with cutting-edge sentiment analysis techniques seeks to create a user-centric e-commerce platform that accommodates a wide range of language preferences around the globe. The website aims to maximize customer pleasure and engagement by providing tailored experiences and streamlining decision-making processes. By prioritizing comprehension and utilization of client feeling, the initiative aims to overcome linguistic obstacles and establish a smooth and uninterrupted purchasing encounter. The platform seeks to establish itself as a reliable e-commerce destination by giving priority to customer comments and preferences. This approach is intended to cultivate trust and loyalty among its global user base.

The Flask and Python-powered mSA-powered e-commerce website caters to a diverse clientele with Product Specifications that include details like Name, Price, and User Reviews.

The website stands out for its multilingual support, which translates user reviews from actual users on the backend into 12 other languages, including English, Hindi, Telugu, and French. Such a broad language appeal's universal accessibility fosters communication beyond acknowledged linguistic boundaries and increases audience engagement on a worldwide scale.

The following features enhance the user experience: category filters, product title searches, and emotion score sorting for results. Owing to the multilingual supplemental feature and sophisticated sentiment analysis combined with the advantages of the user-focused e-commerce platform, this combination provides a worldwide service that caters to a variety of linguistic needs. The directory website will assist in enabling quick and customized decision-making, providing consumers with an engaging and pleasant experience.

By employing this mindset, the project helps clients comprehend consumer psychology and creates an impenetrable barrier against any linguistic or dialectal barriers that would prevent them from shopping. By continuously improving based on customer comments and preferences, the e-commerce platform hopes to establish itself as a reliable destination for all things e-commerce. The users worldwide are encouraged to trust and stick with this.

1. LITERATURE REVIEW

Product Recommendation System from Users' Reviews using Sentiment Analysis [2019]:

Using this approach, the initiative builds an impenetrable barrier against any linguistic or dialectal barriers that would discourage clients from buying and aids in their understanding of consumer psychology. The e-commerce platform wants to become known as a trustworthy resource for everything related to e-commerce, thus it will be constantly improving in response to feedback and requests from customers. Users everywhere are urged to have faith in and persevere with this. Additionally, this system enables more personalized and accurate product recommendations by analyzing user sentiments across diverse languages. By continuously learning from user interactions, the platform adapts to changing expectations and market trends.

Drawbacks

Its potential to misrepresent the subtleties of user sentiment and context, to favor well-liked products with a higher number of reviews, and to fail to take into consideration individual variances in preferences and tastes are some of its limitations.

Deep Learning Based Product Recommendation System and its Applications [2021]:

This investigation made use of The Visual Similarity Method To extract characteristics from photos, a pre-trained Convolutional Neural Network (CNN), namely VGG16, is employed. The nearly 5,000 photos in the Deep Fashion Database have been gathered and categorized. makes effective use of transfer learning to extract features from photos. uses cosine similarity and visual similarity to provide precise suggestions.

Drawbacks

The fact that training deep learning models like VGG16 can be time and computationally-intensive is a drawback. The system makes a lot of its product recommendations based on image data. The online application is mentioned in passing in the article, but user input, usability testing, or user-centric design concerns are not included.

A comparative study of machine translation for multilingual sentence-level sentiment analysis [2020]:

assesses and contrasts the sentiment analysis techniques currently in use for various languages. offers a basic method for multilingual sentiment analysis that works well. encourages the application of machine translation to enhance sentiment analysis across languages. Support Vector Machines (SVM), Naive Bayes, Random Forest, Cross-Lingual Adaptation, Rule-Based

Approaches, and Performance Metrics are all used.

Drawbacks

Might not sufficiently handle subtleties unique to a given language. Depending on the language and situation, the baseline approach's efficacy may change.

Deep Learning Approaches for Multilingual Sentiment Analysis on Social Media Data [2021]:

Deep learning techniques have demonstrated potential in enhancing the precision and effectiveness of multilingual sentiment analysis on social media information, which can be helpful for a range of purposes including customer service, politics, and marketing. Attention-based models, BiLSTM-CNN Double BiLSTM, and SAEKCS (a CNN-based architecture)

Drawbacks

Large quantities of labeled data are needed for deep learning techniques, which can be computationally costly and may not always be available for all languages and topics. Furthermore, deep learning models might not always be easy to understand or offer a clear explanation for their predictions.

Machine learning based customer sentiment analysis for recommending shoppers, shops based on customers' review:

Comparing the suggested method against other methods now in use, the mean absolute error (94%) is lower and accuracy is higher. Minimal variance in the MSE score is another powerful sign of excellent precision and accuracy. The techniques are regression-based classification, feature extraction, and feature selection using Chi-squared testing. The experiment's dataset was compiled from multiple publicly accessible data sources. Fifty thousand customer review records. When compared to other methods already in use, the suggested strategy has a greater accuracy and mean absolute error (94%) percentage. The MSE score demonstrated negligible variance, which is yet another potent sign of excellent accuracy and precision.

Drawbacks

The paper does not compare the suggested strategy with other cutting-edge techniques for customer sentiment analysis, nor does it offer a thorough explanation of the dataset.

2. EXISTING SYSTEM

Sentiment analysis gives us the ability to investigate the emotions conveyed in a text.

The already-existing sentimental analysis system solely examined texts provided in the English language. Every consumer, regardless of sector or kind, wants to know what their customers' opinions of them are, whether favorable or unfavorable.

Typically, sentiment analysis uses simple machine learning techniques, with the majority of the analysis focusing on keyword analysis to determine the sentiment. Sentiment analysis makes it possible to investigate the feelings expressed in text, regardless of the context or sector. Due to their primary focus on English content, traditional sentiment analysis methods were not as applicable in other linguistic contexts. Recognizing the universal need to understand consumer sentiment, firms in all sectors look for ways to find out what customers think—positive or bad. Sentiment analysis was formerly dependent on crude machine learning algorithms and frequently used keyword-based techniques to identify sentiment. These techniques, however, were limited by linguistic boundaries and were not flexible enough to handle non-English content. Consequently, companies encountered difficulties in precisely representing the opinions of their international clientele. Businesses are now able to assess sentiments expressed in several languages because of the multilingual capabilities of sentiment analysis systems, which are made possible by improvements in natural language processing and machine learning. The field of sentiment analysis has seen tremendous growth as a result of this progression, enabling companies all over the world to obtain a more profound understanding of consumer attitudes. As a result, businesses are better able to customize their goods, services, and communication plans to the various demands and preferences of their international clientele, which eventually improves consumer happiness and loyalty across linguistic barriers.

3. DRAWBACKS OF EXISTING SYSTEM

Limited Language Support

The current system might not support more than one language, which limits the usefulness and accessibility of the system for users who prefer languages other than the supported default language or languages.

No Sentiment Analysis

In the absence of automated sentiment analysis features, the current system can depend on human evaluation of user evaluations to determine the sentiment of the product, which could result in errors and inefficiencies.

Inconsistent User Experience

Variations in the translation and interpretation of user evaluations in other languages could result in disparities in sentiment analysis findings, which could affect the system's dependability and credibility.

4. PROPOSED SYSTEM

The suggested system is a multilingual sentiment analysis-based e-commerce website that aims to give customers a simple and welcoming buying environment. The system, which was developed with the Flask and Python programming languages, incorporates sophisticated sentiment analysis algorithms to evaluate user evaluations and produce sentiment scores for every product. Important elements of the suggested system consist of:

User Interface

The website's front-end interface will have an intuitive design that makes it simple for customers to browse through the many product categories and obtain comprehensive details about each one.- Users will be able to find products fast by using intuitive search functionality that is based on product names or specified keywords.- Category-based filters will help customers even more to customize their product search results to suit their needs.

Product Catalog

The website will provide a wide variety of products in several categories, giving customers access to a wide range of options. Every product listing will have all the necessary information, including the product name, price, and previous user.

Sentiment Analysis

To evaluate user evaluations and determine sentiment scores for every product, the system will make use of sentiment analysis algorithms.

Sophisticated algorithms for natural language processing (NLP) will be used to precisely interpret the sentiment represented in user evaluations. Users will have access to dynamically generated and updated sentiment scores for every product, giving them a better understanding of the general opinion on a given item.

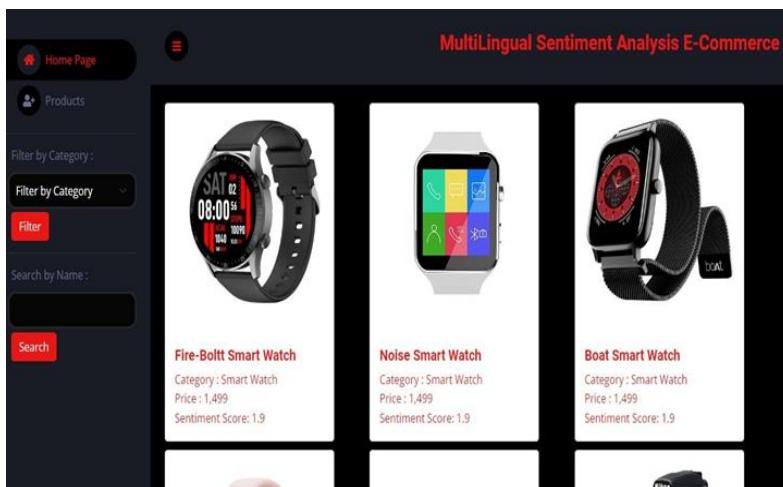
Multilingual Support

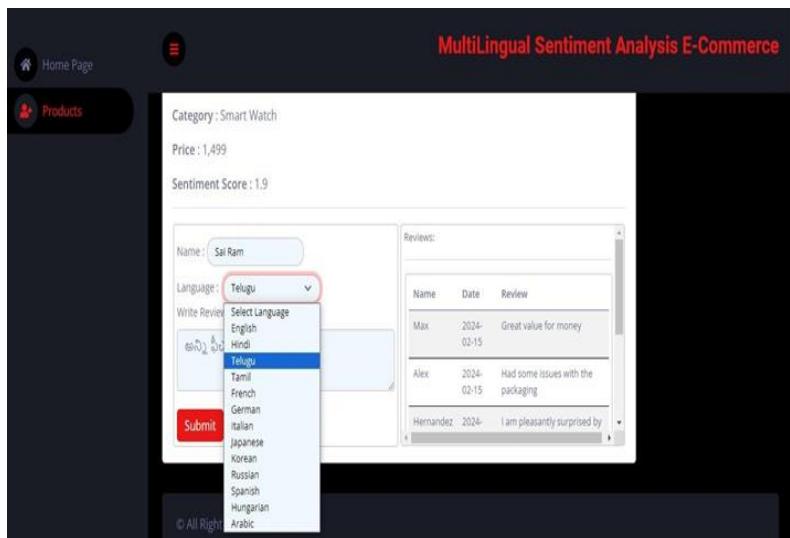
The system's ability to support more than 12 languages, including English, Hindi, Telugu, French, and others, is one of its primary features.

Multilingual support will be handled via backend systems, which will include text translation tools to guarantee that user reviews in different languages are handled consistently.

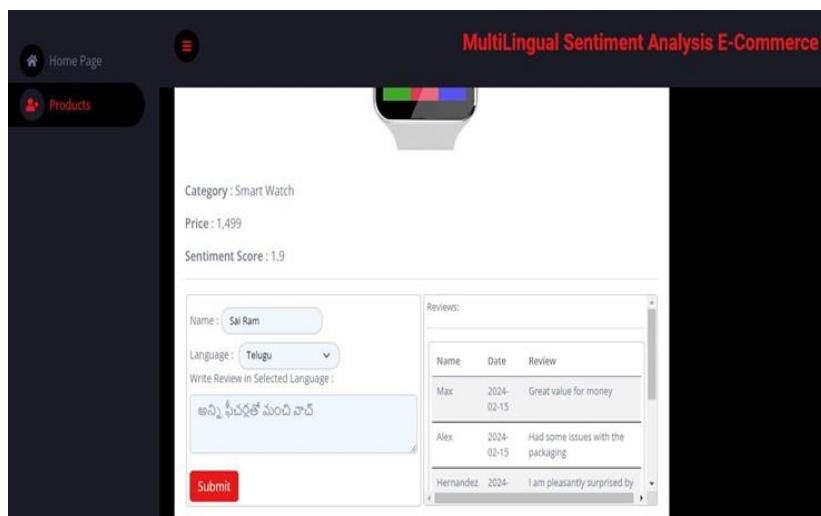
Users with different linguistic backgrounds will be able to interact with the website with ease thanks to its multilingual capability.

Sorting and Ranking

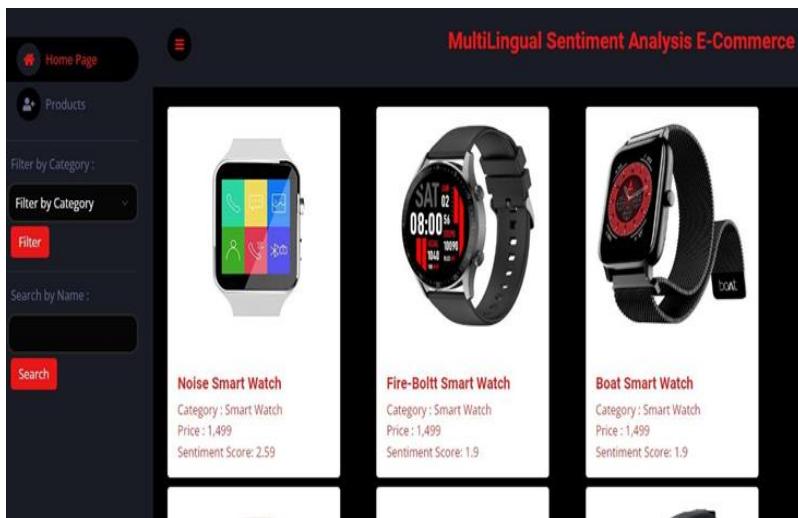

Users will be able to prioritize products with more positive reviews by sorting and ranking them based on their sentiment scores. Users will be able to organize product listings according to sentiment score, price, or other pertinent factors thanks to dynamic sorting functionalities.


Generally, this model means an interactive and smart e-commerce website which is supported by LNM. Through users came about with key discovery. Overall, by utilizing sentiment analysis and language support, the suggested system seeks to provide an interesting and welcoming e-commerce environment. The solution improves the shopping experience and gives consumers the ability to make well-informed selections by giving them useful insights about product sentiment across many languages.

5. RESULTS


The proposed Multilingual Sentiment Analysis-based E-commerce Website marks a groundbreaking leap in the domain of online shopping, poised to revolutionize user experience and inclusivity. By seamlessly integrating cutting-edge sentiment analysis techniques with multilingual support, this system empowers users with a comprehensive grasp of product sentiment across various languages, enabling informed purchasing decisions.

Home Page with Different Products



In the language section, we should select one language and provide a review.

Here, we are selecting Telugu and providing reviews for the product

High sentiment score products are displayed at the top of the webpage

CONCLUSION

In summary, the Multilingual Sentiment Analysis-based E-commerce Website emerges as a trailblazer in the online shopping realm, positioned to revolutionize the industry through its commitment to elevating user satisfaction and inclusiveness. Seamlessly integrating advanced sentiment analysis with support for over 12 languages, the platform offers users a comprehensive understanding of product sentiment, empowering them to make informed purchasing decisions effortlessly. Through automated sentiment analysis and dynamic sorting based on sentiment scores, the platform not only streamlines the user experience but also enhances engagement and contentment.

As we look ahead, the Multilingual Sentiment Analysis-based E-commerce Website presents numerous avenues for growth and development. By prioritizing the refinement of sentiment analysis algorithms, the platform can delve deeper into user feedback and preferences. The implementation of real-time translation mechanisms and AI-powered virtual assistants holds the promise of further enhancing user experience by facilitating faster decision-making and providing personalized recommendations.

Additionally, broadening the scope of analysis to include various user-generated content types and collaborating with language experts to expand language support will ensure inclusivity and foster trust across diverse user demographics. In essence, this system establishes a sturdy foundation for a dynamic and inclusive e-commerce ecosystem, primed for ongoing innovation and adaptation to evolving market dynamics and user expectations.

REFERENCES

Abreu Salas, J. I., & Liu, Xiaofang (2021). Deep Learning Approaches for Sentiment Analysis on Social Media Data. <https://www.sciencedirect.com/science/article/pii/S1568494621002969>

Agüero-Torales, M. M., Abreu Salas, J. I., & López-Herrera, A. G. (2021). Deep Learning Approaches for Multilingual Sentiment Analysis on Social Media Data. <http://www.sciencedirect.com/science/article/pii/S15684946>

Araújo, Matheus, & Pereira, Adriano (2020). A comparative study of machine translation for multilingual sentence-level sentiment analysis. <https://www.sciencedirect.com/science/article/abs/pii/S0020025519309879>

Dashtipour, Kia, & Poria, Soujanya (2018). Multilingual Sentiment Analysis: State of the Art and Independent Comparison of Techniques. <https://link.springer.com/article/10.1007/s12559-016-9415-7>

Kanfoud, Mohamed Raouf, & Bouramoul, Abdelkrim (2021). Systematic reviews in sentiment analysis. <https://link.springer.com/article/10.1007/s10462-021-09973-3>

Kumar, Akshi, & Garg, Geetanjali (2019). Systematic literature review on context-based sentiment analysis in social multimedia. <https://link.springer.com/article/10.1007/s11042-019-7346->

Ligthart, Alexander, & Catal, Cagatay (2021). Deep learning and multilingual sentiment analysis on social media data. <https://www.sciencedirect.com/science/article/abs/pii/S1568494621002969>

Lo, Siaw Ling, & Cambria, Erik (2019). Sentiment Analysis: A Perspective on its Past, Present and Future. <https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf>

Lo, Siaw Ling, & Cambria, Erik (2021). Multilingual sentiment analysis: from formal to informal and scarce resource languages. <https://link.springer.com/article/10.1007/s10462-016-9508-4>

Nandwani, Pansy, & Verma, Rupali (2021). A review on sentiment analysis and emotion detection from text. <https://link.springer.com/article/10.1007/s13278-021-00776-6>

Přibáň, Pavel, & Balahur, Alexandra (2023). Comparative Analyses of Multilingual Sentiment Analysis Systems for News and Social Media. https://link.springer.com/chapter/10.1007/978-3-031-24340-0_20

Rao, Yugeswara, Murthy, G. S. N., & Adinarayana, S. (2018). Product Recommendation System from Users' Reviews using Sentiment Analysis. <https://www.ijcaonline.org/archives/volume169/number1/27951-2017914585>

Salina, Adinarayana, Rao, K. Yugeswara, Rao, Yogi, & Murthy, G. S. N. (2021). Deep Learning Based Product Recommendation System and its Applications. <http://www.irjet.net/archives/V8/i4/IRJET-V8I4250.pdf>

Yadav, Vandana, Verma, Parul, & Katiyar, Vinodini (2021). Long short-term memory (LSTM) model for sentiment analysis in social data for e-commerce product reviews in Hindi language. <https://link.springer.com/article/10.1007/s41870-022-01010-y>

Yi, Shanshan, & Liu, Xiaofang (2019). Machine learning based customer sentiment analysis for recommending shoppers and shops based on customer reviews. <https://link.springer.com/article/10.1007/s40747-020-00155->

Zhang, Ying, & Lin, Zhijie (2020). Predicting the helpfulness of online product reviews: A multilingual approach. <https://www.sciencedirect.com/science/article/pii/S156742231730087X>

Ziani, Amel, Azizi, Nabiha, Schwab, Didier, Aldwairi, Monther, Chekkai, Nassira, Zenakhra, Djamel, & Cheriguene, Soraya (2018). Recommender System Through Sentiment Analysis. <https://hal.science/hal-01683511/document>

CHAPTER 2

MENTAL HEALTH INFORMATICS IN ALGERIA: BRIDGING PSYCHIATRY AND COMPUTER SCIENCE

¹Abdelkrim MEBARKI

²Sarra Samra BENHARRATS

³Bochra BOUDJELLAL

⁴Imene DAHANE

⁵Hanane Hadjira NEDJAR

¹University of Science and Technology of Oran-Mohamed Boudiaf, Algeria, abdelkrim.mebarki@univ-usto.dz, ORCID ID: 0009-0003-8273-8665

²University of Oran 1 – Ahmed Ben Bella, Sidi Chami Psychiatric Hospital of Oran, Algeria

³University of Science and Technology of Oran-Mohamed Boudiaf, Algeria, SIMPA Laboratory, boudjellal.bochra@gmail.com, ORCID ID: <https://orcid.org/0009-0008-2166-1664>

⁴University of Science and Technology of Oran - Mohamed Boudiaf, Algeria, SIMPA Laboratory, imene.dahane@univ-usto.dz, ORCID ID: 0009-0004-3564-9085

⁵University of Science and Technology of Oran-Mohamed Boudiaf, Algeria, SIMPA Laboratory, hananehadjira.nedjar@univ-usto.dz, ORCID ID: 0009-0008-0692-2993

INTRODUCTION

Faced with rapid technological advances and the growing complexity of public health and mental health challenges, traditional, siloed approaches to scientific research are proving insufficient and sometimes ineffective. Interdisciplinary collaboration is now emerging as a fundamental driver of innovation and the advancement of human knowledge and know-how. In this chapter, we explore the dynamic intersection between computer science, ubiquitous in human daily life, and health sciences, a primary human need and necessity, with a particular focus on mental health. We examine how this integration is transforming healthcare systems globally and what it could mean for countries like Algeria, where digital transformation is still in its infancy. This chapter also presents a case study from our university project titled "Contributing to Mental Health Informatics in Algeria," which illustrates how interdisciplinary research can address systemic gaps in mental healthcare delivery and foster data-driven healthcare solutions. This project focuses on three areas:

- The use of immersive environments for mental health assessment and treatment through the creation of customizable and configurable environments that allow therapists to stage assessment and therapy scenarios.
- The visualization of mental health data, which falls within the scope of information visualization, but is distinguished by the nature of mental health data, which is not always standardized and can be directly exploited by machines.
- The interpretation and analysis of facial expressions, which represents a primary key for making diagnoses and assessing an individual's mental and psychological abilities.

The Need for Interdisciplinary Collaboration

Interdisciplinary research integrates knowledge, methodologies, and perspectives from different fields to solve complex problems. In the field of health, this approach can lead to a deeper understanding of the human body, its psyche, and diseases.

It can also contribute to innovative treatments as well as different avenues of therapy and care. In our case, the combination of clinical knowledge and computational methods aims to leverage human expertise in health sciences and the power of machines in terms of analytical, memorization, and computational capabilities.

With the advent of artificial intelligence, this integration enables the development of intelligent systems for diagnosis, monitoring, patient management, and research. Technologies such as machine learning, data mining, and interactive simulations can significantly improve the accuracy and effectiveness of mental health interventions.

Barriers and Challenges

Despite its promising and valued potential, interdisciplinary work faces several obstacles:

- Cultural and paradigmatic differences between disciplines often lead to methodological differences that can create divergences in the interpretation of findings, and consequently, divergences in the adoption of solutions.
- The lack of a common vocabulary represents a communication barrier between work teams.
- Funding structures often favor monodisciplinary research because adopting a dual perspective on the same phenomenon requires dual training in technical and clinical fields.

1. THE DIGITAL TRANSFORMATION OF HEALTHCARE

The widespread integration of digital technologies into healthcare has fundamentally transformed the way services are delivered, managed, and evaluated. From administrative tasks to clinical decision-making, the digitalization of healthcare enables more efficient, personalized, and data-driven approaches to patient care, drawing on global, rather than just local, information. This transformation is particularly significant in the field of mental health, where traditional service delivery models face numerous barriers such as limited access, stigma, and workforce shortages.

In this section, we examine key technological areas, ranging from software engineering and data analytics to artificial intelligence and virtual reality, that are driving innovation in healthcare and reshaping the landscape of mental health services.

2. OVERVIEW OF DIGITAL TECHNOLOGIES IN HEALTHCARE

Healthcare systems around the world have undergone a profound digital transformation, driven by the emergence of advanced information and communication technologies. These innovations are transforming the design, delivery, and monitoring of healthcare services, offering unprecedented opportunities to improve the accessibility, efficiency, and quality of care. These innovations are driven by the need for performance and health disasters such as Covid-19.

The first step in this transformation is the widespread adoption of electronic medical records (EMRs), which replace traditional paper records and enable the systematic collection, storage, and retrieval of patient data. They improve continuity of care, reduce medical errors, and optimize clinical decision-making through integrated access to a patient's medical history, laboratory results, prescriptions, and medical imaging.

