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PREFACE

This book brings together a diverse