In addition to this static digitization of data and information, the proliferation of wearable sensors and connected health devices, such as smartwatches, activity trackers, and biometric monitors, has enabled continuous, real-time monitoring of physiological and behavioral parameters. These devices are particularly useful for tracking indicators such as heart rate, sleep patterns, physical activity, and even emotional state, essential for managing physical and mental health.

Mobile health (mHealth) apps represent another growing component of the digital health ecosystem. Designed for smartphones and tablets, these apps facilitate self-monitoring, medication adherence, psychoeducation, and communication between patients and healthcare professionals. In mental health, for example, apps offer cognitive behavioral therapy exercises, mood tracking, and mindfulness practices, thus expanding care beyond traditional clinical settings.

Telemedicine and remote diagnosis have also gained momentum, particularly in response to the COVID-19 pandemic. These technologies enable remote consultations, digital prescriptions, and remote monitoring, reducing the need for in-person visits. For underserved or rural areas, this represents a major step toward healthcare equity by overcoming geographic barriers.

Furthermore, the integration of cloud computing and interoperable systems enables seamless data sharing between facilities, facilitating care coordination and multicenter research. Combined with advances in cybersecurity, these platforms also address concerns about data privacy and patient confidentiality.

In short, the continued digitalization of healthcare not only optimizes traditional processes but also paves the way for new models of prevention, diagnosis, treatment, and monitoring. As we will explore in the following sections, these technologies form the foundation upon which more specialized tools, such as AI-powered diagnostics and immersive therapies, are built, particularly in the field of mental health.

3. ROLE OF ARTIFICIAL INTELLIGENCE

Artificial intelligence (AI) has emerged as one of the most transformative technologies in modern healthcare. It offers powerful solutions for analyzing vast amounts of data, extracting meaningful patterns, and supporting decision-making processes previously limited by human capabilities. In the fields of physical and mental health, AI is establishing new practices and redefining how clinicians diagnose conditions, personalize treatments, and monitor patient outcomes.

AI is based on a set of techniques, such as machine learning, natural language processing, and deep learning, which enable systems to learn from data and improve their performance over time. In clinical settings, AI algorithms are trained on large clinical datasets, imaging data, genetic information, and patient-reported outcomes. These models can then be used to predict disease onset, suggest treatment options, or identify high-risk patients requiring urgent attention. In mental health, the potential of AI is significant due to the complexity and subjectivity of diagnosis and treatment.

Traditional psychiatric assessments rely heavily on subjective assessment of patient speech and self-reports, as well as clinical observation, which can be limited by bias, stigma, or poor or inconsistent communication. AI can help fill these gaps by identifying subtle linguistic, behavioral, or physiological markers that may indicate underlying mental disorders. For example, machine learning algorithms can analyze vocal patterns, facial expressions, or digital fingerprints (such as social media usage or typing speed) to detect early signs of depression, anxiety, or cognitive decline.

AI is also playing an increasingly essential role in tracking and monitoring symptoms in potential patients. By integrating data from connected devices, mobile apps, and digital diaries, it can help clinicians and patients track the evolution of mental health symptoms over time. These tools promise more responsive care by detecting deviations from baseline behavior and alerting caregivers to potential crises before they escalate.

Furthermore, AI can personalize treatments by identifying the interventions most likely to be effective for a given individual, based on their unique characteristics and clinical history. This is particularly valuable in psychiatric care, where responses to the same treatments for the same condition can vary considerably from patient to patient. AI can inform decisions such as choosing the most appropriate medication, adjusting dosages, or recommending complementary therapies.

It is important to note that AI can also contribute to population-level mental health management by uncovering trends, forecasting demand for services, and informing public health policies. Applied ethically and responsibly, it can help optimize resource allocation and improve the overall quality and equity of mental health services, thereby promoting good governance in mental health and hygiene.

Nevertheless, the integration of AI in mental health raises important questions regarding data privacy, algorithmic bias, and clinical accountability. Developing transparent, explainable, and culturally appropriate AI systems is essential to ensure trust and efficiency in diverse healthcare settings. In summary, AI does not replace human clinicians, but rather serves as a powerful complement that improves clinical decision-making, promotes individualized care, and fosters a more proactive and predictive approach to mental health.

4. VIRTUAL REALITY IN THERAPY AND TRAINING

Virtual reality (VR) is any immersive interactive computer simulation across perceptual dimensions. It has emerged as a transformative tool in mental health, creating immersive, controlled, and customizable virtual environments. In therapeutic settings, VR allows clinicians to conduct exposure therapy in a safe and reproducible manner. Patients suffering from post-traumatic stress disorder (PTSD), phobias, or anxiety disorders can be gradually and safely exposed to triggering stimuli in a controlled virtual space, helping them desensitize and develop coping strategies under the supervision and guidance of a therapist. This method is often more cost-effective, more engaging, and safer than *in vivo* exposure.

Beyond patient care, VR is playing an increasingly important role in the training of various mental health professionals. Through immersive simulations, learners can interact with virtual patients exhibiting a variety of symptoms and behavioral cues, enhancing their diagnostic and therapeutic skills in a risk-free environment. These environments can also simulate crisis management scenarios (e.g., suicidal ideation, psychosis) that are difficult to replicate en masse in traditional educational settings. This application promotes experiential learning and helps build the confidence and competence of clinicians and paramedical staff. Furthermore, virtual reality can enhance empathy training by simulating the experiences of people suffering from mental health disorders, allowing clinicians, caregivers, and even policymakers to gain a deeper understanding of the patient's perspective.

5. DATA ANALYTICS

Data analytics is a fundamental component of computer science, particularly in IT fields focused on processing field data, such as mental health. By collecting and analyzing longitudinal and real-time data from clinical records, mobile health applications, sensors, and surveys, mental health professionals can better understand the dynamics of illness and hygiene, both at the individual and collective levels. The data collected, when translated into information, is essential for:

- Tracking prevalence trends of conditions such as depression, anxiety, and substance abuse by location and demographic group;

- Predictive modeling to identify at-risk individuals or communities before crises become realities;
- Evaluating the effectiveness of therapies and treatments, enabling clinicians and institutions to make evidence-based decisions regarding management methods, medications, and treatment protocols;
- Develop public health policies, as data reveal unmet needs, gaps in access to care, or disparities in care delivery.

Advanced techniques such as machine learning and natural language processing (NLP) also enable automated pattern extraction from unstructured data (e.g., clinical notes, interviews, or patient-reported outcomes). Ethical considerations, particularly those related to consent, data ownership, and confidentiality, must be carefully considered to ensure the responsible use of mental health data.

6. SOFTWARE ENGINEERING

Software engineering is the foundation of any scalable and effective digital mental health solution. As applications move from pilot to real-world deployment, the quality of software solutions becomes a critical success factor. Key considerations include:

- Interoperability: Systems must integrate with existing electronic medical records (EMRs), wearable devices, and data platforms. Standardized APIs and data formats ensure efficient application communication across ecosystems.
- Usability: Mental health software must be designed with end users in mind, whether they are clinicians, patients, or administrators. User-centered design practices improve engagement, reduce abandonment rates, and ensure tools are accessible to people with varying digital skill levels.
- Data security and privacy: Given the sensitivity of mental health data, strong encryption, secure authentication, and regulatory compliance are essential. Systems must also incorporate consent management features and audit trails for greater transparency. Collaborative development between software engineers, clinicians, and researchers ensures tools that are both technically powerful and clinically relevant.

Mental Health Informatics: Concepts and Global Trends

Mental health problems continue to worsen globally, and there is a growing need for innovative, technological approaches to support mental health care. Mental health informatics (MHI) has emerged as a critical interdisciplinary field at the intersection of psychiatry, psychology, computer science, and public health. By leveraging digital tools and data systems, MHI aims to improve clinical decision-making, access to care, support research, and empower patients. This section explores the core concepts of MHI, highlights successful international implementations, and addresses key ethical issues shaping its global evolution.

Definition and Scope

Mental health informatics (MHI) is a subfield of health informatics specifically focused on mental health services, encompassing both clinical and nonclinical domains. It integrates technologies such as electronic medical records (EMRs), telepsychiatry platforms, wearable monitoring devices, machine learning algorithms, and mobile mental health applications. MHI supports a wide range of functions: tracking patient symptoms, delivering remote therapies, managing medication adherence, analyzing large datasets for public health planning, and facilitating mental health research. Its scope is broad and evolving, with applications in hospital settings, community health programs, and personal wellness tools.

Global Success Stories

Several countries have demonstrated how well-designed HCI strategies can improve mental health outcomes:

- United States: The integration of AI into systems such as the PHQ-9 chatbot facilitates depression screening in primary care settings. The Veterans Health Administration also makes extensive use of telepsychiatry for remote mental health support.
- United Kingdom: The National Health Service (NHS) has integrated digital tools such as SilverCloud, an online platform offering evidence-based therapies for anxiety and depression.

- Australia: Programs such as Head to Health offer centralized digital mental health services, including self-assessment tools, guided therapies, and clinician directories.

These initiatives demonstrate how HCI can expand services, reduce stigma, and reach underserved populations when supported by strong policies, funding, and stakeholder collaboration.

Ethical Considerations

While the potential of MHI is considerable and highly sought after, ethical challenges must be addressed to ensure responsible and proper implementation:

- Data privacy is paramount, particularly when it comes to sensitive mental health information collected via mobile apps or cloud platforms.
- Algorithmic biases in AI models can lead to misdiagnoses or unequal treatment recommendations if training data lacks diversity.
- Digital divide issues can exclude people living in rural or low-income areas, who lack internet access or digital proficiency.

To manage these risks, MHI initiatives must be based on ethical frameworks, transparent data governance policies, inclusive design principles, and ongoing stakeholder engagement, including patients and mental health professionals.

The Algerian Context

With globalization pervasive in all fields related to science and knowledge, Algeria is no exception when it comes to mental health. The challenges are the same, the constraints are the same, and the difficulties are the same, even if the magnitude is not always the same: We cite the lack of qualified healthcare personnel, the stigmatization of mental illness, and the special status of informal caregivers for patients with mental disorders. In this regard, the efforts of the Algerian government can only be commended in terms of treatment coverage, free care, and the ongoing commitment to health coverage throughout the country.

Current Status

Despite the mass training of mental health care providers, including doctors, psychologists, nurses, and administrators, the demand for care driven by the growth in the rate of mental illness is overwhelming healthcare facilities. This overwhelm is greatly slowing down any effort to transition from a traditional healthcare ecosystem to a smart one, as the priority for healthcare providers remains meeting the ever-increasing demand.

As such, although we are aware that the transition to a smart ecosystem will, by definition, eliminate any overflow and streamline the flow of care, we remain unable to make significant strides in this direction.

Infrastructure

Most healthcare facilities are still in the process of installing adequate digital infrastructure, such as electronic medical records or centralized mental health databases. This installation is accompanied by staff training, which is not always straightforward given the workload.

Staffing and Training

There is a lack of professionals trained in digital health and informatics, and few university programs bridge the gap between clinical psychology and informatics. Furthermore, research in this area remains tentative and isolated from the institutional environment, and therefore unable to translate into practice.

Policy and Strategy

Although Algeria has taken steps toward the digitalization of healthcare, and although mental health legislation is extensive and revised and updated according to societal needs, there is no comprehensive national policy on mental health informatics or AI in healthcare. This leaves this field open to individual initiatives and unstructured research topics that are not oriented toward a common national objective.

Our Research Project: Contribution to Mental Health Informatics in Algeria

The research and doctoral training project "Contribution to Mental Health Informatics in Algeria" was initiated in 2023 as a research and doctoral training initiative involving a psychiatrist, computer scientist, and doctoral students. In this project, we aim to take advantage of advances in model-driven engineering and recent artificial intelligence tools to develop and deliver IT solutions with the aim of contributing to the creation of a smart ecosystem for mental health.

Objectives and Vision

The overall objectives of our project are:

- Automate support processes and assistance for the various stakeholders in the mental health care system.
- Design and develop visualization and concept modeling tools to assist in therapeutic decision-making and patient monitoring.

To achieve these two objectives, the project stakeholders are tasked with:

- Model the mental health care system in Algeria to provide an IT basis for any subsequent solutions.
- Propose solutions based on the established model to promote the mental health care system and assist the various stakeholders in their decision-making.

Given the time and resource constraints of research projects related to doctoral training, we focused on three central solutions that we deemed independent of all other solutions and that could serve as initial avenues and foundations for further development. In this regard, we mention:

- Solutions for personalized and interactive visualization of information at different levels of abstraction.
- Decision support solutions based on machine learning for therapeutic management and for monitoring and guiding healthcare providers.
- Event monitoring and forecasting solutions based on the system's history, thus enabling personalized action and guidance.

VR-Based Approach for Cognitive Assessment

The first area we focused on was augmenting the work dimension. To overcome the limitations of space and time in the face of a constantly growing service load, we must take advantage of the capabilities of virtuality made available thanks to the explosion in computing and storage capacity. To this end, we offer virtual reality-based solutions to enable therapists to overcome the limitations of existing systems. We targeted a more specific use: the assessment of cognition using virtual solutions.

This contribution investigates the integration of Virtual Reality (VR) technologies into cognitive assessment practices, with the goal of enhancing both the ecological validity and user experience of traditional evaluation tools. Conventional tests, typically paper-based or screen-based, often lack the ability to simulate real-life cognitive demands. As a result, they may fail to capture an individual's capabilities in everyday situations and often struggle to maintain participant engagement.

With the enormous workload, therapists cannot configure real-world environments or engage in on-site sessions, which risks limiting the number of consultations and increasing waiting times. In this context, digital solutions that can be implemented in treatment rooms and instantly configured on workstations are proving to be a promising solution.

Design Rules for Cognition Assessment Pps

The growing capabilities of immersive technologies, particularly VR, offer promising opportunities to bridge this gap by creating more dynamic, interactive, and realistic environments for assessment. This work responds to this potential by proposing and developing VR-based test scenarios specifically designed to evaluate cognitive functions such as attention, memory, and executive functioning. The primary objective is to construct test environments that are both scientifically valid and user-centered, enhancing realism without compromising the methodological rigor of traditional cognitive science.

The first phase of the project focused on an in-depth exploration of existing literature related to VR applications in cognitive assessment. This phase included a comprehensive survey of recent VR-based tools and studies, identifying strengths, weaknesses, and gaps in current solutions.

Particular attention was given to the ergonomic aspects of VR usage, as issues such as user discomfort, motion sickness, or poor interaction design can negatively impact both performance and data reliability. As part of this investigation, a set of ergonomic specifications and usability principles was compiled to guide the development of future VR applications in the field. These principles covered areas such as navigation ease, interaction simplicity, accessibility, visual comfort, and user safety. In addition to reviewing existing tools, the research established a set of design rules for cognitive test scenario development, aiming to ensure accurate assessment while maintaining user engagement through well-structured, immersive environments.

Solutions for cognitive functions

While the design of the A-Frame-based cognitive scenarios is still underway, it is being developed in alignment with the previously established ergonomic and design guidelines in collaboration with therapists, with parallel testing with subjects to maximize the benefit of virtuality. As part of this ongoing work, three interactive cognitive test games are currently being developed using A-Frame, each targeting different cognitive functions:

- The first is a basketball attention and decision-making game, where the user must quickly respond to a given rule and follow it as instructed, even if it contradicts real-world expectations. This setup requires focused attention and rapid decision-making, simulating cognitive conflict or ambiguity often encountered in real-life situations.
- The second test focuses on working memory and word recall: the user is shown a random word to memorize, after which balloons appear with letters, and the user must select those that correspond to the memorized word, engaging sustained attention and memory retrieval under time constraints.
- The third test is designed around classification and memory. Users are briefly shown boxes of different colors, which are then hidden. As colored balls appear, the user must recall the corresponding box and classify the balls correctly using intuitive VR-based hand interactions. This scenario challenges visual memory, spatial reasoning, and cognitive flexibility.

In summary, this contribution advances the field of cognitive assessment by introducing a structured and innovative approach to the development of VR-based tools that are both immersive and methodologically sound. It bridges theoretical insight with practical implementation, offering a model for designing next-generation cognitive assessments aligned with everyday cognitive challenges. Through its literature review, ergonomic framework, prototype development, and scientific dissemination, this work sets the stage for future intelligent and adaptive VR-based assessments to be deployed in clinical, educational, and research contexts

Mental Health Information Visualization

psychiatric professionals work with a wide array of clinical information that remains largely unstructured, handwritten, and fragmented across paper records or non-standard digital formats. This makes longitudinal follow-up, clinical synthesis, and inter-professional collaboration particularly challenging. Unlike other medical domains that depend primarily on numeric and biological data, psychiatric records consist of both somatic (physical symptoms, medications, hospitalizations) and non-somatic (mood, social behavior, cognitive state, personal narratives), information, which are difficult to structure and visualize consistently. These data encompass a wide variety of formats:

- Numerical data (e.g., clinical scale scores, treatment durations);
- Textual data (e.g., clinical notes, interview transcripts);
- Categorical data (e.g., diagnoses, family history, medications);
- Temporal data (e.g., episode timelines);
- qualitative data (e.g., behavioral observations, subjective experiences, psychosocial factors).

Unlike other medical domains, which rely heavily on biological and measurable data, psychiatry deals with both somatic and non-somatic elements, often subjective, sensitive, and difficult to quantify. This makes their structuring, storage, and interpretation particularly complex, especially in settings with limited digital infrastructure. This project axis proposes a comprehensive approach to the modeling, storage, and visualization of psychiatric data in the Algerian context.

The aim is to provide clinicians with a tool that transforms complex patient information into structured, readable, and interactive visual summaries that support diagnosis, decision-making, and longitudinal care. Our approach is structured around three main components, each contributing to a different layer of this clinical informatics solution[99].

Design of a Domain-Specific Metamodel for Psychiatry

The first phase involved creating a custom metamodel specifically tailored to psychiatric data. This metamodel not only provides a unified conceptual framework but also serves as a descriptor for the design of the database and user interface. The goal at this stage is to define a generic framework that can accommodate the current state of the art and any future changes in the data defining individual and societal mental health.

Implementation of a Lightweight and Portable Database

Based on the metamodel, the second phase focused on the design of a relational database using SQLite. This database was designed to be:

- Portable and usable without server infrastructure, thus allowing deployment in clinics with limited resources;
- Compatible with mobile and web applications for use on tablets or smartphones;
- Capable of containing structured and incremental data entry by healthcare staff or researchers;
- Faithful to the metamodel, preserving data integrity and relationships.

Each entity in the metamodel was mapped to standardized tables, with primary and foreign keys to ensure consistency. The database also allows for basic queries, filtering, and data visualization. This component ensures a centralized, organized, and reusable centralized clinical data layer accessible from different platforms.

Development of a Clinical Visualization Interface

The third phase consists of developing an interactive interface prototype intended for clinical use. Such an interface is designed to:

- Present psychiatric case data in a visual and intuitive format, rather than plain text or forms;
- Allow temporal exploration of a patient's psychiatric trajectory (e.g., symptom evolution, hospitalization episodes, treatment changes);
- Provide dashboards summarizing key dimensions (diagnostic categories, psychosocial indicators, treatment adherence);
- Offer interactive filtering (e.g., by time period, symptom, medication, comorbidity).

This interface does not aim to automate diagnosis or replace clinical judgment. Rather, it serves as a cognitive support tool, helping the psychiatrist to see patterns, outliers, or red flags that may not be easily noticeable in narrative records. The system is currently under iterative development, with early feedback from clinicians guiding improvements in usability and relevance.

Through these three phases, this work axis lays the groundwork for a localized, clinically relevant, and technically feasible information visualization system for psychiatry in Algeria. It highlights the importance of aligning data structures with clinical logic, and shows that even in low-resource settings, well-designed tools can significantly improve how psychiatric data is understood and used.

Mimicry Analysis and Interpretation

Facial mimicry expressions, as reflections of human emotions, are a rich source of non-verbal information. They constitute a universal mode of communication, regardless of cultural differences.

Basic Definitions

Facial mimicry refers to the movement of facial muscles that convey emotions and speech. According to the work of psychologist Paul Ekman, certain expressions are universal and correspond to six basic emotions: joy, sadness, anger, fear, surprise, disgust, and a seventh neutral state. The analysis and interpretation of these expressions are often among the first signs revealing mood disorders or psychiatric pathologies.

Mimicry Analysis for Mental Health

Facial expression is an information-rich communication medium that is complex and difficult to quantify. Its modeling and interpretation are always a challenge for artificial intelligence and its applications due to the dimension of the underlying emotion, the ambiguity and fuzzy limits between the different neighboring expressions, and the interpretation and the related decision.

The domain applications range from the detection of facial expressions in psychological and psychiatric interviews to the study of emotions and the detection of critical and emergency situations in recognition and access management applications.

Achieving an intelligent system that can classify facial expressions is not a simple programming task but a process that relies on complex and difficult modeling which must take into account the complex aspects of the subject, namely:

- The anatomical complexity of facial expression;
- The human and subjective dimension of interpretation depending on intrinsic and extrinsic factors such as personality, social background, ethnicity, and others;
- And the contextual dimension of mimicry responding to the application, the scene and the interlocutor.

These requirements imply a well-defined context-based solution thus excluding the universal solution.

The aim of developing this work axis is to provide the therapist with a section in the application allowing real-time monitoring of the patient's facial expressions, thus guiding them in their interview and providing assistance with diagnosis and treatment.

Tools and Applications

Automatic facial expression analysis systems rely on advanced image processing and machine learning techniques. The recognition process can be summarized in the following pipeline:

- Face detection: locating the face in an image or video.
- Feature extraction: identifying key facial landmarks (eyes, lips, eyebrows).

- Expression recognition: classifying emotions by comparing detected movements with known expression databases.

Any implementation of such a solution must take into consideration the requirements specific to the field of application and the specificities of the people concerned.

CONCLUSION

The current state of mental health in Algeria requires serious and rigorous work to move from direct and traditional digitalization to an intelligent ecosystem capable of meeting the growing demand for care and support.

Our research project aims to implement personalized solutions adapted to the national work context in three areas: the use of virtual environments in the care process, information visualization, and facial expression analysis.

The work is ongoing, and preliminary results are being evaluated in the field by specialists to adapt them to the practical context. The final completion of the project will undoubtedly serve as a starting point for developing a more comprehensive and global solution for mental health in Algeria.

REFERENCES

Alhumaidi, N. H., Dermawan, D., Kamaruzaman, H. F., & Alotaiq, N. (2025). The use of machine learning for analyzing real-world data in disease prediction and management: Systematic review. *JMIR Medical Informatics*, 13(1), e68898. <https://doi.org/10.2196/68898>

Amann, J., Blasimme, A., Vayena, E., Frey, D., Madai, V. I., & Precise4Q Consortium. (2020). Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. *BMC Medical Informatics and Decision Making*, 20(1), 310. <https://doi.org/10.1186/s12911-020-01332-6>

Arnold, P. I. M., Janzing, J. G. E., & Hommersom, A. (2024). Machine learning for antidepressant treatment selection in depression. *Drug Discovery Today*, 29(8), 104068. <https://doi.org/10.1016/j.drudis.2024.104068>

Asai, A., Konno, M., Taniguchi, M., Vecchione, A., & Ishii, H. (2021). Computational healthcare: Present and future perspectives. *Experimental and Therapeutic Medicine*, 22(6), 1351. <https://doi.org/10.3892/etm.2021.10786>

Bakker, D., Kazantzis, N., Rickwood, D., & Rickard, N. (2016). Mental health smartphone apps: Review and evidence-based recommendations. *JMIR Mental Health*, 3(1), e4984. <https://doi.org/10.2196/mental.4984>

Barnes, M., Hanson, C., & Giraud-Carrier, C. (2018). The case for computational health science. *Journal of Healthcare Informatics Research*, 2(1–2), 99–110. <https://doi.org/10.1007/s41666-018-0024-y>

Benmebarek, Z. (2017). Psychiatric services in Algeria. *BJPsych International*, 14(1), 10–12. <https://doi.org/10.1192/s2056474000001598>

Benoit, J. R. A., et al. (2022). Using machine learning to predict remission in patients with major depressive disorder treated with desvenlafaxine. *Canadian Journal of Psychiatry*, 67(1), 39–47. <https://doi.org/10.1177/07067437211037141>

Boudjellal, B., Mebarki, A., & Benharrats, S. S. (2024). Ergonomic specifications for virtual reality apps in cognitive assessment. In Sixth International Harran Congress on Scientific Research (pp. 357–361).

Boudjellal, B., Mebarki, A., & Benharrats, S. S. (2025). VR scenario rules for cognition assessment apps. In Book of the 4th International Paris Applied Sciences Congress.

Brouki, A. (2025). The role of digital transformation in improving the quality of health services in Algeria. *Al Bashaer Economic Journal*, 11(1), 489–508.

Busnati, S. S., et al. (2022). A review of digital health and biotelemetry. *Journal of Personalized Medicine*, 12(10), 1656. <https://doi.org/10.3390/jpm12101656>

Carl, E., et al. (2019). Virtual reality exposure therapy for anxiety disorders: A meta-analysis. *Journal of Anxiety Disorders*, 61, 27–36. <https://doi.org/10.1016/j.janxdis.2018.08.003>

Chen, Z. S., et al. (2022). Modern views of machine learning for precision psychiatry. *arXiv*. <https://doi.org/10.48550/arXiv.2204.01607>

Cruz-Gonzalez, P., et al. (2025). Artificial intelligence in mental health care: A systematic review. *Psychological Medicine*, 55, e18. <https://doi.org/10.1017/S0033291724003295>

Dave, S., et al. (2020). Digital psychiatry and COVID-19. *BJPsych Bulletin*. <https://doi.org/10.1192/bjb.2020.114>

Dorsey, E. R., & Topol, E. J. (2016). State of telehealth. *New England Journal of Medicine*, 375(2), 154–161. <https://doi.org/10.1056/NEJMra1601705>

Ekman, P., & Friesen, W. V. (1971). Constants across cultures in the face and emotion. *Journal of Personality and Social Psychology*, 17(2), 124–129. <https://doi.org/10.1037/h0030377>

Freeman, D., et al. (2017). Virtual reality in mental health. *Psychological Medicine*, 47(14), 2393–2400. <https://doi.org/10.1017/S003329171700040X>

Insel, T. R. (2017). Digital phenotyping. *JAMA*, 318(13), 1215–1216. <https://doi.org/10.1001/jama.2017.11295>

Kazdin, A. E. (2008). Evidence-based treatment and practice. *American Psychologist*, 63(3), 146–159. <https://doi.org/10.1037/0003-066X.63.3.146>

Maples-Keller, J. L., et al. (2017). Virtual reality technology in anxiety treatment. *Harvard Review of Psychiatry*, 25(3), 103–113. <https://doi.org/10.1097/HRP.0000000000000138>

Mohr, D. C., Riper, H., & Schueller, S. M. (2018). Implementable revolution in digital mental health. *JAMA Psychiatry*, 75(2), 113–114. <https://doi.org/10.1001/jamapsychiatry.2017.3838>

Topol, E. (2019). Deep medicine. Basic Books.

Topol, E. J. (2019). High-performance medicine. *Nature Medicine*, 25(1), 44–56. <https://doi.org/10.1038/s41591-018-0300-7>

Vayena, E., Blasimme, A., & Cohen, I. G. (2018). Machine learning in medicine: Ethical challenges. *PLOS Medicine*, 15(11), e1002689. <https://doi.org/10.1371/journal.pmed.1002689>

Zhou, Y., et al. (2023). ML model for detecting depression and anxiety. *International Journal of Nursing Studies*, 146, 104562. <https://doi.org/10.1016/j.ijnurstu.2023.104562>

CHAPTER 3
MACHINE LEARNING FOR HEALTHCARE
PREDICTION

¹Shah Tania Akter SUJANA
Mahafuzur RAHMAN

¹sujana.stat10.brur@gmail.com, ORCID ID: 0009-0008-3416-9003

INTRODUCTION

The promise of machine learning in healthcare rests on its ability to convert raw, heterogeneous clinical data into actionable predictions that support earlier diagnosis, more precise risk stratification, and better allocation of healthcare resources. Historically, clinical decision making relied on a combination of clinician expertise, simple statistical models, and rule based guidelines. While these approaches remain indispensable, they are limited when confronted with nonlinear relationships, interactions among many variables, temporal dependencies, and multimodal inputs. Machine learning methods, ranging from classical algorithms like logistic regression and support vector machines to modern deep learning architectures, can learn complex mappings from inputs to outcomes and thereby augment clinician judgment. The contemporary data landscape in healthcare is characterized by electronic health records that capture longitudinal patient encounters, high resolution medical images, continuous streams from wearable sensors, and molecular profiles from genomic assays. Each of these modalities brings unique opportunities and challenges. Electronic health records provide rich clinical context but are often noisy, incomplete, and biased by care processes. Imaging data are high dimensional and require specialized architectures to extract spatial features. Wearable sensors produce dense time series that demand temporal modeling and robust handling of irregular sampling. Genomic data present extreme dimensionality and require careful feature selection or representation learning. Integrating these modalities into coherent predictive systems requires careful design choices at every stage: data curation, preprocessing, model selection, evaluation, and interpretation.

1. THEORETICAL FOUNDATIONS

Machine learning is a branch of artificial intelligence focused on algorithms that improve their performance on a task through experience, typically by learning patterns from data. In healthcare prediction, the primary objective is often supervised learning: mapping patient features to clinical outcomes such as disease onset, progression, or response to therapy. Supervised models learn from labeled examples and are evaluated on their ability to generalize to new patients.

Unsupervised learning, by contrast, seeks to discover latent structure in data without explicit labels and is useful for tasks such as patient phenotyping or anomaly detection.

A central theoretical concept in supervised learning is the bias–variance tradeoff. Models with high bias are too simple to capture underlying relationships and underfit the data, while models with high variance are overly flexible and overfit to noise. Regularization techniques, cross validation, and ensemble methods are practical tools to manage this tradeoff. Another foundational idea is the representation of data: the choice of features and their transformations often determines model performance more than the specific learning algorithm. Feature engineering, dimensionality reduction, and representation learning are therefore critical steps in the modeling pipeline. For temporal and sequential data, recurrent neural networks and their gated variants such as long short term memory networks are designed to capture dependencies across time. These architectures address vanishing gradient problems and enable models to learn long range dependencies in physiological signals. For spatial data like images, convolutional neural networks exploit local connectivity and weight sharing to learn hierarchical spatial features. Ensemble methods such as Random Forests and gradient boosting combine multiple weak learners to produce robust predictors that often perform well on tabular clinical data.

Interpretability and explainability are theoretical and practical concerns in healthcare. Clinicians require explanations for model predictions to trust and act upon them. Model agnostic explanation methods, such as local surrogate models and feature attribution techniques, provide post hoc insights into model behavior. However, interpretability is not a single property; it encompasses global model transparency, local explanation fidelity, and the ability to surface biases or failure modes. Ensuring that explanations are clinically meaningful and not misleading is an active area of research.

Evaluation theory in healthcare prediction extends beyond standard metrics. While accuracy, precision, recall, and area under the receiver operating characteristic curve are useful, clinical utility depends on calibration, decision thresholds aligned with clinical risk tolerance, and the net benefit of acting on model outputs.

Calibration measures whether predicted probabilities correspond to observed event rates, and decision curve analysis quantifies the clinical value of predictions across a range of threshold preferences. Prospective validation and randomized trials remain the gold standard for demonstrating clinical impact, and model monitoring after deployment is essential to detect performance drift.

2. MAJOR HEALTHCARE DATA SOURCES

Healthcare prediction draws on a variety of data sources, each with distinct characteristics that influence modeling choices. Electronic health records are perhaps the most ubiquitous source. They contain structured fields such as demographics, diagnoses coded with standardized ontologies, laboratory results, medication orders, and procedure codes, as well as unstructured clinical notes. EHR data are longitudinal, reflecting the sequence of encounters and interventions, but they are also shaped by the healthcare delivery process: missingness may be informative, and recorded values may reflect clinician behavior rather than underlying physiology. Public critical care datasets have catalyzed research by providing de identified, richly annotated records that enable reproducible studies and method benchmarking.

Medical imaging has been transformed by deep learning. Radiographs, computed tomography scans, magnetic resonance imaging, and retinal fundus photographs are high dimensional arrays that encode spatial patterns associated with disease. Convolutional neural networks and their three dimensional extensions are the dominant modeling paradigm for imaging tasks. Transfer learning, where models pretrained on large natural image datasets are fine tuned on medical images, has proven effective when labeled medical datasets are limited. Imaging data also require careful attention to acquisition variability, device differences, and annotation quality, as these factors can introduce confounding signals that models may exploit inadvertently.

Genomic and other molecular data introduce extreme dimensionality, with tens of thousands of features per sample. These data are valuable for precision medicine applications such as cancer subtyping and pharmacogenomics. Dimensionality reduction, feature selection, and regularized models are commonly used to avoid overfitting.

Representation learning approaches, including autoencoders and variational methods, can learn compact embeddings that capture biologically relevant variation. Integrating genomic data with clinical phenotypes remains a frontier area that promises more personalized risk prediction but also raises challenges in interpretability and clinical actionability.

Wearable devices and sensors generate continuous streams of physiological signals, including electrocardiograms, photoplethysmography, accelerometry, and glucose monitoring. These time series enable detection of transient events and monitoring of disease trajectories outside clinical settings. Challenges include irregular sampling, sensor noise, and the need for energy efficient algorithms for on device inference. The potential for early detection and remote monitoring is substantial, particularly for chronic disease management and post discharge surveillance.

Environmental, behavioral, and social determinants of health are increasingly recognized as critical inputs for prediction. Data on air quality, socioeconomic status, mobility patterns, and social support can augment clinical features and improve risk stratification, particularly for chronic diseases influenced by context. Incorporating these data requires careful linkage, privacy safeguards, and an understanding of causal pathways to avoid spurious associations.

3. DATA PREPROCESSING AND FEATURE ENGINEERING

Effective preprocessing is a prerequisite for reliable machine learning in healthcare. Raw clinical data are rarely analysis ready. Missing values are pervasive and arise for many reasons: tests may not be ordered if clinicians deem them unnecessary, patients may miss appointments, or data may be lost during transfer. Simple imputation strategies such as mean or median substitution can be appropriate for some variables, but more sophisticated approaches that account for the mechanism of missingness, such as multiple imputation or modeling missingness indicators, often yield better results. For time series data, interpolation and forward filling can preserve temporal continuity, but care must be taken to avoid introducing bias by imputing values that mask clinically meaningful gaps.

Outlier detection is another essential step. Clinical measurements may contain erroneous entries due to transcription errors or device malfunctions. Robust statistical methods and anomaly detectors can identify implausible values for review or exclusion. Categorical variables require encoding; one hot encoding is straightforward but can lead to high dimensionality, while target encoding or embedding representations can be more efficient for tree based or neural models respectively. Feature scaling is important for algorithms sensitive to feature magnitudes. Distance based methods and gradient based optimizers benefit from normalization or standardization. For high dimensional genomic or imaging features, dimensionality reduction techniques such as principal component analysis or learned embeddings via autoencoders reduce computational burden and mitigate overfitting.

Feature engineering bridges raw data and model inputs by creating clinically meaningful variables. Aggregating laboratory results into summary statistics, computing rolling averages for vital signs, deriving composite risk scores, and encoding temporal patterns as features are common strategies. Domain knowledge is invaluable here: features that reflect known physiological relationships or clinical heuristics often improve model interpretability and performance. For example, transforming raw glucose measurements into clinically interpretable categories or computing the rate of change of creatinine over time can provide signals that are more predictive than raw values alone.

Class imbalance is a frequent challenge in healthcare datasets where adverse events are rare. Oversampling methods, synthetic data generation, and cost sensitive learning can help models detect minority classes without being overwhelmed by the majority. However, synthetic oversampling must be applied cautiously to avoid amplifying noise or creating unrealistic examples. Ensemble approaches and threshold tuning based on clinical utility can also mitigate imbalance effects.

Finally, data partitioning for model development must respect temporal and patient level dependencies. Splitting data by encounter rather than by patient can lead to information leakage when the same patient appears in both training and test sets. Temporal splits that simulate prospective deployment are preferred for evaluating real world performance.

Cross validation strategies should be chosen to reflect the intended use case, and external validation on independent cohorts is essential to assess generalizability.

4. METHODOLOGY AND MODEL DEVELOPMENT

The methodological pipeline for healthcare prediction begins with problem formulation: defining the prediction target, the prediction horizon, and the acceptable tradeoffs between sensitivity and specificity. Once the problem is specified, data curation and preprocessing prepare inputs for modeling. Model selection then proceeds by considering the data modality and the clinical constraints.

For structured tabular data, classical machine learning algorithms such as logistic regression, Random Forests, support vector machines, and gradient boosting machines are strong baselines. Logistic regression offers interpretability and well understood statistical properties, making it a useful benchmark. Random Forests provide robustness to noisy features and yield measures of variable importance that can inform clinical interpretation. Gradient boosting machines, particularly implementations optimized for speed and regularization, often achieve state of the art performance on tabular tasks by sequentially fitting residuals and combining weak learners into a powerful ensemble.

For imaging tasks, convolutional neural networks are the standard approach. Architectures such as ResNet, DenseNet, and EfficientNet incorporate design principles that facilitate training deep networks and extracting hierarchical features. Transfer learning from large natural image datasets accelerates convergence and improves performance when labeled medical images are scarce. For volumetric imaging, three dimensional convolutions capture spatial context across slices.

Temporal and sequential data are well suited to recurrent architectures and temporal convolutional networks. Long short term memory networks and gated recurrent units mitigate vanishing gradient problems and can model long range dependencies in physiological signals.

Attention mechanisms and transformer architectures, originally developed for natural language processing, are increasingly applied to clinical time series to capture variable length dependencies and to provide interpretable attention weights.

Hybrid models that combine modalities, such as concatenating tabular features with image embeddings or feeding time series representations into downstream classifiers, enable multimodal prediction. Designing such systems requires careful alignment of modalities, synchronization of temporal windows, and strategies for handling missing modalities at inference time. For example, when imaging and laboratory data are available at different time points, temporal alignment strategies and imputation of missing modality embeddings can preserve predictive power.

Model training must incorporate regularization, hyperparameter tuning, and robust validation. Cross validation, nested when hyperparameter search is extensive, helps estimate generalization error. Early stopping, dropout, and weight decay are common regularization techniques for neural networks. For tree based models, limiting tree depth and applying learning rate schedules control complexity. Hyperparameter optimization using grid search, random search, or Bayesian optimization can yield substantial performance gains, but these searches must be nested within cross validation to avoid optimistic bias.

Evaluation metrics should reflect clinical priorities. For binary classification, sensitivity and specificity are central, but the choice of operating point depends on the clinical context. Area under the receiver operating characteristic curve provides a threshold independent measure of discrimination, while precision recall curves are informative when classes are imbalanced. Calibration plots assess whether predicted probabilities correspond to observed event rates, which is crucial when predictions inform risk communication or decision thresholds. Beyond metrics, prospective validation and randomized evaluations of model guided care are the gold standard for assessing clinical impact. Model deployment should include monitoring pipelines that track performance metrics, data drift, and fairness indicators over time.

5. EXPLAINABILITY AND TRUST

Explainability is a prerequisite for clinical adoption. Clinicians need to understand why a model produced a particular prediction to assess its plausibility and to integrate it into decision making. Post hoc explanation methods such as SHAP values quantify the contribution of each feature to an individual prediction, enabling case level reasoning. Local surrogate models approximate complex models with interpretable surrogates in the neighborhood of a prediction, offering intuitive explanations. For imaging models, gradient based localization methods such as Grad CAM produce heatmaps that highlight regions of the image that most influenced the prediction, which can be compared with known radiographic signs.

However, explanations must be interpreted cautiously. Attribution methods can be sensitive to model architecture and input perturbations, and they do not guarantee causal relationships. Explanations that are technically correct but clinically meaningless can erode trust. Therefore, explanation pipelines should be validated with clinicians, and explanation outputs should be accompanied by uncertainty estimates and checks for plausibility. Human in the loop evaluation, where clinicians assess explanation fidelity and usefulness, is an important step before deployment.

Model fairness and bias mitigation are integral to trustworthy AI. Predictive models trained on historical data can perpetuate or amplify existing disparities if the training data reflect biased care patterns. Auditing models across demographic subgroups, adjusting for confounders, and incorporating fairness constraints during training are strategies to detect and mitigate bias. Transparent reporting of model development, including data provenance, preprocessing steps, and subgroup performance, supports accountability. Ethical governance frameworks that involve clinicians, ethicists, patients, and data stewards help ensure that models are developed and deployed in ways that respect patient autonomy and equity.

6. CASE STUDIES

Case studies that span structured data, temporal modeling, and imaging.

Case Study 1

The first case study addresses diabetes risk prediction using structured clinical features. The dataset comprises demographic variables, anthropometric measures, laboratory values, and clinical history. The modeling pipeline begins with careful handling of missing laboratory values and encoding of categorical comorbidities. Feature engineering produces derived variables such as body mass index and composite comorbidity indices. Multiple models are trained and compared, including logistic regression as an interpretable baseline, Random Forests for robust variable selection, and gradient boosting machines for high predictive accuracy. Model explainability using SHAP reveals that fasting glucose, age, and body mass index are dominant contributors to predicted risk, aligning with clinical knowledge. Calibration analysis ensures that predicted probabilities correspond to observed incidence rates, which is essential for risk communication and threshold selection. The case study highlights the importance of addressing class imbalance, as undiagnosed or early stage diabetes cases may be underrepresented in clinical datasets; oversampling and cost sensitive learning improve sensitivity for the positive class without unduly sacrificing specificity.

Case Study 2

The second case study focuses on cardiovascular disease prediction and demonstrates the value of temporal modeling. The dataset includes longitudinal vital signs, laboratory trends, medication histories, and lifestyle factors. Temporal dependencies are captured using long short term memory networks that process sequences of measurements over time, while tree based ensembles operate on summary statistics and engineered temporal features. Comparative evaluation shows that when rich time series data are available, recurrent models outperform static models by capturing trajectories such as rising blood pressure or progressive lipid abnormalities.

Explainability techniques applied to the recurrent models, including attention visualization and feature attribution over time, help clinicians understand which periods and measurements most influenced risk estimates. The case study also examines the integration of nonclinical contextual data, such as socioeconomic indicators, which modestly improve predictive performance and underscore the multifactorial nature of cardiovascular risk.

Case Study 3

The third case study examines COVID 19 detection from chest radiographs using deep convolutional networks. The imaging dataset contains labeled radiographs from patients with confirmed COVID 19, other pneumonias, and healthy controls. A transfer learning approach leverages a pretrained ResNet backbone, fine tuned on the medical images to adapt learned filters to radiographic features. Data augmentation strategies, including rotation, scaling, and intensity perturbations, mitigate overfitting and simulate variability in acquisition. Model evaluation on held out test sets demonstrates high discrimination between COVID 19 and non COVID 19 cases, and Grad CAM visualizations show that the network attends to lung regions with opacities consistent with viral pneumonia. The case study emphasizes the need for external validation across institutions and imaging devices to ensure generalizability, and it discusses pitfalls such as confounding by acquisition artifacts or dataset shift.

Case Study 4

Predicting Patient Satisfaction Using Explainable Ensemble Learning

To further demonstrate the real-world applicability of machine learning in healthcare beyond disease diagnosis, this chapter includes an additional case study focused on predicting patient satisfaction using routine healthcare service data (Rahman et al., 2025). Patient satisfaction is a critical indicator of healthcare quality, influencing treatment adherence, healthcare utilization, and system trust. This case study illustrates how ensemble machine learning models combined with explainable AI techniques can be used to identify key determinants of patient satisfaction and support data-driven quality improvement initiatives.

6.1 Background and Objective

While the previous case studies focus on disease diagnosis and risk prediction, machine learning also plays a critical role in evaluating healthcare service quality. Patient satisfaction is a key indicator of healthcare performance, influencing treatment adherence, continuity of care, and trust in health systems. This case study presents a real-world application of machine learning to predict patient satisfaction using routine service and interaction data, and demonstrates how explainable AI can identify actionable factors for quality improvement.

6.2 Dataset Description and Exploratory Analysis

The dataset comprises patient demographic characteristics (age, gender, education level) and doctor–patient interaction variables, including appointment ease, waiting time, consultation duration, provision of treatment plans, medication explanations, involvement in decision-making, and perceived neglect during visits. The target variable is binary patient satisfaction (satisfied vs. dissatisfied).

Frequency analysis reveals that most patients are between 26 and 45 years of age, with a near-equal gender distribution. Approximately two-thirds of patients report satisfaction with healthcare services. Operational factors show variability: while appointment scheduling is generally perceived as easy, prolonged waiting times and limited communication regarding medications or decision-making involvement emerge as potential sources of dissatisfaction. This exploratory analysis highlights the relevance of service-process variables in shaping patient experience.

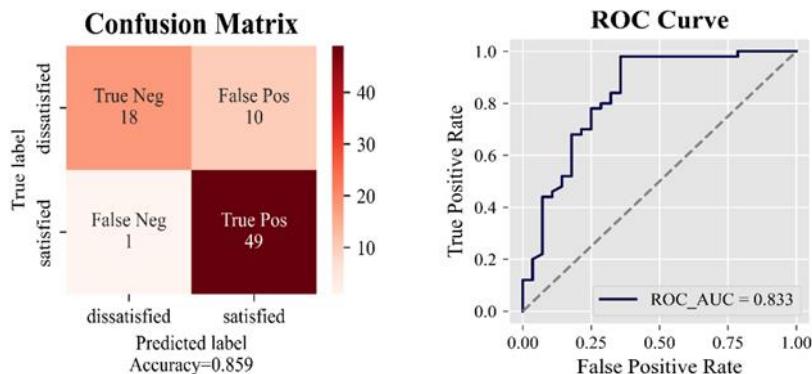
- Sample size: 312
- Outcome: satisfied vs dissatisfied
- Categories: demographics, interaction characteristics

Table 1. Frequency distribution of patient characteristics, interaction variables, and satisfaction levels

Categories	Main categories	Sub-categories	Frequency (percent)
Patient characteristics	Age	16-25	70 (22.44%)
		26-35	63 (20.19%)
		36-45	74 (23.72%)
		46-55	48 (15.38%)
		55+	57 (18.27%)
	Gender	male	152 (48.72%)
		female	160 (51.28%)
	Education level	illiterate	52 (16.67%)
		primary	49 (15.71%)
		secondary	95 (30.45%)
		higher education	116 (37.18%)
Interaction Characteristics	Appointment ease	yes	196 (62.82%)
		no	116 (37.18%)
	Waiting time (minutes)	0-60	219 (70.19%)
		61-120	59 (18.91%)
		120+	34 (10.90%)
	Treatment plan	yes	246 (78.85%)
		no	66 (21.15%)
	Visiting time (minutes)	5	84 (26.92%)
		10	120 (38.46%)
		15	81 (25.96%)
		15+	27 (8.65%)
	Decision involves	yes	162 (51.92%)
		no	150 (48.08%)
	Medicine details	yes	188 (60.26%)
		no	124 (39.74%)
Target	Patient satisfaction	yes	60 (19.23%)
		no	252 (80.77%)
	Patient satisfaction	satisfied	198 (63.46%)
		dissatisfied	114 (36.54%)

6.3 Model Development and Performance Evaluation

The dataset exhibits class imbalance, with a higher proportion of satisfied patients. To address this issue, the Synthetic Minority Over-sampling Technique (SMOTE) was applied only to the training set, while the test set was kept unchanged to preserve real-world data characteristics. Multiple ensemble learning models were evaluated, including Adaptive Boosting (Freund & Schapire, 1997), Bagging, Random Forest (Breiman, 2001), Extreme Gradient Boosting (Chen & Guestrin, 2016), Categorical Boosting (Prokhorenkova et al., 2018), Gradient Boosting (Friedman, 2000), and Light Gradient Boosting Machine (LightGBM) (Ke et al., 2017).

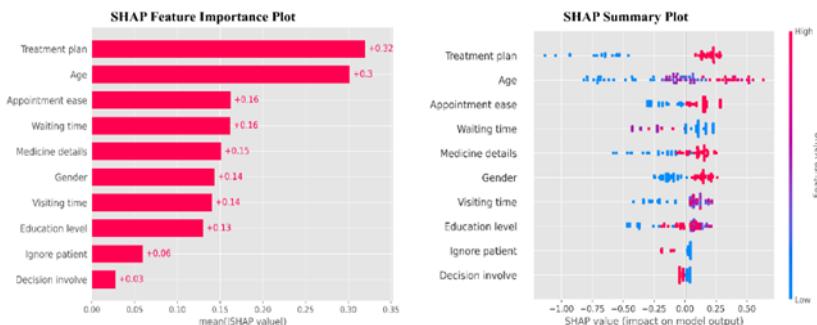

Model performance was assessed using accuracy, area under the receiver operating characteristic curve (AUC), and Matthews Correlation Coefficient (MCC), the latter being particularly informative for imbalanced healthcare datasets. Comparative results indicate that LightGBM trained on the original (non-SMOTE) data achieves the best overall performance, with the highest MCC and competitive accuracy and AUC values. Although SMOTE improves class balance, it generally leads to reduced MCC and AUC, suggesting potential overfitting to synthetic samples and diminished generalization.

Matrices	Formula	Range (worst, best)
Accuracy	$\frac{TP + TN}{TP + TN + FP + FN}$	(0, 1)
Sensitivity, or Recall, or True positive rate (TPR)	$\frac{TP}{TP + FN}$	(0, 1)
Specificity, or True negative rate (TNR)	$\frac{TN}{TN + FP}$	(0, 1)
Precision, or Positive predictive value(PPV)	$\frac{TP}{TP + FP}$	(0, 1)
F1 score	$\frac{2(precision \times recall)}{precision + recall} = \frac{2 \cdot TP}{2(TP + FP + FN)}$	(0, 1)
MCC	$\frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP) \times (TP + FN) \times (TN + FP) \times (TN + FN)}}$	(-1, +1)
AUC	$\frac{S_p - n_p(n_n + 1)/2}{n_p n_n}$	(0, 1)
Kappa statistics (κ)	$\frac{2(TP \times TN - FP \times FN)}{(TP + FP) \times (TN + FP) + (TP + FN) \times (TN + FN)}$	(-1, +1)

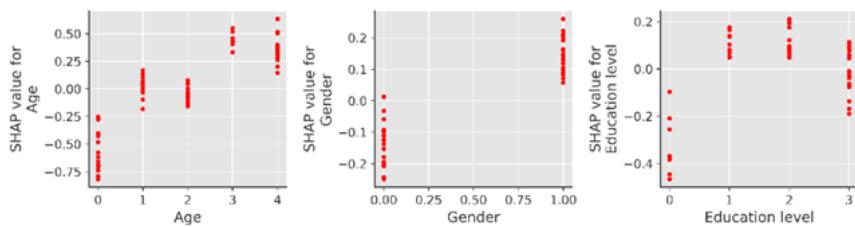
Figure 1. Model Performance Comparison

Table 2. Performance comparison of ensemble classifiers before and after SMOTE

Model	Accuracy	ROC-AUC	MCC
Adaptive Boosting Classifier	0.833333	0.746071	0.630346
Adaptive Boosting Classifier (SMOTE)	0.820513	0.723214	0.601338
Bagging Classifier	0.846154	0.791786	0.668492
Bagging Classifier (SMOTE)	0.833333	0.8175	0.631432
Categorical Boosting Classifier	0.858974	0.828929	0.6906
Categorical Boosting Classifier (SMOTE)	0.833333	0.828929	0.63524
Extreme Gradient Boosting	0.846154	0.816429	0.662292
Extreme Gradient Boosting (SMOTE)	0.846154	0.835357	0.671898
Gradient Boosting Classifier	0.846154	0.805357	0.662292
Gradient Boosting Classifier (SMOTE)	0.807692	0.803214	0.579062
Light Gradient Boosting Machine	0.858974	0.832857	0.696065
Light Gradient Boosting Machine (SMOTE)	0.846154	0.811786	0.659399
Random Forest Classifier	0.833333	0.806071	0.640714
Random Forest Classifier (SMOTE)	0.820513	0.8025	0.61


Figure 2. Confusion matrix and ROC curve for the LightGBM classifier

6.4 Model Interpretation Using SHAP


To ensure transparency and clinical relevance, the optimal LightGBM model was interpreted using TreeSHAP. Global feature importance analysis shows that provision of a treatment plan is the most influential predictor of patient satisfaction, followed by age, appointment ease, waiting time, and clarity of medication information.

These findings align with established evidence emphasizing communication and process efficiency as determinants of patient experience.

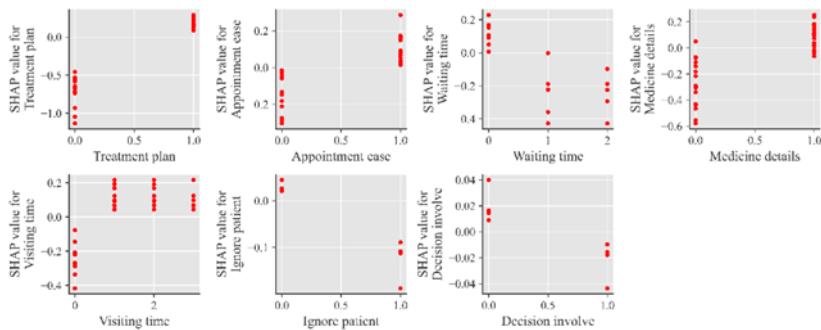

SHAP summary and dependence plots provide further insight into feature effects. Longer waiting times and perceived neglect during consultations are associated with negative contributions to satisfaction, whereas clear treatment plans, easier appointment scheduling, and adequate medication explanations positively influence satisfaction. Older patients tend to report higher satisfaction levels, while gender shows minimal impact. Education level exhibits a mixed but generally positive association, suggesting that health literacy may moderate patient perceptions. Interestingly, limited involvement in decision-making does not uniformly reduce satisfaction, possibly reflecting trust in physician expertise within the study context.

Figure 3. SHAP global feature importance and summary plot for the LightGBM model

Figure 4. SHAP dependence plots for patient demographic characteristics

Figure 5. SHAP dependence plots for doctor–patient interaction characteristics

This case study complements the earlier disease-focused examples by demonstrating how machine learning can also be applied to healthcare service evaluation and quality improvement. Together, the four case studies illustrate the versatility of machine learning across clinical, operational, and patient-centered healthcare outcomes.

6.5 Implications for Healthcare Quality Improvement

This case study demonstrates how ensemble machine learning combined with explainable AI can support healthcare service evaluation. By identifying modifiable service-related factors—such as waiting time management, treatment communication, and patient engagement—predictive models can inform targeted interventions aimed at improving patient-centered care. Unlike disease-focused prediction tasks, this example highlights the broader applicability of machine learning in operational and policy-oriented healthcare decision-making.

Together with the preceding case studies, this example illustrates the versatility of machine learning across clinical, operational, and experiential dimensions of healthcare. Each case study includes a discussion of experimental design choices, hyperparameter tuning strategies, and validation protocols. For example, in the diabetes study, nested cross validation was used to select tree depth and learning rate for gradient boosting models, while calibration was improved using isotonic regression on held out folds.

In the cardiovascular study, sequence length and sampling frequency were varied to assess the sensitivity of recurrent models to temporal resolution, and attention maps were inspected to ensure that models did not rely on spurious temporal artifacts. In the imaging study, external test sets from different hospitals were used to evaluate robustness, and sensitivity analyses examined the impact of image preprocessing pipelines on model performance.

7. RESULTS AND SYNTHESIS

Across the case studies, several consistent findings emerge. Gradient boosting machines tend to perform strongly on structured clinical data due to their ability to model nonlinear interactions and handle heterogeneous feature types. Recurrent neural networks and transformer based temporal models excel when dense longitudinal data are available, capturing dynamic patterns that static models miss. Convolutional neural networks remain the state of the art for imaging tasks, particularly when combined with transfer learning and careful augmentation. Explainability methods such as SHAP and Grad CAM provide complementary insights: SHAP quantifies feature contributions for tabular models, while Grad CAM localizes salient image regions for convolutional models. Calibration and subgroup analyses are essential complements to discrimination metrics; a highly discriminative model that is poorly calibrated or that performs unevenly across demographic groups may be unsafe for clinical deployment.

The synthesis of these results underscores a broader lesson: no single algorithm is universally best. Model selection should be driven by data modality, clinical objectives, and operational constraints. Equally important is the end to end pipeline: data quality, preprocessing, feature engineering, validation strategy, and interpretability collectively determine whether a model will be useful and trustworthy in practice. The results also highlight the importance of external validation and prospective evaluation. Models that perform well on retrospective datasets may degrade when confronted with new populations, different measurement devices, or shifts in clinical practice. Continuous monitoring and retraining strategies are therefore necessary components of a sustainable deployment plan.

8. DISCUSSION

The application of machine learning to healthcare prediction offers substantial benefits but also faces significant challenges. On the positive side, predictive models can enable earlier detection of disease, more efficient allocation of resources, and personalized treatment strategies. They can surface latent patterns in multimodal data that inform new clinical hypotheses and support population health initiatives. Explainable models can augment clinician decision making by highlighting relevant risk factors and by providing case level rationales for predictions.

However, practical barriers remain. Data privacy regulations and institutional policies limit access to large, diverse datasets, which constrains model generalizability. Class imbalance, missingness, and measurement error are endemic in clinical data and require careful methodological responses. Deep learning models demand substantial computational resources for training and may be challenging to deploy in resource constrained settings. Moreover, the sociotechnical aspects of deployment—clinician workflows, user interfaces, alert fatigue, and medico legal considerations—are often underestimated. A model that performs well in retrospective evaluation may fail to deliver clinical benefit if it is poorly integrated into care processes or if clinicians do not trust its outputs.

Ethical considerations are paramount. Predictive models can inadvertently perpetuate disparities if training data reflect biased care patterns. Transparent reporting, subgroup performance audits, and stakeholder engagement are necessary to identify and mitigate such risks. Federated learning and privacy preserving techniques offer promising avenues to train models across institutions without sharing raw data, but they introduce new technical and governance complexities. The interpretability of models must be balanced with predictive performance; in some contexts, a slightly less accurate but more interpretable model may be preferable because it facilitates clinician acceptance and safer decision making.

Operationalizing machine learning in healthcare requires attention to deployment pipelines, integration with electronic health record systems, user experience design, and clinician education.

Alerting thresholds should be tuned to minimize false positives that contribute to alert fatigue while preserving sensitivity for clinically actionable events. Monitoring systems should track model performance, data drift, and fairness metrics, and governance structures should define responsibilities for model maintenance, updates, and incident response.

Deployment and Integration into Clinical Workflows

Translating a predictive model from a research prototype into a clinical tool requires more than technical excellence; it demands careful integration with existing workflows, attention to user experience, and alignment with institutional priorities. Successful deployment begins with stakeholder engagement, where clinicians, nurses, informaticians, and administrators collaborate to define the clinical question, acceptable operating characteristics, and the decision pathways that will follow a model's output. Integration with electronic health record systems is often necessary so that predictions appear at the point of care in a manner that is timely and actionable. This integration must respect clinical timing: alerts that arrive too early or too late can be ignored, and frequent low value alerts contribute to fatigue. The user interface should present predictions alongside concise, clinically relevant explanations and suggested next steps rather than raw probabilities alone. Logging and audit trails are essential for traceability, enabling clinicians and administrators to review model outputs, the inputs that produced them, and subsequent actions taken. Equally important is the design of feedback loops that capture clinician responses and patient outcomes so that models can be monitored and retrained as practice patterns and populations evolve. Operational readiness also includes infrastructure for model serving, latency guarantees for real time predictions, and fallback mechanisms when inputs are missing or systems are offline. Finally, governance structures must define roles and responsibilities for model maintenance, versioning, and incident response to ensure that predictive systems remain safe and effective over time.

Regulatory, Privacy, and Ethical Considerations

Regulatory frameworks and privacy protections shape what is feasible in clinical machine learning. Models intended to inform diagnosis or treatment may fall under medical device regulations in many jurisdictions, requiring documentation of development processes, validation evidence, and risk assessments. Compliance with data protection laws is nonnegotiable; de identification, secure storage, and controlled access are baseline requirements, while newer approaches such as differential privacy and secure multiparty computation offer technical means to reduce privacy risks during model training. Ethical considerations extend beyond privacy to include informed consent, transparency about how patient data are used, and mechanisms for patients to opt out where appropriate. Equity considerations require proactive auditing for disparate performance across demographic groups and the implementation of mitigation strategies when disparities are detected. Ethical deployment also involves anticipating downstream effects: a model that increases detection of a condition must be paired with capacity to provide confirmatory testing and treatment, otherwise increased detection may create unmet demand and unintended harms. Institutional review boards, ethics committees, and multidisciplinary oversight bodies play a critical role in evaluating the societal implications of predictive systems and ensuring that deployment aligns with patient welfare and public trust.

Practical Implementation Roadmap

A pragmatic roadmap for implementing machine learning in healthcare begins with a clear problem definition and a feasibility assessment that considers data availability, clinical need, and potential impact. The next phase involves data curation and pilot modeling to establish baseline performance and identify data quality issues. Early engagement with end users informs the design of outputs and the thresholds for clinical action. A staged validation strategy moves from retrospective internal validation to external validation on independent cohorts and finally to prospective pilot studies embedded in clinical workflows. During pilots, mixed methods evaluation that combines quantitative performance metrics with qualitative feedback from clinicians uncovers usability issues and contextual barriers.

If pilot results are favorable, institutions should plan for scaled deployment with robust monitoring, retraining schedules, and governance processes. Throughout implementation, documentation of data provenance, preprocessing steps, model architectures, and hyperparameters supports reproducibility and regulatory compliance. Training programs for clinicians and staff help build trust and competence in interpreting model outputs. Finally, economic evaluation that estimates costs, potential savings, and return on investment informs long term sustainability decisions and helps prioritize models that deliver measurable clinical and operational value.

Limitations and Mitigation Strategies

Despite their promise, machine learning models have limitations that must be acknowledged and mitigated. One fundamental limitation is the reliance on historical data that may not represent future patients or evolving clinical practices; models can therefore degrade over time if not monitored and updated. To mitigate this, continuous performance monitoring and scheduled retraining using recent data are essential. Another limitation is the potential for confounding and spurious correlations in observational data; causal inference techniques and careful study design can reduce the risk of drawing incorrect conclusions about interventions. Interpretability methods provide partial mitigation for opacity, but they do not replace rigorous validation and clinician oversight. Data heterogeneity across institutions can limit generalizability; external validation and federated learning approaches can help build models that are robust across diverse settings. Resource constraints, particularly in low and middle income settings, may restrict the feasibility of deploying computationally intensive models; model compression, edge computing, and simpler yet interpretable algorithms can provide practical alternatives. Finally, social and behavioral responses to predictive systems—such as changes in clinician ordering behavior or patient anxiety—must be studied and managed through careful implementation design and communication strategies.

Future Research Directions

The frontier of machine learning for healthcare prediction lies at the intersection of methodological innovation and real world applicability. Multimodal learning that seamlessly integrates clinical notes, structured EHR data, imaging, genomics, and sensor streams promises richer patient representations and more personalized predictions. Advances in self supervised and representation learning may reduce dependence on labeled data, enabling models to leverage vast unlabeled clinical corpora. Federated and privacy preserving learning paradigms will be critical for collaborative model development across institutions while respecting patient confidentiality. Causal machine learning methods that move beyond correlation to estimate the effects of interventions will enhance the clinical utility of predictive models by informing treatment decisions rather than merely forecasting risk. Research on human AI collaboration, including how best to present uncertainty and explanations to clinicians, will determine whether models augment decision making effectively. Finally, embedding rigorous prospective evaluation and health economic analyses into research pipelines will accelerate the translation of promising models into interventions that demonstrably improve patient outcomes and system efficiency.

Final Remarks

Machine learning for healthcare prediction stands at a pivotal moment. The technical foundations are mature enough to support impactful applications, yet the path to routine clinical use requires careful attention to data quality, interpretability, governance, and human factors. By combining robust methodological practices with thoughtful deployment strategies and ethical stewardship, researchers and healthcare organizations can harness predictive models to enhance patient care while minimizing risks. The work ahead is inherently interdisciplinary and iterative: progress will come from close collaboration among clinicians, data scientists, engineers, ethicists, and patients, guided by rigorous evaluation and a commitment to equity and transparency.

As models move from the laboratory into the clinic, the ultimate measure of success will be improved health outcomes, more efficient care delivery, and greater trust between patients and the systems designed to serve them.

CONCLUSION

Machine learning has matured into a powerful set of tools for healthcare prediction, capable of transforming raw clinical, imaging, sensor, and molecular data into actionable insights. The combination of classical machine learning, deep learning, and explainable AI yields models that can be both accurate and interpretable when developed with careful attention to data quality, validation, and clinical context. Future work should prioritize privacy preserving model development, robust multimodal architectures, systematic bias detection and mitigation, and seamless integration into clinical workflows. Ultimately, the goal is not to replace clinicians but to augment their capabilities with reliable, transparent, and ethically designed predictive systems that improve patient outcomes. Realizing this vision will require interdisciplinary collaboration among clinicians, data scientists, engineers, ethicists, and patients, as well as sustained investment in data infrastructure, governance, and prospective evaluation.

REFERENCES

Breiman, L. (2001). Random forests. *Machine Learning*, 45(1), 5–32.
<https://doi.org/10.1023/A:1010933404324>

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining* (pp. 785–794).
<https://doi.org/10.1145/2939672.2939785>

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. *Journal of Computer and System Sciences*, 55(1), 119–139.

Friedman, J. H. (2000). Greedy function approximation: A gradient boosting machine. *The Annals of Statistics*, 29(5), 1189–1232.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. In *Proceedings of the 31st International Conference on Neural Information Processing Systems* (pp. 3149–3157).

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. In *Proceedings of the 31st International Conference on Neural Information Processing Systems* (pp. 4765–4774).

Miotto, R., Li, L., Kidd, B. A., & Dudley, J. T. (2016). Deep patient: An unsupervised representation to predict the future of patients from the electronic health records. *Scientific Reports*, 6, 26094.
<https://doi.org/10.1038/srep26094>

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: Unbiased boosting with categorical features. In *Proceedings of the 32nd International Conference on Neural Information Processing Systems* (pp. 6639–6649).

Rahman, Md. M., Darwin, C., Amin, Md. M. I., & Sujana, S. T. A. (2025). Identifying key influencers of patient satisfaction using an explainable machine learning approach. *Scientific Reports*, 15(1), Article 35607.
<https://doi.org/10.1038/s41598-025-18809-x>

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should I trust you?” Explaining the predictions of any classifier. In *Proceedings of the 22nd*

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1135–1144). <https://doi.org/10.1145/2939672.2939778>

Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record analysis. *IEEE Journal of Biomedical and Health Informatics*, 22(5), 1589–1604. <https://doi.org/10.1109/JBHI.2017.2767063>

Tan, M., Ong, Y. S., & Ng, I. (2022). Interpretable machine learning for healthcare: A survey. *Artificial Intelligence in Medicine*, 127, 102278. <https://doi.org/10.1016/j.artmed.2022.102278>

CHAPTER 4

CLOUD COMPUTING AND DISTRIBUTED SYSTEMS

¹Vinayakalakshmi THIYAGARAJAN

²Mohanavel T.

¹Student of Computer Science and Engineering, Vels Institute of Science and Technology, Pallavaram, Chennai-600117, tvinayakalakshmi555@gmail.com, ORCID ID: 0009-0002-7877-1481

²Student of Civil Engineering, Annamalai University, Chidambaram-608002

INTRODUCTION

The rapid growth of information technology and the increasing demand for high-performance computing have led to the evolution of advanced computing paradigms. Traditional computing models, which relied heavily on standalone machines and centralized systems, are no longer sufficient to handle the massive volume of data and dynamic workloads generated by modern applications. To overcome these limitations, distributed systems and cloud computing have emerged as powerful solutions that enable scalable, reliable, and efficient resource utilization.

Distributed systems form the foundational backbone of modern computing infrastructures. A distributed system consists of multiple independent computers that communicate and coordinate with each other through a network to achieve a common goal. These systems allow resources such as processing power, storage, and software services to be shared across geographically dispersed locations. By distributing workloads across multiple nodes, distributed systems improve performance, fault tolerance, and availability while reducing the dependency on a single point of failure.

Cloud computing builds upon the principles of distributed systems and introduces a service-oriented approach to computing. It provides on-demand access to a shared pool of configurable computing resources, including servers, networks, storage, and applications, over the Internet. One of the defining characteristics of cloud computing is its pay-as-you-go model, which allows users to pay only for the resources they consume. This model significantly reduces capital expenditure and makes advanced computing resources accessible to individuals, startups, and large enterprises alike.

Virtualization plays a crucial role in cloud computing by abstracting physical hardware into multiple virtual resources. Through virtualization technologies such as virtual machines and containers, cloud providers can efficiently allocate and manage resources among multiple users while ensuring isolation and security. This abstraction enables elasticity, allowing cloud systems to dynamically scale resources up or down based on application demand, which is a key advantage over traditional computing models.

Modern cloud platforms support various service models, including Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). These service models cater to different levels of user control and responsibility, enabling flexibility in application development and deployment. Additionally, cloud environments integrate distributed storage systems, NoSQL databases, orchestration tools, and service-oriented architectures to handle large-scale data processing and high availability requirements.

With the continuous evolution of technology, cloud computing is incorporating emerging paradigms such as microservices, serverless computing, and edge computing. These advancements address challenges related to latency, scalability, and efficient resource utilization. As a result, understanding cloud computing and distributed systems has become essential for computer science and engineering students, researchers, and professionals. This chapter provides a comprehensive foundation for understanding how distributed systems principles are applied in cloud environments to build resilient, scalable, and high-performance computing solutions.

1. FUNDAMENTALS OF DISTRIBUTED SYSTEMS

Distributed systems form the core of modern computing infrastructures, enabling multiple independent machines to work together as a unified system. Understanding the fundamentals of distributed systems is essential for designing scalable, reliable, and efficient cloud-based and networked applications. This section explains the basic concepts, design goals, characteristics, and components that define distributed systems.

1.1 Definition and Scope of Distributed Systems

A distributed system is defined as a collection of autonomous computers that communicate and coordinate with one another through a network to achieve a common objective. Each computer, often referred to as a node, operates independently but contributes to the overall functionality of the system. From the user's perspective, the system appears as a single coherent unit, even though its components may be geographically dispersed.

The scope of distributed systems is broad and includes distributed databases, web services, cloud platforms, peer-to-peer networks, and content delivery networks. These systems are designed to support applications that require high availability, large-scale data processing, and continuous operation. As a result, distributed systems are widely used in banking systems, e-commerce platforms, social media applications, and scientific research environments.

1.2 Distributed System Models

Distributed systems can be organized using different architectural models, depending on application requirements and communication patterns. The most common model is the client–server model, where clients request services and servers provide them. This model simplifies management and is widely used in web-based applications and enterprise systems.

Another important model is the peer-to-peer (P2P) model, in which all nodes act as both clients and servers. This decentralized approach improves scalability and fault tolerance, as there is no single point of control. Hybrid models combine elements of both client–server and peer-to-peer architectures, offering flexibility and improved performance for large-scale systems.

1.3 Goals of Distributed Systems

The primary goal of distributed systems is resource sharing, which allows users and applications to access hardware, software, and data resources across the network. By sharing resources, systems can reduce costs and improve utilization. Another key goal is performance improvement, achieved through parallel execution and load balancing across multiple nodes.

Scalability is also a fundamental goal, enabling systems to handle increasing workloads by adding more resources rather than upgrading existing ones. Additionally, fault tolerance and reliability ensure that the system continues to function correctly even when some components fail. These goals collectively make distributed systems suitable for mission-critical applications.

1.4 Characteristics of Distributed Systems

Distributed systems exhibit several defining characteristics, including concurrency, where multiple processes execute simultaneously across different nodes. This enhances system throughput and reduces response time. Another important characteristic is heterogeneity, as distributed systems often consist of diverse hardware platforms, operating systems, and programming languages.

Transparency is a key feature that hides the complexity of distribution from users. Types of transparency include location transparency, access transparency, and failure transparency. Together, these characteristics enable distributed systems to provide seamless and efficient services despite their underlying complexity.

1.5 Communication Mechanisms in Distributed Systems

Communication is a critical aspect of distributed systems, as nodes must exchange information to coordinate actions. One common communication mechanism is message passing, where processes send and receive messages over a network. Message passing is flexible and widely used in distributed applications.

Another important mechanism is Remote Procedure Call (RPC), which allows a process to invoke a procedure on a remote system as if it were a local function call. Modern distributed systems also use higher-level communication techniques such as RESTful APIs and message queues to support scalable and asynchronous communication.

1.6 Synchronization and Consistency

Synchronization ensures proper coordination among concurrent processes in a distributed environment. Since nodes operate independently and may not share a global clock, synchronization becomes challenging. Techniques such as logical clocks and distributed locking mechanisms are used to manage concurrency.

Consistency refers to maintaining uniform data across distributed nodes. Distributed systems often face trade-offs between consistency, availability, and partition tolerance, as explained by the CAP theorem. Understanding these trade-offs is essential for designing reliable distributed applications.

1.7 Fault Tolerance and Reliability

Failures are inevitable in distributed systems due to hardware faults, network issues, or software errors. Fault tolerance is achieved through redundancy, replication, and error detection mechanisms. By replicating data and services across multiple nodes, systems can continue to operate even if some components fail.

Reliability ensures that the system performs its intended function correctly over time. Techniques such as checkpointing, failure recovery, and monitoring help maintain system reliability. These mechanisms are particularly important in cloud environments where large-scale distributed systems operate continuously.

1.8 Security in Distributed Systems

Security is a major concern in distributed systems because data and resources are shared across networks. Common security challenges include unauthorized access, data breaches, and denial-of-service attacks. To address these issues, distributed systems employ authentication, authorization, and encryption techniques.

Secure communication protocols, access control mechanisms, and intrusion detection systems help protect distributed environments. As distributed systems increasingly support cloud and internet-based applications, ensuring robust security has become a critical requirement.

1.9 Middleware in Distributed Systems

Middleware acts as an intermediary layer between applications and underlying network infrastructure. It provides services such as communication management, resource discovery, and transaction handling. Middleware simplifies application development by hiding low-level networking details.

Examples of middleware include message-oriented middleware, object request brokers, and cloud orchestration platforms. Middleware plays a vital role in ensuring interoperability, scalability, and reliability in distributed systems.

1.10 Relationship Between Distributed Systems and Cloud Computing

Cloud computing is built on the principles of distributed systems, incorporating additional features such as virtualization, automation, and service abstraction. Distributed systems provide the foundation for cloud services by enabling resource sharing, fault tolerance, and scalability.

Understanding the fundamentals of distributed systems helps in comprehending cloud architectures, service models, and deployment strategies. This relationship highlights the importance of distributed systems as a core subject in computer science and engineering education.

2. CLOUD COMPUTING ARCHITECTURE

Cloud computing architecture defines the structural design of cloud systems and explains how various components interact to deliver computing services over the Internet. It provides a conceptual framework that enables scalability, reliability, availability, and efficient resource management. Understanding cloud architecture is essential for designing, deploying, and managing modern cloud-based applications.

2.1 Overview of Cloud Architecture

Cloud computing architecture is broadly divided into two major parts: the front end and the back end. The front end consists of client-side components such as web browsers, mobile applications, and thin clients that allow users to access cloud services. The back end includes cloud servers, storage systems, virtual machines, databases, and management software.

These components communicate through the Internet using standard protocols. From the user's perspective, cloud services appear simple and seamless, while the underlying architecture manages complex tasks such as load balancing, data replication, and fault handling. This layered structure allows cloud providers to deliver services efficiently at a global scale.

2.2 Front-End Architecture

The front-end architecture represents the user interface of cloud computing. It includes client devices such as desktops, laptops, smartphones, and tablets, along with applications like web browsers or dedicated cloud apps. These components enable users to request services, upload data, and interact with cloud-hosted applications.

The front end is designed to be lightweight and platform-independent, ensuring accessibility from anywhere and on any device. Technologies such as HTML, CSS, JavaScript, and APIs are commonly used to create responsive and user-friendly cloud interfaces. This design enhances usability while minimizing client-side processing requirements.

2.3 Back-End Architecture

The back end is the core of cloud computing architecture and consists of powerful servers, storage systems, and networking components housed in data centers. It is responsible for processing client requests, managing resources, and storing data. Cloud providers maintain large-scale data centers distributed across multiple geographic locations to ensure high availability.

Key components of the back end include application servers, database servers, distributed storage systems, and virtualization platforms. These components work together to deliver scalable and reliable services while handling millions of user requests simultaneously.

2.4 Role of Virtualization

Virtualization is a fundamental technology in cloud architecture that enables multiple virtual machines (VMs) or containers to run on a single physical server. By abstracting hardware resources such as CPU, memory, and storage, virtualization allows efficient utilization of physical infrastructure.

Through virtualization, cloud providers can dynamically allocate resources based on demand. This flexibility supports elasticity, enabling systems to scale up during peak loads and scale down during low usage periods. Virtualization also enhances security by isolating applications and users from one another.

2.5 Cloud Service Layers

Cloud architecture is commonly organized into service layers that define how resources are delivered to users. Infrastructure as a Service (IaaS) provides basic computing resources such as virtual machines, storage, and networking. Users have control over operating systems and applications while the provider manages the physical infrastructure.

Platform as a Service (PaaS) offers development platforms, middleware, and runtime environments that simplify application development. Software as a Service (SaaS) delivers fully functional applications over the Internet, allowing users to access software without installation or maintenance. These layers provide flexibility and support different application requirements.

2.6 Resource Management and Load Balancing

Resource management is a critical function of cloud architecture, ensuring optimal utilization of computing resources. Cloud management software monitors system performance and allocates resources dynamically to meet application demands. This prevents overloading and improves system efficiency.

Load balancing distributes incoming requests across multiple servers to prevent any single server from becoming a bottleneck. By evenly distributing workloads, load balancing improves response time, availability, and fault tolerance in cloud environments.

2.7 Distributed Storage Architecture

Cloud computing relies heavily on distributed storage systems to manage massive volumes of data. Instead of storing data on a single machine, cloud storage distributes data across multiple servers. This approach improves scalability, reliability, and data availability.

Distributed storage systems often use data replication and redundancy techniques to ensure fault tolerance. Even if one storage node fails, data remains accessible from other nodes. Examples include object storage systems and distributed file systems used by major cloud providers.

2.8 Networking and Communication Infrastructure

Networking forms the backbone of cloud computing architecture. High-speed networks connect data centers, servers, and users across the globe. Cloud networks use technologies such as virtual private networks (VPNs), software-defined networking (SDN), and network virtualization to manage traffic efficiently.

These networking technologies enable secure data transmission, low latency, and reliable connectivity. Effective communication infrastructure ensures seamless interaction between distributed cloud components and end users.

2.9 Security Architecture in Cloud Computing

Security is an integral part of cloud architecture due to the shared and distributed nature of cloud environments. Cloud security architecture includes mechanisms such as authentication, authorization, encryption, and access control. These measures protect data and applications from unauthorized access.

Cloud providers also implement monitoring, intrusion detection, and compliance mechanisms to ensure system integrity. Security responsibilities are often shared between cloud providers and users, depending on the service model used.

2.10 High Availability and Fault Tolerance

High availability is achieved by deploying cloud services across multiple servers and data centers. Redundant components ensure that failures do not disrupt service delivery. Fault tolerance mechanisms detect failures and automatically redirect workloads to healthy components.

Techniques such as replication, backup, and disaster recovery planning are essential elements of cloud architecture. These features make cloud platforms suitable for mission-critical applications that require continuous operation.

2.11 Relationship Between Cloud Architecture and Distributed Systems

Cloud computing architecture is deeply rooted in distributed system principles such as decentralization, concurrency, and fault tolerance. Distributed coordination mechanisms enable cloud components to function cohesively despite being geographically dispersed.

By integrating distributed systems concepts with virtualization and automation, cloud architecture provides a powerful platform for modern computing applications. Understanding this relationship helps students and professionals design efficient and resilient cloud solutions.

3. CLOUD SERVICE MODELS

Cloud service models define how computing resources and services are delivered to users over the Internet. These models determine the level of control, responsibility, and flexibility provided to users and organizations. The three primary cloud service models are Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). Each model serves different application needs and development scenarios.

Infrastructure as a Service (IaaS)

Infrastructure as a Service provides fundamental computing resources such as virtual machines, storage, networking, and load balancers. In this model, cloud providers manage the physical infrastructure, including servers, data centers, and networking hardware, while users are responsible for managing operating systems, applications, and data.

IaaS offers high flexibility and scalability, allowing users to provision and deprovision resources on demand. It is particularly suitable for organizations that require full control over their computing environment or need to migrate legacy applications to the cloud. Common examples of IaaS include virtual servers, cloud storage services, and virtual networks.

Platform as a Service (PaaS)

Platform as a Service provides a complete development and deployment environment in the cloud. It includes operating systems, middleware, development tools, databases, and runtime environments, enabling developers to focus on application logic without worrying about infrastructure management.

PaaS simplifies application development by offering built-in scalability, load balancing, and security features. It supports rapid application development and continuous integration and deployment (CI/CD) practices. This model is widely used for web and mobile application development, where speed and efficiency are critical.

Software as a Service (SaaS)

Software as a Service delivers fully functional software applications over the Internet. Users can access these applications through web browsers without installing or maintaining any software locally. The cloud provider manages the entire stack, including infrastructure, platform, and application software.

SaaS offers ease of use, automatic updates, and reduced operational costs. It is commonly used for email services, customer relationship management (CRM), enterprise resource planning (ERP), and collaboration tools. This model is ideal for users who want ready-to-use applications with minimal technical involvement.

Comparison of Cloud Service Models

The key difference among IaaS, PaaS, and SaaS lies in the level of control and responsibility assigned to users. IaaS provides maximum control over operating systems and applications, while SaaS offers minimal control but maximum convenience. PaaS falls between the two, balancing flexibility and simplicity.

Choosing the appropriate service model depends on factors such as application complexity, budget, technical expertise, and business requirements. Understanding these differences helps organizations make informed decisions when adopting cloud services.

Use Cases of Cloud Service Models

IaaS is commonly used for hosting websites, disaster recovery, and large-scale data analysis. PaaS is ideal for application development, testing, and deployment environments. SaaS is widely adopted for productivity tools, communication platforms, and business applications.

Each service model supports different workloads and industries, making cloud computing adaptable to diverse computing needs. Organizations often use a combination of service models to optimize performance and cost.

Advantages of Cloud Service Models

Cloud service models offer numerous advantages, including cost efficiency, scalability, and flexibility. Users can quickly scale resources based on demand, avoiding over-provisioning and reducing capital expenditure. The pay-as-you-go pricing model further enhances cost control.

Additionally, cloud service models enable faster innovation by reducing time-to-market for applications. Built-in security, reliability, and availability features make cloud services suitable for modern, large-scale applications.

Challenges and Limitations

Despite their benefits, cloud service models also face challenges. These include data security concerns, vendor lock-in, and limited control in higher-level service models such as SaaS. Performance issues may also arise due to network dependency.

Organizations must carefully evaluate these challenges and adopt appropriate strategies, such as hybrid cloud models and strong security practices, to mitigate potential risks.

Role of Service Models in Cloud Architecture

Cloud service models play a vital role in shaping cloud architecture by defining responsibilities between providers and users. They influence application design, deployment strategies, and operational workflows.

By selecting the right service model, organizations can achieve optimal balance between control, scalability, and ease of use. This understanding is essential for effective cloud adoption and management.

4. CLOUD DEPLOYMENT MODELS

Cloud deployment models define how cloud infrastructure is deployed and accessed by users. These models determine ownership, access control, security level, and scalability of cloud resources. Selecting an appropriate deployment model is crucial for meeting organizational requirements related to data privacy, compliance, cost, and performance. The main cloud deployment models include public cloud, private cloud, hybrid cloud, and community cloud.

Public Cloud

The public cloud is a cloud deployment model in which computing resources are owned and managed by a third-party cloud service provider and made available to the public over the Internet. Multiple users, known as tenants, share the same infrastructure while maintaining data isolation through virtualization and security mechanisms.

Public clouds offer high scalability, cost efficiency, and ease of access. Since users do not need to invest in hardware or maintenance, this model is ideal for startups, small businesses, and applications with variable workloads. However, concerns related to data privacy and regulatory compliance may limit its adoption for sensitive applications.

Private Cloud

A private cloud is dedicated exclusively to a single organization. It may be hosted on-premises or managed by a third-party provider, but the infrastructure is not shared with other users. This model offers greater control over data, security, and system configuration.

Private clouds are suitable for organizations that handle sensitive data or must comply with strict regulatory requirements. While they provide enhanced security and customization, private clouds involve higher costs due to infrastructure investment and maintenance responsibilities.

Hybrid Cloud

Hybrid cloud combines two or more cloud deployment models, typically public and private clouds, allowing data and applications to be shared between them. This model provides flexibility by enabling organizations to keep critical workloads in a private cloud while leveraging the scalability of the public cloud for less sensitive operations.

Hybrid cloud environments support workload portability, disaster recovery, and cost optimization. However, they require careful integration and management to ensure seamless communication and consistent security policies across different cloud environments.

Community Cloud

A community cloud is shared by multiple organizations with similar requirements, such as regulatory compliance, security standards, or business objectives. The infrastructure may be managed internally or by a third-party provider and is accessible only to members of the community.

This model allows organizations to share costs while maintaining a higher level of control compared to public clouds. Community clouds are commonly used in sectors such as healthcare, education, and government, where organizations share common goals and compliance needs.

Comparison of Cloud Deployment Models

Each cloud deployment model offers distinct advantages and limitations. Public clouds excel in scalability and cost efficiency, private clouds provide enhanced security and control, hybrid clouds offer flexibility, and community clouds balance cost and compliance.

The choice of deployment model depends on factors such as data sensitivity, workload characteristics, budget constraints, and regulatory requirements. Many organizations adopt a multi-cloud or hybrid approach to leverage the strengths of multiple models.

Advantages of Cloud Deployment Models

Cloud deployment models enable organizations to tailor cloud usage according to their needs. They support scalability, improved resource utilization, and business continuity. Organizations can select models that align with their operational goals and risk tolerance.

Additionally, deployment models facilitate innovation by providing flexible environments for application development, testing, and deployment. This adaptability makes cloud computing a powerful tool for digital transformation.

Challenges in Cloud Deployment

Despite their benefits, cloud deployment models face challenges such as data security risks, interoperability issues, and complex management. Hybrid and multi-cloud environments, in particular, require sophisticated tools and expertise to manage effectively.

Organizations must address these challenges through strong governance, security policies, and careful planning to ensure successful cloud adoption.

Role of Deployment Models in Cloud Strategy

Cloud deployment models play a critical role in shaping an organization's cloud strategy. They influence decisions related to application architecture, data management, and compliance.

A well-chosen deployment model enables organizations to maximize cloud benefits while minimizing risks. Understanding these models is essential for designing efficient and secure cloud solutions in modern computing environments.

5. DISTRIBUTED STORAGE AND DATA MANAGEMENT

Distributed storage and data management are essential components of cloud computing and distributed systems. As modern applications generate massive volumes of data, traditional centralized storage systems are no longer sufficient. Distributed storage systems store data across multiple machines and locations, ensuring scalability, reliability, and high availability.

Effective data management techniques enable efficient storage, retrieval, consistency, and security of data in cloud environments.

Need for Distributed Storage Systems

The rapid growth of data generated by web applications, IoT devices, and enterprise systems has increased the demand for scalable storage solutions. Centralized storage systems face limitations in terms of capacity, performance, and fault tolerance. Distributed storage systems overcome these limitations by spreading data across multiple nodes.

By distributing data, these systems can handle large workloads and support parallel access. This improves performance and ensures continuous availability even when individual storage nodes fail. As a result, distributed storage is widely used in cloud platforms and big data applications.

Architecture of Distributed Storage

Distributed storage architecture consists of multiple storage nodes connected through a network. Each node stores a portion of the data, and metadata services track data locations and replicas. This architecture enables data to be accessed transparently by users and applications.

The system uses coordination mechanisms to manage data placement, replication, and recovery. Load balancing ensures that storage requests are evenly distributed, preventing bottlenecks and improving overall system performance.

Data Replication and Redundancy

Data replication involves creating multiple copies of data across different storage nodes. This technique improves data availability and fault tolerance by ensuring that data remains accessible even if one or more nodes fail.

Redundancy also protects against data loss due to hardware failures or network issues. Distributed storage systems use replication strategies such as synchronous and asynchronous replication to balance consistency and performance.

Distributed File Systems

Distributed file systems provide a unified file storage interface while storing data across multiple machines. Examples include systems designed for cloud and big data environments. These systems support high throughput and fault tolerance.

They are commonly used for storing large files, logs, and datasets required for analytics and machine learning applications. Distributed file systems enable multiple users and applications to access data concurrently.

Object Storage Systems

Object storage stores data as objects rather than files or blocks. Each object contains data, metadata, and a unique identifier. This model supports massive scalability and is well-suited for unstructured data such as images, videos, and backups.

Object storage systems are widely used in cloud environments due to their durability, cost efficiency, and ease of access through APIs. They support replication and geographic distribution for high availability.

Distributed Databases and NoSQL Systems

Distributed databases manage structured and semi-structured data across multiple nodes. NoSQL databases are designed to handle large-scale data with high availability and flexible schemas.

These systems prioritize scalability and performance, often relaxing strict consistency guarantees. They are commonly used in applications requiring real-time data processing and large-scale analytics.

Data Consistency Models

Consistency models define how updates to data are propagated across distributed storage systems. Strong consistency ensures that all users see the same data at the same time, while eventual consistency allows temporary differences.

Choosing an appropriate consistency model involves trade-offs between performance, availability, and reliability. Understanding these trade-offs is critical for designing effective data management solutions.

Data Management Techniques

Data management techniques include data partitioning, indexing, caching, and compression. Partitioning divides data into smaller segments for efficient storage and access, while caching improves performance by storing frequently accessed data closer to users.

These techniques help optimize storage utilization and reduce latency. Automation tools are often used to manage data lifecycle tasks such as backup, archiving, and deletion.

Security and Privacy in Distributed Storage

Security is a major concern in distributed storage systems due to data being stored across multiple locations. Encryption, access control, and authentication mechanisms are used to protect data from unauthorized access.

Data privacy regulations require organizations to ensure compliance through secure data handling practices. Distributed storage systems incorporate monitoring and auditing tools to detect and prevent security breaches.

Fault Tolerance and Disaster Recovery

Fault tolerance ensures that storage systems continue to operate despite hardware or network failures. Techniques such as replication, data recovery, and automatic failover are used to maintain availability.

Disaster recovery strategies include data backups and replication across geographically distributed data centers. These strategies ensure data integrity and continuity in the event of large-scale failures.

Role of Distributed Storage in Cloud Computing

Distributed storage is a foundational element of cloud computing, supporting scalability, elasticity, and high availability. It enables cloud providers to offer reliable storage services to millions of users worldwide.

By integrating distributed storage with cloud management and orchestration tools, cloud platforms can efficiently handle diverse workloads and data-intensive applications.

6. FAULT TOLERANCE AND RELIABILITY

Fault tolerance and reliability are critical aspects of distributed systems and cloud computing environments. Due to the presence of multiple interconnected components, failures in hardware, software, or networks are inevitable. A well-designed distributed system must be capable of continuing its operation even when some of its components fail. This section discusses the concepts, techniques, and importance of fault tolerance and reliability in modern computing systems.

Understanding System Failures

System failures in distributed environments can occur due to various reasons, including hardware malfunctions, software bugs, network outages, and human errors. These failures may affect individual components or entire subsystems. Since distributed systems rely on communication among nodes, even minor failures can disrupt system performance.

Failures are generally categorized as crash failures, omission failures, timing failures, and Byzantine failures. Understanding these failure types helps system designers develop appropriate strategies to detect, isolate, and recover from failures efficiently.

Importance of Fault Tolerance

Fault tolerance ensures that a system continues to function correctly even in the presence of failures. In cloud and distributed systems, fault tolerance is essential to maintain service availability and prevent data loss. Users expect uninterrupted access to services, especially in mission-critical applications such as banking, healthcare, and e-commerce.

By incorporating fault tolerance mechanisms, systems can minimize downtime and ensure consistent performance. This not only enhances user trust but also reduces financial losses associated with system outages.

Reliability in Distributed Systems

Reliability refers to the ability of a system to perform its intended function correctly over a specified period of time. A reliable distributed system delivers correct results despite component failures and varying workloads.

Reliability is often measured using metrics such as mean time to failure (MTTF) and mean time between failures (MTBF).

In distributed systems, reliability is closely linked to fault tolerance. While fault tolerance focuses on handling failures, reliability emphasizes long-term system stability and correctness. Together, these concepts ensure dependable system behavior.

Redundancy and Replication Techniques

Redundancy involves adding extra components or resources to a system to compensate for potential failures. Replication is a common redundancy technique where multiple copies of data or services are maintained across different nodes. If one replica fails, others can continue to serve requests.

Replication improves both fault tolerance and availability but introduces challenges such as data consistency and synchronization. Distributed systems use coordination protocols to ensure that replicas remain consistent while maintaining high performance.

Failure Detection and Recovery Mechanisms

Failure detection mechanisms monitor system components to identify faults promptly. Techniques such as heartbeat messages, monitoring agents, and health checks are commonly used to detect failures in distributed systems. Quick detection allows systems to respond effectively before failures propagate.

Recovery mechanisms include restarting failed components, switching to backup resources, and reassigning workloads to healthy nodes. Automated recovery is especially important in cloud environments, where systems must handle failures without manual intervention.

Checkpointing and Rollback

Checkpointing is a technique in which a system periodically saves its state to stable storage. In the event of a failure, the system can roll back to the last saved checkpoint and resume operation. This approach minimizes data loss and reduces recovery time.

Checkpointing is widely used in distributed applications and cloud-based workloads, particularly in long-running computations. It ensures continuity and improves overall system reliability.

Load Balancing and Failover

Load balancing distributes workloads evenly across multiple nodes, preventing any single node from becoming a bottleneck. By spreading tasks across available resources, load balancing improves performance and resilience. If one node fails, others can handle the additional workload.

Failover mechanisms automatically redirect requests from failed components to operational ones. These mechanisms ensure uninterrupted service delivery and are a key component of high-availability cloud architectures.

High Availability Systems

High availability (HA) systems are designed to provide continuous operation with minimal downtime. This is achieved through redundancy, replication, and automated recovery mechanisms. HA systems are essential for applications that require near-zero downtime.

Cloud providers implement HA by deploying services across multiple data centers and geographic regions. This geographic distribution further enhances fault tolerance and reliability.

Consistency and Fault Tolerance Trade-offs

Distributed systems often face trade-offs between consistency, availability, and partition tolerance, as described by the CAP theorem. To achieve fault tolerance, systems may relax strict consistency requirements, leading to eventual consistency.

Understanding these trade-offs allows system designers to make informed decisions based on application requirements. Different applications may prioritize consistency or availability depending on their use cases.

Reliability Engineering in Cloud Environments

Reliability engineering focuses on designing systems that maintain dependable performance under varying conditions. In cloud environments, this involves monitoring, automated scaling, and continuous testing. Techniques such as chaos engineering are used to test system resilience by intentionally introducing failures.

By proactively identifying weaknesses, reliability engineering helps improve system robustness. These practices are increasingly important as cloud systems grow in complexity and scale.

Benefits of Fault Tolerance and Reliability

Fault tolerance and reliability provide numerous benefits, including improved user experience, reduced downtime, and enhanced system trustworthiness. They enable organizations to deliver consistent services even in the face of failures.

In distributed and cloud systems, these features are essential for supporting large-scale, mission-critical applications. A strong emphasis on fault tolerance and reliability ensures long-term system success.

7. SECURITY AND PRIVACY IN CLOUD AND DISTRIBUTED SYSTEMS

Security and privacy are major concerns in cloud computing and distributed systems due to shared resources, remote data storage, and network-based access. As data and applications move to cloud environments, protecting sensitive information from unauthorized access and cyber threats becomes critical. This section discusses the key security challenges and protection mechanisms in modern cloud and distributed systems.

Security Challenges in Distributed Environments

Distributed systems face unique security challenges such as data breaches, insider threats, and distributed denial-of-service (DDoS) attacks. Since system components are spread across multiple locations, ensuring consistent security policies becomes complex.

Network vulnerabilities further increase the risk of attacks. Attackers may exploit weak authentication mechanisms or insecure communication channels, making robust security frameworks essential for distributed environments.

Authentication and Access Control

Authentication ensures that only authorized users can access cloud resources. Techniques such as passwords, multi-factor authentication, and biometric verification are widely used in cloud systems.

Access control mechanisms determine the level of access granted to users. Role-based access control (RBAC) and attribute-based access control (ABAC) help enforce security policies by restricting access based on user roles and permissions.

Data Encryption and Secure Communication

Encryption is a fundamental technique for protecting data in cloud environments. Data is encrypted both at rest and during transmission to prevent unauthorized access.

Secure communication protocols such as HTTPS and TLS ensure safe data exchange between users and cloud services. Encryption plays a vital role in maintaining data confidentiality and integrity.

Privacy Issues in Cloud Computing

Privacy concerns arise when user data is stored and processed on remote servers managed by third-party providers. Issues such as data ownership, data location, and unauthorized data sharing are major challenges.

Cloud providers implement privacy-preserving mechanisms and comply with data protection regulations to ensure user trust. Transparency and strong governance are essential for maintaining privacy in cloud systems.

Compliance and Regulatory Requirements

Organizations using cloud services must comply with legal and regulatory standards related to data protection and privacy. These regulations vary across regions and industries.

Cloud providers offer compliance tools and certifications to help organizations meet regulatory requirements. Compliance management is an important aspect of cloud security strategy.

Security Best Practices

Best practices for cloud security include regular security audits, vulnerability assessments, and continuous monitoring. Organizations must adopt a shared responsibility model, where both cloud providers and users play roles in ensuring security.

Implementing strong security policies and educating users about security risks further enhances system protection.

8. EMERGING TRENDS IN CLOUD COMPUTING AND DISTRIBUTED SYSTEMS

Cloud computing and distributed systems continue to evolve rapidly, driven by advancements in technology and changing application demands. Emerging trends aim to improve scalability, efficiency, and performance while addressing limitations of traditional cloud models.

Microservices Architecture

Microservices architecture divides applications into small, independent services that communicate through APIs. Each service can be developed, deployed, and scaled independently.

This approach enhances flexibility and resilience, making it popular for cloud-native applications. Microservices enable faster development cycles and improved fault isolation.

Serverless Computing

Serverless computing allows developers to build and run applications without managing servers. Cloud providers automatically handle resource provisioning, scaling, and maintenance.

This model reduces operational complexity and cost, making it suitable for event-driven applications and microservices-based workloads.

Edge Computing

Edge computing brings computation closer to data sources, such as IoT devices and sensors. By processing data at the edge of the network, latency is reduced and real-time responses are improved.

Edge computing complements cloud computing by handling time-sensitive tasks locally while offloading heavy processing to centralized cloud data centers.

Containerization and Orchestration

Containerization packages applications and their dependencies into lightweight containers, ensuring consistency across environments. Container orchestration platforms automate deployment, scaling, and management.

These technologies enhance portability and efficiency, supporting modern cloud-native development practices.

Artificial Intelligence and Cloud Integration

Cloud platforms increasingly integrate artificial intelligence and machine learning services. These services enable advanced analytics, automation, and intelligent decision-making.

Cloud-based AI solutions allow organizations to leverage powerful computing resources without investing in specialized hardware.

Multi-Cloud and Hybrid Strategies

Organizations are adopting multi-cloud and hybrid cloud strategies to avoid vendor lock-in and improve resilience. These strategies involve using services from multiple cloud providers.

Effective management and interoperability tools are essential for handling the complexity of multi-cloud environments.

9. CASE STUDIES AND REAL-WORLD APPLICATIONS

Cloud computing and distributed systems are widely adopted across industries, enabling scalable and reliable applications. Case studies highlight how these technologies address real-world challenges.

Cloud Computing in E-Commerce

E-commerce platforms rely on cloud computing to handle fluctuating traffic and large volumes of transactions. Cloud infrastructure enables scalability during peak shopping seasons.

Distributed databases and content delivery networks ensure fast and reliable user experiences across geographic regions.

Cloud Applications in Healthcare

Healthcare organizations use cloud systems for electronic health records, medical imaging, and telemedicine. Cloud computing enables secure data sharing and remote access.

Distributed systems improve data availability and support collaboration among healthcare professionals while ensuring patient privacy.

Financial Services and Banking Systems

Banks and financial institutions use cloud and distributed systems for transaction processing, fraud detection, and risk analysis. High availability and fault tolerance are critical in these applications.

Cloud platforms support real-time analytics and secure data management, improving operational efficiency.

Big Data Analytics Platforms

Big data platforms leverage distributed computing frameworks to process large datasets. Cloud-based analytics enable scalable data processing and storage.

These platforms support applications such as recommendation systems, predictive analytics, and scientific research.

Cloud Computing in Education

Educational institutions use cloud services for online learning platforms, virtual labs, and collaboration tools. Cloud computing supports remote education and resource sharing.

Distributed systems ensure reliable access to learning materials for students across different locations.

Industrial and IoT Applications

Industries use cloud and distributed systems to manage IoT devices, monitor operations, and optimize processes. Edge and cloud integration enables real-time data analysis.

These applications improve efficiency, automation, and decision-making in industrial environments.

Benefits of Real-World Cloud Adoption

Real-world case studies demonstrate benefits such as cost reduction, scalability, and improved service delivery. Cloud computing enables organizations to innovate rapidly.

By leveraging distributed systems, organizations can build resilient and high-performance applications.

CONCLUSION

Cloud computing and distributed systems represent a transformative shift in computing paradigms, providing scalable, flexible, and cost-effective solutions for modern applications. Distributed systems form the backbone of cloud infrastructure, enabling fault tolerance, concurrency, and efficient resource sharing. Cloud computing abstracts hardware complexity through virtualization, containers, and orchestration, offering on-demand access to services like IaaS, PaaS, and SaaS. Emerging trends such as serverless computing, edge/fog computing, and AI/ML integration continue to expand the capabilities of cloud platforms. Security, privacy, and compliance remain critical challenges, requiring robust mechanisms to safeguard data and ensure regulatory adherence. Real-world applications across healthcare, finance, e-commerce, and big data analytics demonstrate the practical value of cloud computing. Understanding the principles of distributed systems and cloud technologies is essential for computer science engineers to design, deploy, and maintain resilient, high-performance applications. As cloud adoption grows, it will continue to drive innovation, efficiency, and global connectivity in computing.

REFERENCES

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., & Zaharia, M. (2010). A view of cloud computing. *Communications of the ACM*, 53(4), 50–58. <https://doi.org/10.1145/1721654.1721672>

Buyya, R., Calheiros, R. N., & Li, X. (2012). Autonomic cloud computing: Challenges and architectural elements. arXiv. <https://arxiv.org/abs/1209.3356>

Buyya, R., & Vecchiola, C. (2011). Mastering cloud computing. McGraw-Hill.

Chauhan, P. V. (2012). Cloud computing in distributed systems. *International Journal of Engineering Research & Technology (IJERT)*.

Erl, T., Puttini, R., & Mahmood, Z. (2013). Cloud computing: Concepts, technology & architecture. Prentice Hall.

Foster, I. (2022a). Introduction to cloud computing. In *Cloud computing* (pp. 1–58). Springer Nature.

Foster, I. (2022b). Cloud computing system. In *Cloud computing* (pp. 59–95). Springer Nature.

Gill, S. S., Tuli, S., Xu, M., Singh, I., Singh, K. V., Lindsay, D., Tuli, S., Smirnova, D., & Buyya, R. (2019). Transformative effects of IoT, blockchain, and AI on cloud computing. arXiv. <https://arxiv.org/abs/1911.01941>

Hwang, K., Dongarra, J., & Fox, G. (2011). Distributed and cloud computing: From parallel processing to the Internet of Things. Elsevier.

Kubernetes. (n.d.). In Wikipedia. <https://en.wikipedia.org/wiki/Kubernetes>

Marinescu, D. C. (2017). Cloud computing: Theory and practice. Morgan Kaufmann.

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing (NIST Special Publication 800-145). National Institute of Standards and Technology.

Misra, R., & Patel, Y. S. (2020). Cloud and distributed computing: Algorithms and systems. Wiley India.

Service-oriented architecture. (n.d.). In Wikipedia. https://en.wikipedia.org/wiki/Service-oriented_architecture

Singh, S., & Kelly, P. (2024). Distributed computing with the cloud. *Distributed Computing*. <https://doi.org/10.1007/s00446-024-00460-w>

Varshney, P., & Simmhan, Y. (2019). Characterizing application scheduling on edge, fog, and cloud computing resources. *arXiv*. <https://arxiv.org/abs/1904.10125>

Wang, L., Ranjan, R., Chen, J., & Benatallah, B. (2010). *Cloud computing: Methodology, systems, and applications*. CRC Press.

Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: State-of-the-art and research challenges. *Journal of Internet Services and Applications*, 1(1), 7–18. <https://doi.org/10.1007/s13174-010-0007-6>

CHAPTER 5
COMBINED PHYSICAL AND COMPUTATIONAL
SIMULATION OF THE MOIRÉ EFFECT IN 3D
OBJECTS AND DISPLAYS

¹Vladimir SAVELJEV

¹Public Safety Research Center, Konyang University, 121 Daehak-ro, Nonsan 32992, Chungcheongnam-do, Republic of Korea, saveljev.vv@gmail.com, ORCID ID: 0000-0003-2187-704X

INTRODUCTION

The moiré effect is an optical interaction (interference) between projections of layers observed in periodic structures (grids, lattices) viewed in transmission. Moiré fringes are alternating dark and light areas with a relatively low spatial frequency that is absent in the original structures Bryngdahl (1974), Sciammarella (1982), Amidror (2009), Saveljev (2022).

Typically, the effect is considered in coplanar layers, i.e., in two dimensions. Sometimes, the moiré effect is investigated in three dimensions Saveljev (2018a), e.g., in flat layers separated by a gap Sciammarella & Chiang (1968), Saveljev & Kim (2010, 2011) and in three dimensions: in rec-tangular parallelepiped Saveljev (2022), wedge (triangular prism) Saveljev et al. (2020a), cylinder Saveljev et al. (2017, 2020b), Saveljev (2023a), and their combinations Saveljev & Heo (2024).

The macro-level moiré has been investigated in visual displays Bell et al. (2007), Kong et al. (2013). The structure of multiview autostereoscopic displays typically comprises two parallel layers with a cell-size ratio close to an integer. The moiré effect negatively affects the quality of the visual image; therefore, this harmful (in displays) effect should be avoided or at least reduced (mini-mized), especially in autostereoscopic and volumetric 3D displays Lee et al. (2016). Particularly, there are methods of removal, particularly, based on geometry Yurlov et al. (2018), image pro-cessing Qi et al. (2024), and special design Xia et al. (2025), Fukano et al. (2025). From the opposite point of view (i.e., as a useful effect), the moiré effect is used for security Cadarso et al. (2013), Saunoriene et al. (2023) and measurements Theocaris (1969), Kafri & Glatt (1990), Patorski & Kuja-winska (1993), Post et al. (1994), Jeong et al. (2019). The moiré effect is investigated at the nano-scale Suenaga et al. (2007), Sadan et al. (2008), Warner et al. (2011); particularly, in sin-gle-walled Tu (2018), Konevtsova et al. (2022), Arroyo-Gascón et al. (2023) and double-walled nanotubes He et al. (2019), Wittemeier et al. (2022). Also, the effect is investigated in 2D materials including twistronics Latychevskaia et al. (2019), Wu et al. (2020), Hennighausen & Kar (2021), Wittemeier et al. (2022), Wang et al. (2023) ands well as in three- and multilayuered graphene Xu et al. (2014), Ren et al. (2025).

The moiré effect is complex phenomenon, affected by many factors. However, not all problems can be solved analytically. In many cases, modeling is required, which includes either computer simulation or a physical model. Apart from that, the simulation has a more general meaning: it shows a clear visual effect, making it understandable. Computer simulation, combined with experiments on a physical model, constitutes a comprehensive study. The combined simulation involves physical modeling and computer simulation.

In particular, the moiré effect is simulated in visual displays Saveljev & Kim (2010, 2011), Yur-lov et al. (2018), Guo et al. (2022), including the color effect Kim et al. (2009), Li et al. (2018), as well as using special software Joo & Shin (2009), Byun et al. (2014). Also, display elements (backlight, touchscreen) were modeled Joo & Ko (2014), Xie et al. (2018), Su et al. (2021). Simulation of projection moiré was also made (basically, for measurements) Wegdam et al. (1992), Buytaert et al. (2012). We also have to mention general-purpose and special simulators Alekxa (2011), Mol (2012), Stephens (2017), Hsu (2018). At the nano-level, the moiré effect is simulated in graphene and in other bilayers Soejima et al. (2020), Tang et al. (2020), Ascrizzi et al. (2024).

The current paper describes computer simulation and physical model using three examples: i) parallel planar layers (displays); ii) 3D shell objects (cylindrical nanoparticles, SWNT), spherical surface; iii) 3D volumetric multilayered objects (3D array such as an LED cube).

We assume that the radius of the visibility circle Amidror (2009) is shorter than the distance from the origin of the spectral domain to the closest spectral component of either grid. In such a case, the grids themselves are unrecognizable (as higher spatial frequencies), whereas the moiré patterns (lower spatial frequencies) are clearly visible and can be visually separated. We only consider the period and orientation of the moiré patterns.

In Sec. 2, the computer simulation tool shows moiré patterns in planar, parallel layers. The tool is controlled interactively and operates in two modes: overview and detailed. In Sec. 3, the moiré effect in objects with radial symmetry (hollow single-walled cylindrical and spherical objects) was investigated.

The moiré effect in chiral nanoparticles has been modeled using macroscopic objects or planar grids, and the resulting patterns can be simulated using computer-generated images. The combined approach can be applied to MWNT.

In Sec. 4, the moiré effect in the essentially volumetric 3D case (a cube) is investigated. Visual corridors are moiré patterns. We carried out computer simulations and physical experiments; the distinctive angles of the moiré patterns are determined in three types of cubic lattices (simple, body-, and face-centered). These three cases (dual/multiple layers, cylinders, sphere/cube) confirm the usefulness of the combined simulation.

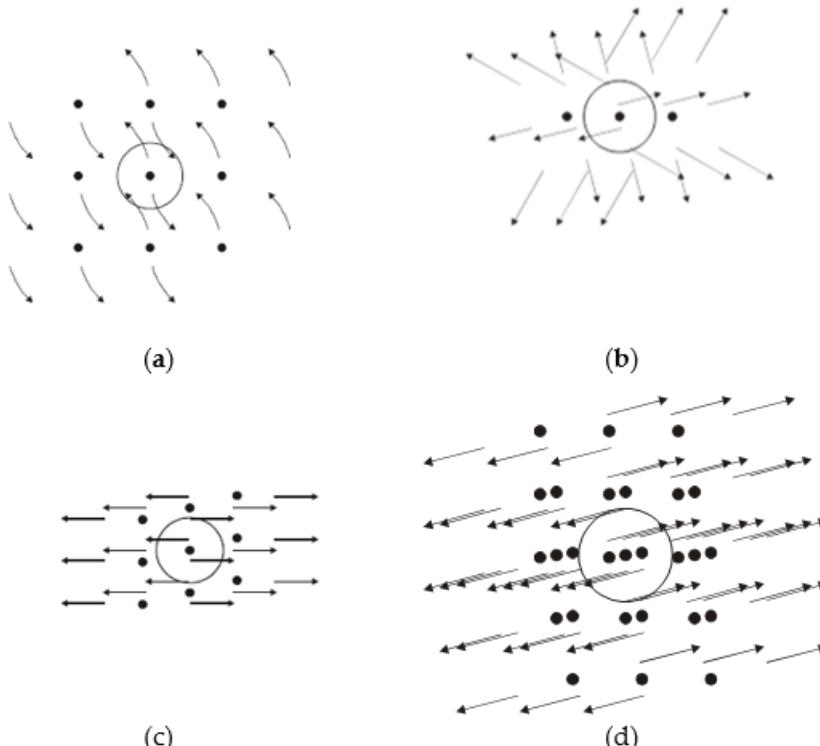
1. COMBINED SIMULATION OF THE MOIRÉ EFFECT IN PARALLEL LAYERS OF DISPLAYS

For planar displays, simulating each case individually was practically inconvenient, although the experimental values demonstrated a good agreement with the simulation (within 2–4%) Saveljev & Kim (2010, 2011). Therefore, specialized computer simulation tools were developed to study the behavior of moiré waves in autostereoscopic displays. The simulation is based on spectral trajectories, the multiplicative model, the Fourier transform, the projection transform, and the concept of the visibility circle Amidror (2009).

The positions of the spectral components in parallel layers are as follows,

$$T = p_1 k_1 e^{i\alpha_1} + \dots + p_N k_N e^{i\alpha_N}, \quad (1)$$

Spectral trajectories Saveljev & Kim (2012, 2013) in layered displays appear when one parameter in Eq. (1) is not constant (like α , ρ , σ_1 , or σ_2 in Eqs. (2)–(5) below)


$$T_\alpha(t) = (k\sigma_1 + il) + (m\sigma_2 + in)\rho e^{i\alpha(t)} \quad (2)$$

$$T_\rho(t) = (k\sigma_1 + il) + (m\sigma_2 + in)\rho(t) e^{i\alpha} \quad (3)$$

$$T_{\sigma_1}(t) = (k\sigma_1(t) + il) + (m\sigma_2 + in)\rho e^{i\alpha} \quad (4)$$

$$T_{\sigma_2}(t) = (k\sigma_1 + il) + (m\sigma_2(t) + in)\rho e^{i\alpha} \quad (5)$$

where the values k_n , α_n , p_n , q_n are attributed to the n -th grid ($n = 1, \dots, N$) as follows: two former values are the basic wavenumber and the rotation angle, while p_n is an integer number within the limits $-q_n$ and $+q_n$, and t is a dimensionless parameter.

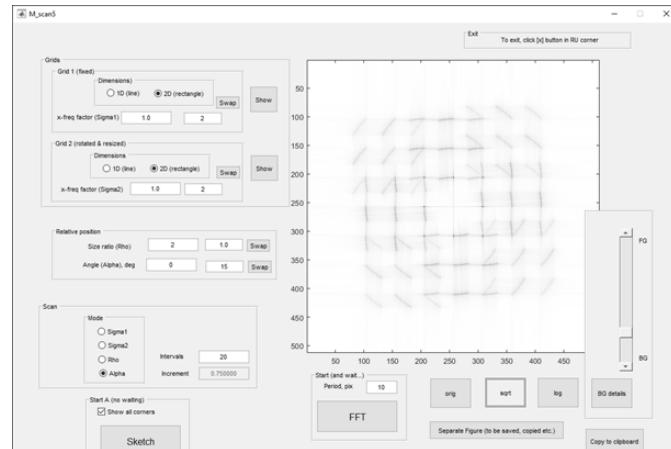
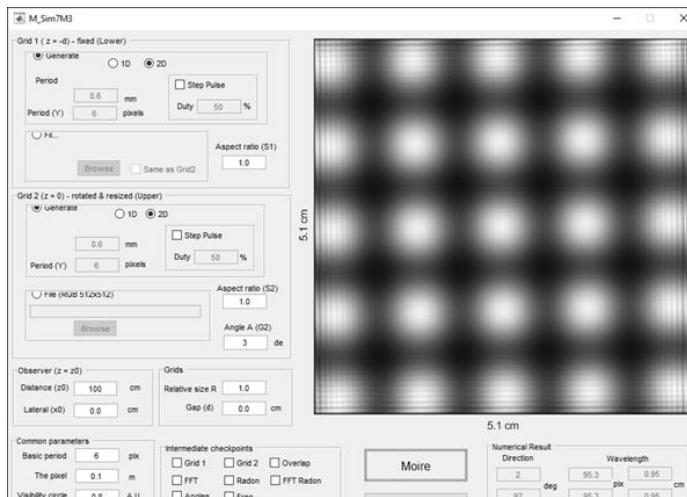


Figure 1. Examples of spectral trajectories with one harmonic (sinusoidal case), obtained by simulation for different running parameters; in (a) .. (d), parameters are α , ρ , σ_1 , and σ_3 , respectively. Adapted from Saveljev & Kim (2012) with permission.


The developed tool shows the simulated moiré patterns in computer-generated black-and-white sinusoidal grids Saveljev & Kim (2011, 2013, 2014a). Source images from an external file can also be used. The tool (see Figure 2) enables semi-automatic measurements and visual tracking of spectral peaks.

The outline mode displays the spectral trajectories (sketches or result of FFT); the detail mode shows the visual effect along with the numerical characteristics of the patterns, see Figure 2.

Grid parameters are adjustable (the periods, the observer's displacement by two coordinates, the distance to the screen, the gap, the slant angle, and the like). Direct calculations using the Fourier transform additionally confirm the simulation.

(a)

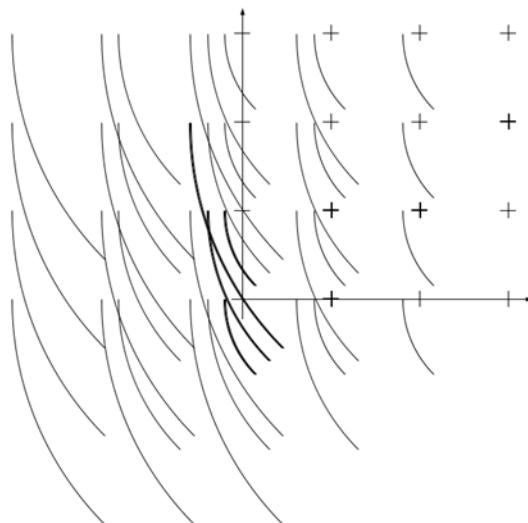

(b)

Figure 2. Simulation tool. (a) outline mode, (b) detail mode. Adapted from Saveljev (2023b) with permission.

Simulations Saveljev & Kim (2011, 2012) refer to the sinusoidal case. However, sometimes, the sinusoidal waves were insufficient to accurately represent a real-life situation.

The trajectories with $\rho = 1$ and $\rho = 2$ presented in Saveljev & Kim (2013) include the first and second harmonics of the grid profile. The paper Saveljev & Kim (2014a) describes a non-sinusoidal simulation based on the extended limited spectrum. The non-sinusoidal simulation Saveljev & Kim (2014b) allowed us to determine minimization parameters, particularly, discrete moiré angles.

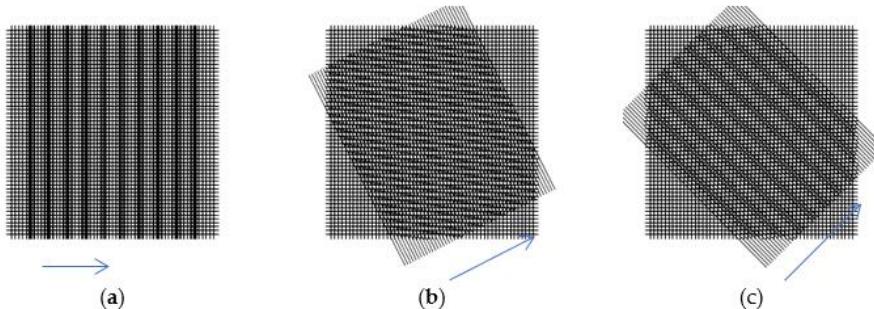

In Saveljev & Kim (2014a), the number of the spectral components reached 3. The integer numbers m and n in Eqs. (2) – (5) run between -1 and 1 in the sinusoidal case and between -3 and 3 in the non-sinusoidal case (extended limited spectrum). The examples of trajectories with 3 spectral components in each grid are shown in Figure 3.

Figure 3. Spectral trajectories with 3 harmonics (non-sinusoidal profile) for $\rho = 1.2$ (simulation). Reproduced from Saveljev & Kim (2014a) with permission.

Based on the layout of trajectories $\rho = 1.2$ within the visibility circle shown in Figure 3, one may expect that the moiré waves appear at $0, 27^\circ, 45^\circ$ ($\arctan 0, \arctan 1/2$, and $\arctan 1$).

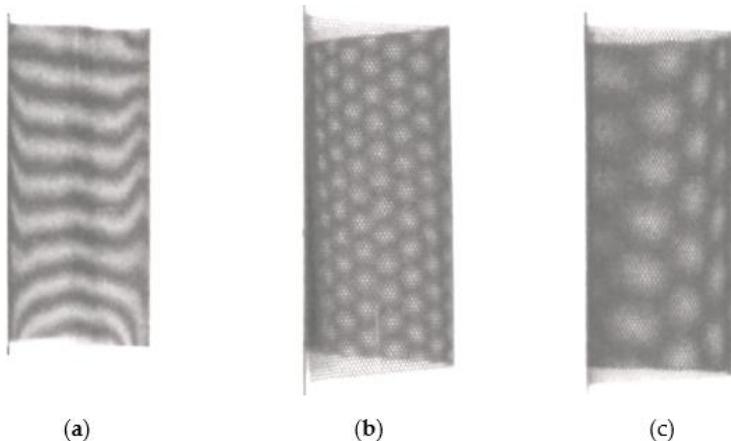
The moiré patterns observed in superposed computer-generated grids at these angles are shown in Figure 4. Note that in Figures 4a) and (c) the moiré patterns are almost parallel to the axis of the rotated grid, while in Figure 4(b) they are not. The configuration of spectral trajectories shows that in this case, the trajectory centered at (2, 1) approaches the origin (slightly above it), leading to a sharp change in the moiré angle. Note approximately equal spatial frequencies at 0 and 45°.

Figure 4. Experimentally observed moiré patterns for $\rho = 1.2$ at 0° , 27° , and 45° .

Reproduced from Saveljev & Kim (2014a) with permission.

Since the above moiré waves at 27° ($\rho = 1.2$) result from the second harmonic, their amplitude (and visual contrast in the screen) is noticeably lower than that of the moiré waves at 0° and 45° (both caused by the first, sinusoidal component).

Particularly, the moiré effect was minimized by 4 parameters (distances 1-2 m, angles 0-90°). The typical normalized RMS deviation between physical experimental and computer simulation is 3 - 5%.


3. COMPUTER SIMULATION AND PHYSICAL MODEL OF MOIRÉ EFFECT IN CYLINDRICAL NANOPARTICLES

3.1 Cylindrical Shell

In cylindrical nanoparticles, the moiré effect can be studied using a physical model observed from infinity. However, recognizing details at large distances is difficult in practice.

Therefore, the moiré effect in chiral nanoparticles was modeled alternatively, using coplanar hexagonal grids and their virtual equivalents.

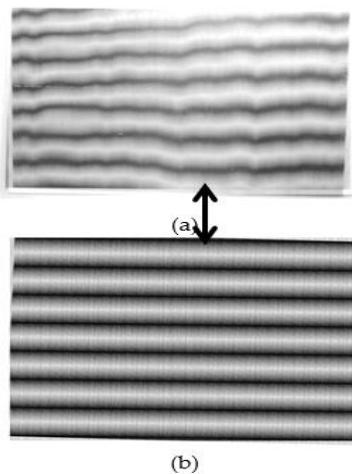
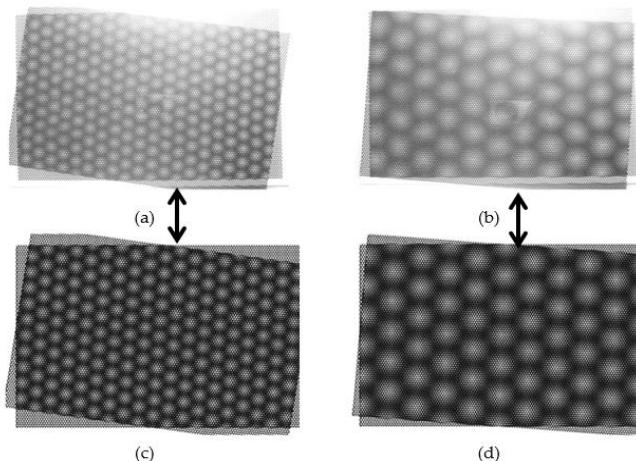

The observation condition under the microscope (TEM) yields a long (theoretically infinite) period of the moiré patterns in the symmetric cylinders Saveljev (2016). However, the moiré period, larger than the size (diameter) of the cylinder, makes the moiré patterns unrecognizable. Therefore, the moiré effect in the symmetric nanoparticles cannot be observed under TEM. At the same time, it can be observed in the symmetric cylinders at short distances or in the asymmetric chiral cylinders at infinity Saveljev et al. (2017). Figure 5 confirms that the moiré patterns can appear in the chiral cylinders at long distances Saveljev (2023a). In the combined simulation, we used coplanar hexagonal metal meshes and their virtual equivalents (computer files), which were installed at the double chiral angle.

Figure 5. Photographs of chiral cylinder (line grid with a period 0.1 mm and angle = 2.5° at $L = 200$). Chiral cylinders (hexagonal mesh, chiral angles 5° and 2.5°), $L = 200$.


Reproduced from Saveljev et al. (2017) with permission.

The photographs of superimposed planar line grids and the corresponding computer files are shown in Figure 6. There can be compared with Figure 5(a),

Figure 6. (a). Photograph of identical planar line grids with a period 0.1 mm and $\alpha = 2.5^\circ$. (b) Computer files for the same conditions. Reproduced from Saveljev et al. (2017) with permission.

Figure 7 models the near-axis moiré effect in the chiral cylinders (a physical model in planar hexagonal meshes and computer files, resp.), as shown in Figures 5(b) and (c).

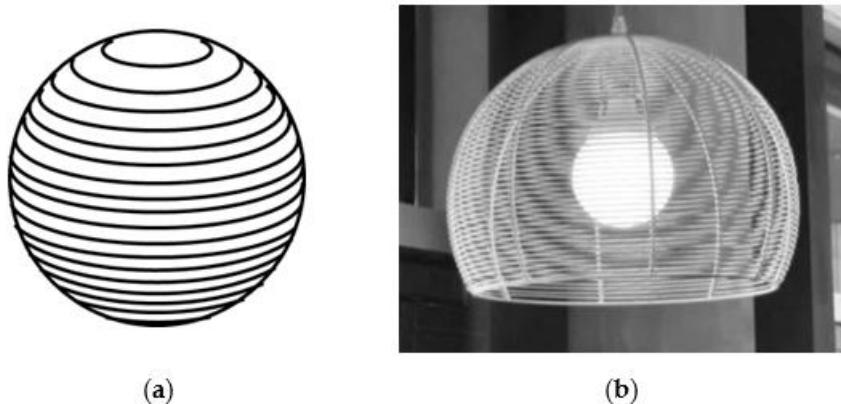


Figure 7. (a) and (b) Photographs of planar coplanar hexagonal grids a period 2.54 mm; angles (double chiral angles) are 10° and 5° . (c), (d) Simulated moiré patterns (superimposed computer files) for the same angles. Re-produced from Saveljev et al. (2017) with permission.

There is almost no visual difference between Figures 5(a) and 6. Compare the experimental photos of the physical model of chiral cylinders in Figures 5(b) and (c) with the photographs of printed line grids and the simulated computer images in Figure 7. Therefore, the moiré patterns near the cylinder's axis can be modeled as planar grids (either a physical model or a computer file) at the double chiral angle. For coplanar grids (Figures 6 and 7), the distance L does not matter.

3.2. Spherical Shell

A 3D moiré can be observed in a spherical shell built from parallels Saveljev (2022). A sketch of such a sphere is shown in Figure 8(a); the visual effect is shown in Figure 8(b).

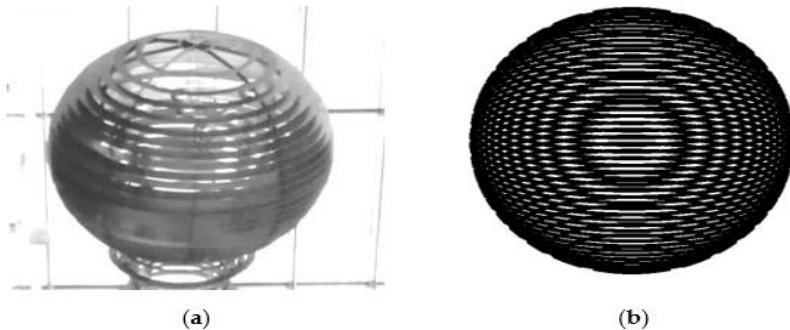


Figure 8. (a) Schematic image of a wired sphere. (b) Moiré effect in sphere (photograph). Reproduced from Saveljev (2022).

In this case, the moiré period changes similarly to the cylinder along the radius; however, it is applied from the center of the sphere symmetrically in any radial direction. In the sphere, the magnification factor μ along the radius follows Eq. (3.116) from Saveljev (2022).

$$\mu_H = \frac{\tilde{L}}{2\cos^2 \alpha} = \frac{1}{2 \frac{R}{L} \cos^2 \alpha} = \frac{1}{\frac{D}{L} \cos^2 \alpha}$$

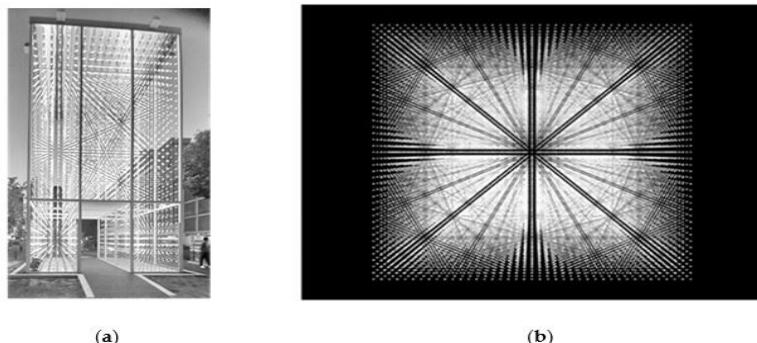

The moiré patterns form concentric circles, as shown in Figure 9(a). The computer simulation of the moiré patterns in the virtual model of the sphere constructed of parallels is shown in Figure 9(b).

Figure 9. Moiré patterns in a sphere made of parallels. (a) Photograph (adapted from Saveljev et al., 2018b) under CC BY-ND 2.0 license). (b) Computer simulation (reproduced from Saveljev, 2022)).

4. MULTILAYERED 3D ARRAY (CUBE)

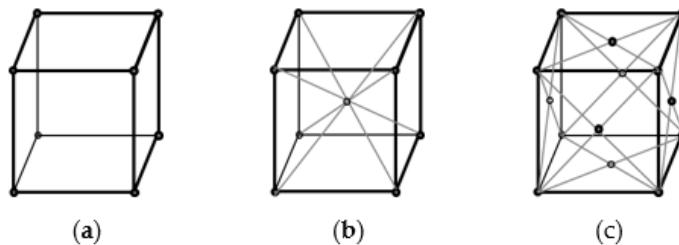

To simulate the moiré effect in volumetric displays, we explored a physical object in a cube observed from a finite distance (Figure 10a), and performed a computer simulation using the interactive module vpython (Vpython, 2020). For instance, there are eight wide corridors near the center of Figure 10(b).

Figure 10. (a) Photograph of the overall layout of the physical object (LED cube). (b) Screenshot of computer simulation with the image of the frontal camera (see Sec 3.1).

Adapted from Saveljev (2023b) with permission.

Along with surfaces, volumetric arrays may also produce the moiré effect Saveljev (2023b). For instance, we investigated the moiré effect in a discrete 3D object – a cube constructed from voxels (spheres of relatively small diameter) located at the nodes of cubic Bravais lattices (simple, body-, and face-centered), see Figure 11.

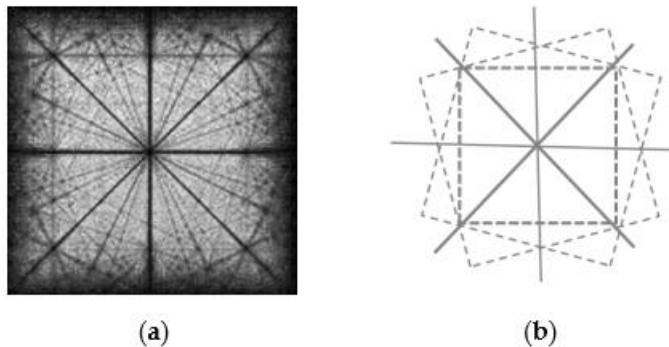
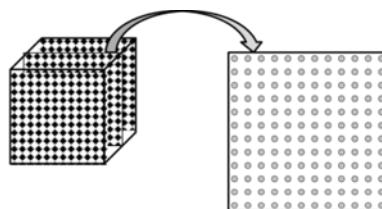


Figure 11. Elementary cells of three cubic Bravais lattices: (a) simple, (b) body-centered, and (c) face-centered

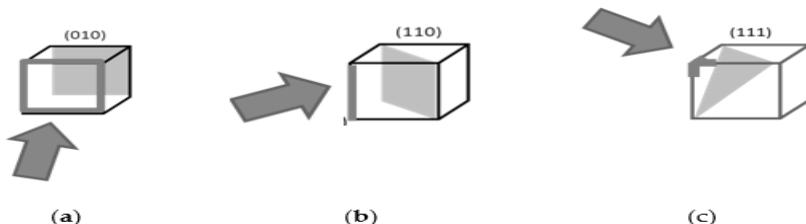
Corridors were observed in 3D cubes Wyatt & Wujanto (2005), Rowe (2012) as well as in the cubic lattice Weisstein (2020). The distinctive angles of the corridors are independent of the lattice constant and the distance to the camera; therefore, the corridors pass through the entire volume of the cube. The widest corridors connect the anchor points (projections of the cube vertices); in the frontal camera; there are also perpendiculars to them. The main (and most noticeable) corridors are shown in Figure 12 for a simple cubic lattice.


Based on the rephrased definition Saveljev (2022) - the moiré effect is the formation of patterns of a longer period caused by a point-by-point interaction (interference) in corresponding points between projections of similar periodic structures of shorter periods and the averaging in the neighborhood of those points - we attribute these corridors to the moiré phenomenon, probably incomplete because of the lack of averaging due to a short distance.

The lattice itself produces the corridors, which have nothing to do with a useful image in a volumetric display. Therefore, in displays, such an undesirable effect (moiré corridors) should be eliminated.

Figure 12. Moiré patterns and main corridors for a simple cubic lattice. Adapted from Saveljev & Heo (2025) under the terms and conditions of the Creative Commons Attribution (CC BY) license.

A volumetric 3D display with static nodes Frances (2013), Lidbeck (2020), Particulate (2020) consists of light sources uniformly distributed in space along three coordinate axes. A volumetric LED cube is a set of square layers (non-twisted, non-coplanar matrices), see Figure 13. It represents a simple cubic lattice.


Figure 13. Multi-layered cube and one layer (square grid). Adapted from Saveljev (2023b) with permission.

The physical display used in this research was a work of art (light sculpture "Pure Water") Light sculpture (2022) shown in Figure 10(a). The size of this physical display is approximately 6.3 x 6.3 x 10.5 m (18 x 18 x 30 LEDs). The voxel period is approximately 33 cm, the size is 3 cm; the distance to the camera was about 10-15 m.

In simulation, identical, identically oriented square layers represent the simple cubic lattice (matrices stacked into a cube).

To simulate the body-centered lattice, a shifted layer was added between the planes, and for the face-centered lattice, two shifted layers (in the plane and between the planes) were added. The typical size of the simulated virtual object was 20x20x20 voxels; the voxel radius was about one-tenth the distance between them. Sometimes, we increased or decreased (the size of the cube in voxels), but the minimum thickness was 4 voxels (otherwise, the corridors do not appear).

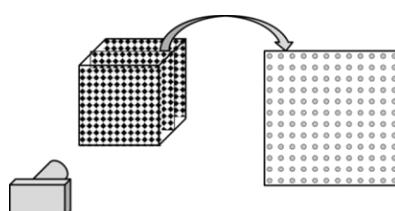
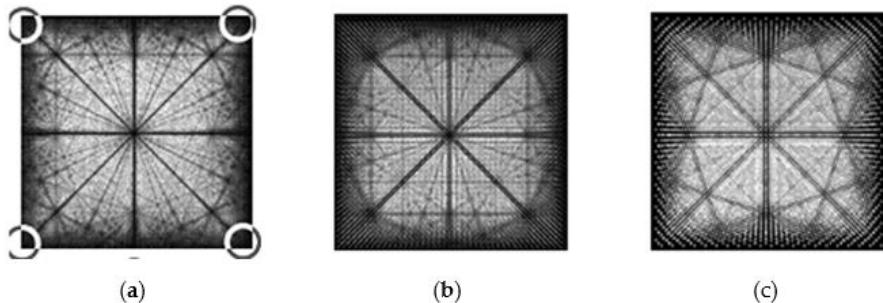
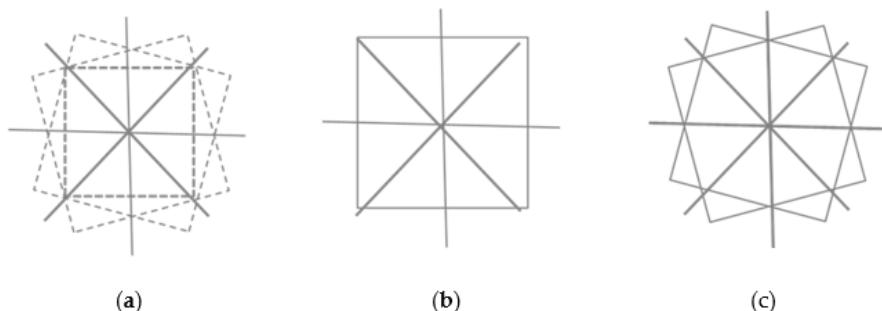

The visual effect was considered for three camera positions: the camera facing the cube's face, the edge, and the vertex. The axes of all cameras point to the cube's center. The cameras and the crystallographic planes Giacovazzo et al. (1992) perpendicular to the camera axes are shown in Figure 14.

Figure 14. Three virtual cameras (indicated by arrow): (a) frontal camera, (b) edge camera, and (c) vertex camera. The Miller indices (Giacovazzo et al., 1992) of the crystallographic planes are shown. The face, edge, and vertex closest to the camera are highlighted. Reproduced from Saveljev & Heo (2025) under the terms and conditions of the Creative Commons Attribution (CC BY) license.

4.1 Moiré Patterns in Frontal Camera


The frontal camera with the axis perpendicular to the face of the cube is shown in Figure 15.


Figure 15. Frontal camera, multi-layered cube, and one layer (square grid).

Reproduced from Saveljev (2023b) with permission.

The planes perpendicular to the camera axis are parallel to the crystallographic plane (010). Each layer is a square grid. The observed moiré patterns and the basic structure of main corridors are shown in Figures 16 and 17. The vertices of the cube closest to the camera are marked in Figure 16(a) with circles.

Figure 16. Moiré patterns of the front camera in simple, body-, and face-centered cubic lattices. Distinctive angles of main corridors and their tangents: 45° , 26.6° , 18.4° ; $1/1$, $1/2$, $1/3$. Adapted from Saveljev & Heo (2025) under the terms and conditions of the Creative Commons Attribution (CC BY) license.

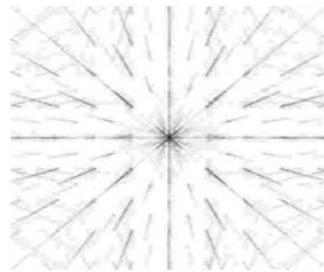
Figure 17. Main moiré corridors in the cube. Reproduced from Saveljev & Heo (2025) under the terms and conditions of the Creative Commons Attribution (CC BY) license.

In the camera image, the main corridors are the radial rays with following distinctive angles Saveljev (2023b),

$$\varphi_{FACE} = \arctan \frac{p}{q} \quad (7)$$

Note that these angles only depend on the running integer numbers, but not on the distance or the lattice constant.

The radial corridors that start at the origin lie at the same angle in any layer; their structure is repeated in any layer, and thus the corridors “penetrate” through the volume of the cube. There-fore, the visual picture does not depend on lateral displacement; the overall visual appearance (cor-ridors, angles between them, their relative positions, etc.) remains unchanged. The overlapped lay-ers exhibit a distinct visual structure because the distinctive angles are independent of the geomet-ric parameters.


There are also perpendiculars to the angles (7) that can be treated as non-radial corridors; these pass through other anchor points at the same angles, except the origin. As a result, we have several families of radial lines with rational tangents crossing the origin, plus the non-radial lines crossing anchor points.

The rise in moiré patterns can be schematically explained as follows. Due to differences in the apparent sizes of the layers, the voxel projections are grouped (clustered) and therefore arranged denser and sparser, as shown in Figure 18. The moiré patterns in a cube form “corridors” with dif-ferent visual densities. A small difference in the apparent size of layers is enough to cause moiré patterns to clearly appear in a multi-layered 3D lattice. This effect is essentially multilayered and disappears when the number of layers is small.

Figure 18. How moiré corridors appear.

The 2D spectrum (Fourier transform) of the frontal image is shown in Figure 19, where the ra-dial line segments are clearly recognizable.

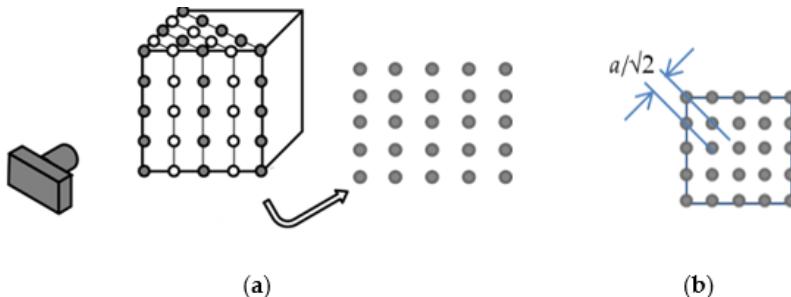


Figure 19. Fourier transform of image of frontal camera. Reproduced from Saveljev (2023b) with permission.

One may find a certain similarity between Figure 19 and the spectral trajectories Saveljev & Kim (2012, 2013) for running ρ (Figure 1(b)), i.e., changed scale. The overall structure of the Fourier transform in Figure 19 is similar to the radial moiré corridors in Figures 16 and 18.

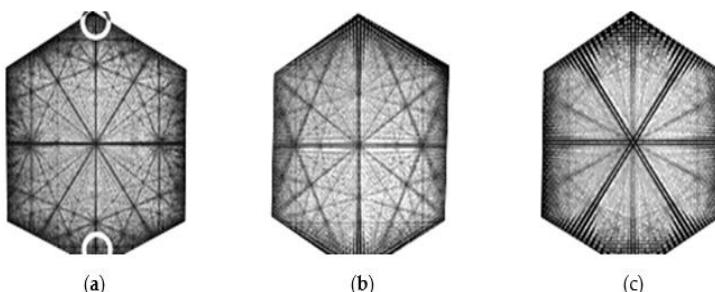
4.2 Edge Camera

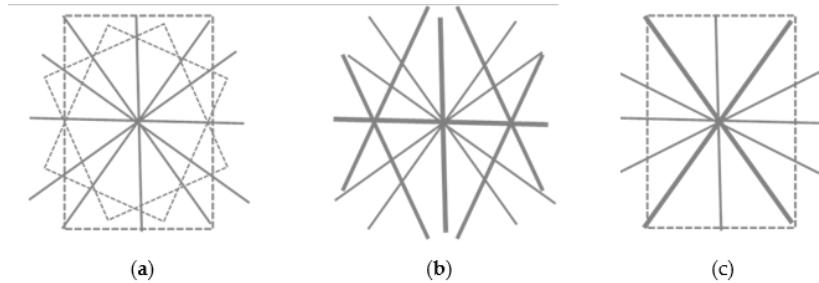
The axis of the edge camera is perpendicular to the edge and points toward the cube's center. The layer and voxels layout is shown in Figure 20.

Figure 20. Voxels and layers of the edge camera. (Schematic, not a projection.) One layer (camera view) is shown in (a), top view in (b). Adapted from Saveljev (2023b) with permission.

The layers (planes perpendicular to the camera's axis) are parallel to the crystallographic plane (110). The interlayer distance is $a\sqrt{2}/2$ (Figure 20(left)).

The visible vertical and horizontal intervals between voxels in (110) are as follows: the interval a in the vertical direction and $a\sqrt{2}$ in the horizontal direction, as shown in Figure 20 (right). Thus, each plane perpendicular to the camera axis is a rectangular grid with an aspect ratio of $\sqrt{2}$. The “phase” of the neighboring planes is opposite (the phase difference is π).


Compared to the distance to the camera, the interlayer distance is relatively small, and therefore, to understand the visual effect, we can approximately merge the pairs of layers (two adjacent layers) into a single rectangular grid with an aspect ratio of $\sqrt{2}/2$ and the double interlayer distance of $a\sqrt{2}$, see Figure 21.

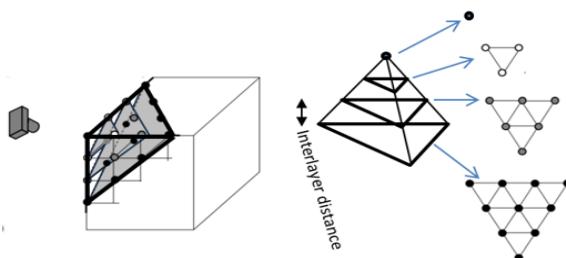

Figure 21. Two visually merged successive layers (scheme)

As a result, the approximate effective layout is a set of rectangular grids with an aspect ratio of $\sqrt{2}$. The interlayer distance between pairs is $a\sqrt{2}$. (One side is a , the other $a/\sqrt{2}$ vertically and $a/\sqrt{2}$ horizontally).

The structure of such paired layers is the same at any distance, and thus, the corridors also penetrate through the cube, as shown in Figure 22.

Figure 22. Moiré patterns of the camera opposite the edge for the three types of cubic lattices, as in Figure 16. Distinctive angles and their tangents: 35.3° , 25.2° , 19.5° , $\sqrt{2}/2$, $\sqrt{2}/3$, $\sqrt{2}/4$. Adapted from Saveljev & Heo (2025) under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Figure 23. Main moiré corridors in the edge camera. Reproduced from Saveljev & Heo (2025) under the terms and conditions of the Creative Commons Attribution (CC BY) license.


The corridor structures in the frontal and edge cameras near the origin are quite similar. The major difference between the images of the two cameras is in the “squeezed” angles of the edge camera,

$$\varphi = \arctan \frac{1}{\sqrt{2}} \frac{p}{q} \quad (8)$$

The non-radial corridors are no longer perpendicular to the radial ones.

4.3 Vertex Camera

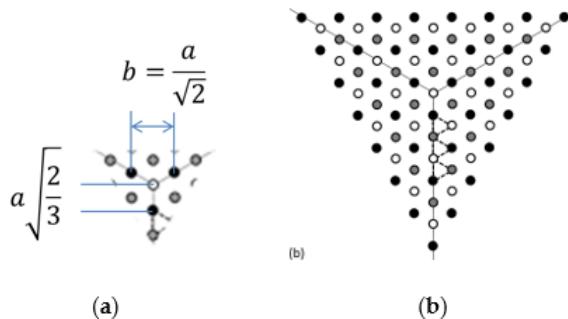
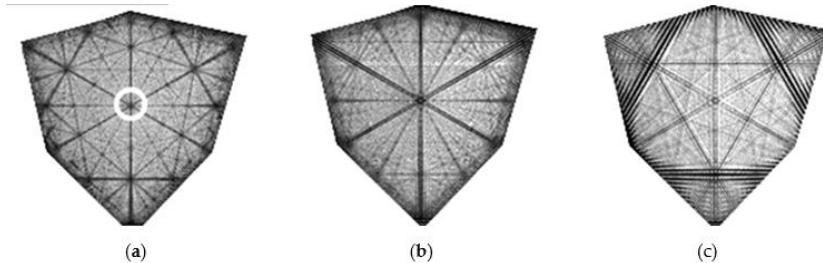

The vertex camera is located on the cube’s space diagonal. The planes perpendicular to the camera axis are parallel to the plane (111), as shown in Figure 24.

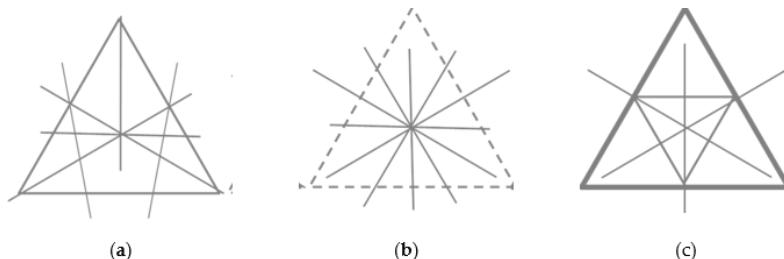
Figure 24. Voxels and layers of vertex camera. (b) Visual picture of a triplet consisting of three successive layers (from 6th to 9th). Several elemental triangles show the structure. Adapted from Saveljev (2023b) with per-mission.

Here, the corridors differ significantly from the two previous cases because of non-orthogonal layout of planes. The planes perpendicular to the camera axis near the vertex comprise Pascal's pyramid (Pascal's tetrahedron) Duczek et al. (2016), Pascal's pyramid (2020). Each layer of Pascal's pyramid is a triangular grid with the side of the triangle of $a\sqrt{2}$, where a is the lattice constant.

In this camera, the cross-sections can be considered by triplets with the phases differing by one-third of the period (a phase difference of $2\pi/3$). For the visual effect, three merged successive layers can be approximately thought of as a triangular grid with a reduced side of $a\sqrt{2}/\sqrt{3}$ (as compared to the single cross-section) in the plane (111). The schematic picture is shown in Figure 25.


Figure 25. Scheme of three successive layers: layers 1-3, layers 6-8. Adapted from Saveljev (2023b) with permission.

Similar to the edge camera, the above representation is approximately valid for the visual observation and simulation (= central projection). Then, the distinctive angles defined by triplets are identical. This means that in the vertex camera, as in the two previous cameras, the corridors also “penetrate” through the cube, however at different angles. In the regular triangular grid, the distinctive angles are $\arctan(\sqrt{3}/3)$, $\arctan(\sqrt{3}/5)$, $\arctan(\sqrt{3}/7)$, etc., i.e., 30° , 19.11° , 13.90° , etc. Therefore, the angles of the corridors are,


$$\varphi = \arctan \frac{2s+1}{\sqrt{3}} \quad (9)$$

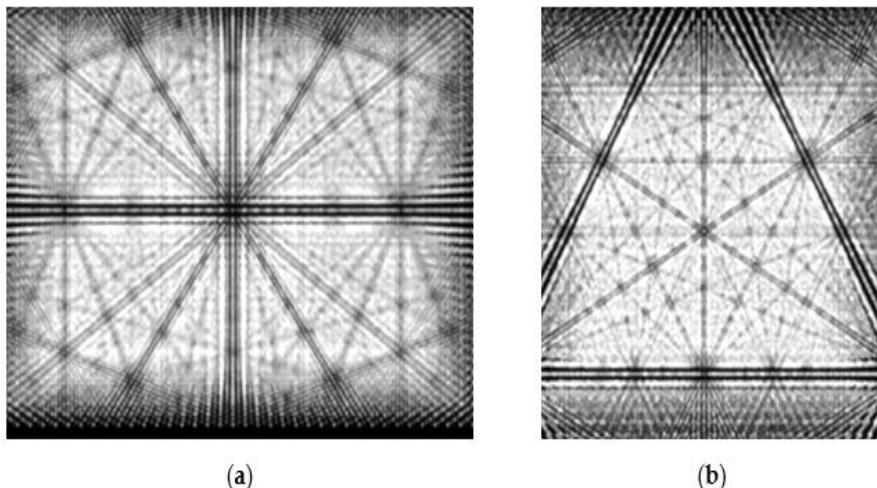
where $s = 1, 2, \dots$

The exact angle of 30° gives rise to the triangular/hexagonal symmetry, see Figure 26. The general trend maintains: the repeated nodes on wider bands, with narrower bands connecting these and the intermediate nodes.

Figure 26. Moiré corridors of the camera opposite the vertex for three types of cubic lattices, as in Figure 16. Distinctive angles: $30^\circ, 19.1^\circ, 13.9^\circ; \sqrt{3}/3, \sqrt{3}/5, \sqrt{3}/7$. Adapted from Saveljev & Heo (2025) under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Figure 27. Main moiré corridors. Reproduced from Saveljev & Heo (2025) under the terms and conditions of the Creative Commons Attribution (CC BY) license

5. DISCUSSION


In real layered displays, moiré waves with a 4th (and sometimes even a 5th) harmonic can be observed. The number of trajectories to be analyzed (a square number of components) is much higher than in the sinusoidal case. Thus, the simulation should be organized effectively.

Identical moiré periods were observed in planar hexagonal grids and in the chiral cylinders near the axis. This allows the moiré effect in chiral nanoparticles to be modeled using coplanar macroscopic bodies or by computer simulation. The physical model provides the experimental evidence; the computer simulation provides clear images of the moiré patterns.

The moiré effect in MWNTs can also be simulated in a similar manner, treating the relative layer spacing as a small parameter.

The conditions for the moiré fringes to appear in the cubic lattice are: identical layers with identical spatial orientation (non-twist), with the voxel size $\sqrt{2}$ times smaller than the period, over four layers. In particular, to reduce moiré patterns in a volumetric 3D cube, the voxel diameter should be increased. (However, to observe the voxels with a larger diameter, the observation distance should be increased.)

The moiré effect in the cube can be simulated in a parallelepiped with the same camera axis but a different voxel layout across the layers. Namely, the layers of the frontal camera remain un-changed. However, the layers of the edge camera form a parallelepiped with an aspect ratio of $\sqrt{2}$, the interlayer distance $a/\sqrt{2}$, and interlaced layers (phases 0 and π) can model the layers of the edge camera. Similarly, the layers of the vertex camera form a parallelepiped with a triangular grid, with sides of $a\sqrt{2}$, the interlayer distance of $a/2$, and interlaced triplets of layers (phases 0, $\pi/3$, and $2\pi/3$). The results of the simulation of two cameras in the alternative (rectangular) layout are shown in Figure 28 and are similar to those presented in Sec. 3.

Figure 28. Moiré corridors of the two cameras obtained in the alternative layer layouts.

The main corridors observed in the basic layout (the same cube but different camera axes), see Figures 22(a), 26(a) and in the alternative layouts (the parallelepiped with different layers but the same camera) are almost identical. The differences are of little significance.

CONCLUSION

We demonstrated the combined simulation in three cases.

The parallel computer simulation and physical experiment layers ensure the minimization of the extended limited spectrum. The parameters of the moiré waves were measured semi-automatically in a simulation. The simulation tool is controlled interactively. The typical normalized RMS deviation between experiment and theory is 3-5%.

The moiré patterns can be observed in the chiral nanotubes at a large observer distance when m is greater than 10. The near-axis moiré effect in nanoparticles can be effectively modeled by macroscopic meshed bodies (planar printed grids or perforated metal ones) or computer files. The results can be applied to the moiré effect in meshed cylinders in general and to chiral nanoparticles in particular, for instance, to the measurement of chiral indices based on moiré images.

The moiré effect was investigated in a multi-layered simple cubic lattice using three cameras (directions [010], [110], and [111]). The moiré corridors were observed in simulation and in a physical volumetric display. The conditions for the appearance of moiré patterns were formulated. The corridors cross the anchor points at distinctive angles, which tangents in the three cameras are related as $1:\sqrt{2}:\sqrt{3}$. These properties are observed in all three types of cubic lattices. (The corridors in the body- and face-centered lattices generally follow a simple lattice, but differ in width.) This research provides direct observation of the moiré effect in crystallographic planes, which can be useful in crystallography. The results can be used to minimize the moiré effect in volumetric 3D displays with fixed voxel positions, such as static LEDs.

REFERENCES

Aleksa, A., Petrauskienė, V. & Ragulskis, M. (2011). Stochastic Time-Averaged Moiré Fringes. Wolfram Demon-strations Project. Demonstrations. wolfram.com/StochasticTimeAveragedMoiréFringes/

Amidror, I. (2009). The Theory of the Moiré Phenomenon, Vol. I: Periodic Layers (2nd ed.). Springer-Verlag, London.

Arroyo-Gascón, O., Fernández-Perea, R., Suárez Morell, E., Cabrillo, C. & Chico, L. (2023). Universality of moiré physics in collapsed chiral carbon nanotubes. *Carbon*, 205, 394-401.

Ascrizzi, E., Goniakowski, J., Yang, J., Agnoli, S. & Ferrari, A.M. (2024). DFT study of the moiré pattern of FeO monolayer on Au(111). *Phys. Chem. Chem. Phys.*, 29, 20103–20111.

Bell, G., Craig, R. & Simmiss, T. (2007). Moiré interference in multilayered displays. *J. Soc. Inf. Disp.*, 15(11), 883–888.

Bryngdahl, O. (1974). Moiré: Formation and interpretation. *J. Opt. Soc. Am.*, 64, 1287–1294.

Byun, S.-J., Byun, S.Y., Lee, J., Kim, W.M., Kim, H.-P., Jeon, M.Y. & Lee, T.-S. (2014). An efficient simulation and analysis method of moiré patterns in display systems. *Opt. Express*, 22(3), 3128-3136.

Buytaert, J.A.N., Ribbens, B., Vanlanduit, S. & Dirckx, J.J.J. (2012). Aberration-free moiré profilometry—Analysis, simulation and implementation of the optimal setup geometry. *Opt. Laser Eng.*, 50(8), 1119-1129.

Cadarso, V.J., Chosson, S., Sidler, K., Hersch, R..D. & Brugger, J. (2013). High-resolution 1D moirés as counterfeit security features. *Light Sci. Appl.*, 2, e86.

Duczek, S., Duvigneau, F., Gabbert, U. (2016). The finite cell method for tetrahedral meshes. *Finite Elem. Anal. Des.*, 121, 18–24.

Frances, H. (2013). Kaleidoscope of possibility. <https://architecturenow.co.nz/articles/kaleidoscope-of-possibility/>

Fukano, K., Yura, T. & Takaki, Y. (2025). Moiré reduction technique for near-virtual-image-mode light field displays via aperture array modification. *Appl. Sci.*, 15(20), 11031.

Giacovazzo, C., Monaco, H.L., Artioli, G., Viterbo, D., Ferraris, G., Gilli, G., Zanotti, G. & Catti, M. (1992). Fundamentals of Crystallography, 2nd ed., Oxford University.

Guo, C., Zhang, Q., Ji, J., Yang, L. & Xie, H. (2022). Moiré fringes simulation in liquid crystal display. *Acta Opt. Sin.*, 42(20), 2012004.

He, M., Xu, Z., Shang, D., Zhang, X., Zhang, H., Li, D., Jiang, H., Kauppinen, E. & Ding, F. (2019). Is there chiral correlation between graphitic layers in double-wall carbon nanotubes? *Carbon*, 144, 147-151.

Hennighausen, Z. & Kar, S. (2021). Twistrronics: A turning point in 2D quantum materials. *Electron. Struct.*, 3, 014004

Hsu, B. (2018). Moiré pattern simulator. <https://github.com/BogiHsu/Moire-Pattern-Simulator>

Jeong, H.I., Choi, S.Y. & Jeong, Y.J. (2019). Measurement of moiré patterns in 3D display. *Proc. IDW*, vol. 26 (pp. 986-988).

Joo, B.-Y. & Shin, D.-H. (2009). Simulations of pixel moirés in the liquid crystal display with image processing technique. *Displays*, 30(4–5), 190-194.

Joo, B.-Y. & Ko, J.-H. (2014). Simulation study on the minimization of moiré patterns caused by microlens array films for backlight applications. *J. Opt. Soc. Korea*, 18(5), 538-545.

Kafri, O. & Glatt, I. (1990). The Physics of Moiré Metrology. Wiley and Sons: New York, NY, USA.

Kim, Y., Park, G., Jung, J.-H., Kim, J. & Lee, B. (2009). Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array. *Appl. Opt.*, 48(11), 2178-2187.

Konevtsova, O.V., Roshal, D.S. & Rochal, S.B. (2022). Moiré patterns and carbon nanotube sorting. *Nano Fu-tures*, 6, 015005.

Kong, L., Jin, G. & Wang, T. (2013). Analysis of moiré minimization in autostereoscopic parallax displays. *Opt. Express*, 21(22), 26068–26079.

Latychevskaia, T., Escher, C. & Fink, H.-W. (2019). Moiré structures in twisted bilayer graphene studied by transmission electron microscopy. *Ultramicroscopy*, 197, 46-52.

Lee, B., Park, S.-G., Hong, K. & Hong, J. (2016). Design and Implementation of Autostereoscopic Displays. SPIE, Bellingham, Washington.

Li, K., Zhou, Y., Pan, D., Ma, X., Ma, H., Liang, H., Zhou, J. (2018). Global control of colored moiré pattern in layered optical structures. Opt. Comm., 414, 154-159.

Lidbeck, J. (2020). Euclid's (zero-gravity) orchard. <https://www.flickr.com/photos/jondissed/37799943964>

Light sculpture Pure water (2022). Yuseong News, 192, p. 9, <http://pdf.yuseongnews.co.kr/192/19201.pdf>.

Mol, F. (2012). Simulating TV moiré pattern. <https://creativecow.net/forums/thread/simulating-tv-moire-pattern/>

Particulate, Sketches. (2020). <https://vimeo.com/81991904>

Patorski, K. & Kujawinska, M. (1993). Handbook of the Moiré Fringe Technique. Elsevier: London, UK.

Pascal's pyramid (2020). Available online: https://en.wikipedia.org/wiki/Pascal%27s_pyramid

Post, D., Han, B. & Ifju, P. (1994). High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials. Springer: New York, NY, USA.

Qi, W., Yu, X., Li, X. & Kang, S. (2024). A moiré removal method based on peak filtering and image enhancement. Mathematics, 12(6), 846.

Ren, W., Zhu, Z., Zhang, X., Luskin, M. & Wang, K. (2025). Review: moiré-of-moiré superlattice in twisted trilayer graphene. J. Phys.: Condens. Matter, 37, 353001.

Rowe, A. (2012). Within an ocean of light: creating volumetric lightscapes. Leonardo, 45, 358–365.

Sadan, M.B., Houben, L., Enyashin, A.N., Seifert, G. & Tenne, R. (2008). Atom by atom: HRTEM insights into inorganic nanotubes and fullerene-like structures. PNAS, 105, 15643–15648 () .

Saunoriene, L., Saunoris, M. & Ragulskis, M. (2023). Image hiding in stochastic geometric moiré gratings. Mathematics, 11(8), 1763.

Sciammarella, C.A. & Chiang, F.-P. (1968). Gap effect on moiré patterns. ZAMP, 19, 326–333.

Saveljev, V. & Kim, S.-K. (2010). Simulation of moiré effect in 3D displays. J. Opt. Soc. Korea, 14, 310-315.

Saveljev, V. & Kim, S.-K. (2011). Simulation and measurement of moiré patterns at finite distance. *Opt. Express*, 20, 2163-2177.

Saveljev V. & Kim S.-K. (2012). Estimation of moiré patterns using spectral trajectories in the complex plane. *CTA*, 3, 353-360

Saveljev V. & Kim S.-K. (2013). Theoretical estimation of moiré effect using spectral trajectories. *Opt. Express*, 1693-1712.

Saveljev, V. & Kim, S.-K. (2014a). Computer simulation of moiré waves in autostereoscopic displays basing on spectral trajectories. *Proc. SPIE*, 9117, 91170W, Baltimore, MD, USA.

Saveljev V. & Kim S.-K. (2014b). Experimental observation of moiré angles in parallax barrier 3D displays. *Opt. Express*, 22, 17147-17157

Saveljev, V., Lee, H. & Kim, J. (2017). Physical model of the moiré effect in cylindrical structures. *J. Korean Phys. Soc.*, 71, 934-945.

Saveljev, V. (2016). Moiré effect in cylindrical objects. *J Korean Phys. Soc.*, 68, 9, 1075-1082.

Saveljev, V. (2018a). Moiré effect in 3D structures. In Yurish, S.Y. (Ed.), *Advances in Optics: Reviews* (vol. 1, pp. 61-93). Barcelona, Spain: International Frequency Sensor Association Publishing.

Saveljev, V.; Kim, S.-K.; Kim, J. (2018b) Moiré effect in displays: a tutorial. *Opt. Eng.*, 57(3), 030803.

Saveljev, V., Son, J.-Y., Kim, Y., Park, J.-G. & Heo, G. (2020a). Moiré patterns in non-parallel surfaces such as prism. *JOSA A*, 37(2), 336-345.

Saveljev, V., Han, W., Lee, H., Kim, J. & Kim, J. (2020b). Moiré effect in double-layered coaxial cylinders. *Appl. Opt.*, 59(18), 5596-5607.

Saveljev, V. (2022). *The Geometry of the Moiré Effect in One, Two, and Three Dimensions*, Cambridge Scholars: Newcastle Upon Tyne, UK.

Saveljev, V. (2023a). The off-axis moiré effect in double-layered cylinder. *J. Mod. Opt.*, 70(1), 39-51.

Saveljev, V. (2023b). Moiré effect in multilayered 3D lattice. *Appl. Opt.*, 62, 2792-2799.

Saveljev V. & Heo, G. (2024). Moiré effect in combined planar and curved objects. *JOSA A*, 41(10), 1884-1892.

Saveljev V. & Heo, G. (2025). Simulation of the moiré effect in cubic Bravais lattices. Proc. 11th International Congress on Global Practice of Multidisciplinary Scientific Studies (pp. 1531-1535), Munich, Germany.

Sciammarella, C.A. (1982). The moiré method—A review. *Exp. Mech.*, 22, 418–433.

Soejima, T., Parker, D.E., Bultinck, N., Hauschild, J. & Zaletel, M.P. (2020). Efficient simulation of moiré materials using the density matrix renormalization group. *Phys. Rev. B*, 102, 205111.

Stephens, T. (2017). Moiré pattern simulator. Hollen Lab. Available online: <https://unh2d.weebly.com/moire-pattern-simulator.html>

Su, Y., Wang, Z. & An, D. (2021). Simulation of moiré pattern based on transmittance calculation of LCD metal mesh touch panel. *J. Soc. Inf. Disp.*, 29, 620–631.

Suenaga, K., Wakabayashi, H., Koshino, M., Sato, Y., Urita, K. & Iijima, S. (2007). Imaging active topological defects in carbon nanotubes. *Nat. Nanotechno.*, 2 (6): 358.

Tang, Y., Li, L., Li, T., Xu, Y., Liu, S., Barmak, K., Watanabe, K., Taniguchi, T., MacDonald, A.H., Shan, J. & Mak, K.F. (2020). Simulation of Hubbard model physics in WSe₂/WS₂ moiré superlattices. *Nature*, 579, 353–358.

Theocaris, P.S. (1969). *Moiré Fringes in Strain Analysis*. Pergamon Press: London, UK.

Tu, J.F. (2018). TEM nano-moiré pattern analysis of a copper/single walled carbon nanotube nanocomposite synthesized by laser surface implanting. *C*, 4(1), 19.

Vpython. (2020) <https://vpython.org/>.

Wang, S., Song, J., Sun, M. & Cao, S. (2023). Emerging characteristics and properties of moiré materials. *Na-nomaterials*, 13(21), 2881.

Warner, J.H., Young, N.P., Kirkland, A.I. & Briggs, G.A.D. (2011). Resolving strain in carbon nanotubes at the atomic level. *Nat. Mater.*, 10, 958–962.

Wegdam, A.M., Podzimek, O. & Hallie, H. (1992). Projection moiré system simulation. *Appl. Opt.*, 31(19), 3755-3758.

Weisstein, E. W. (2020). Cubic lattice. MathWorld – A Wolfram Web Resource. <https://mathworld.wolfram.com/CubicLattice.html>

Wittemeier, N., Verstraete, M.J., Ordejon, P. & Zanolli, Z. (2022). Interference effects in one-dimensional moiré crystals. *Carbon*, 186, 416-422.

Wu, D., Pan, Y. & Min, T. (2020). Twistrionics in graphene, from transfer assembly to epitaxy. *Appl. Sci.*, 10(14), 4690.

Wyatt, D. & Wujanto, L. (2005). A volumetric 3D LED display. MIT 6.111: Introductory Digital Systems La-boratory (Final project report).

Xia, X., Zhuang, X., He, H., Wu, X., Zheng H. & Yu, Y. (2025). Moiré-free and high-resolution light field 3D display based on random parallax barrier. *J. Phys. Photonics*, 7, 035009.

Xie, X., Hong, Y., Shao, X., Guo, Z., Lei, Z., Xu, Z., Jing, W., Min, H. & Xu, S. (2018). Moiré research and simulation of OGS metal mesh touch sensor. *SID Digest*, 1889- 1892.

Xu, P., Qi, D., Schoelz, J.K.: Thompson, J., Thibado, P.M., , Wheeler, V.D., Nyakiti, L.O., Myers-Ward, R.L., Eddy Jr., C.R., Gaskill, D.K., Neek-Amal, M. & Peeters, F.M. (2014). Multilayer graphene, moiré patterns, grain boundaries and defects identified by scanning tunneling microscopy on the m-plane, non-polar surface of SiC. *Carbon*, 80, 75-81.

Yurlov, V., Kim, T.Y., Han, K., Yu, N.E., Kim, Y.-J. & Pournoury, M. (2018). Visibility minimization of the moiré pattern on a display screen by optimizing geometrical parameters using an F/θ plot. *JOSA B*, 35(10), 2562-2573.

ISBN: 978-625-93102-4-4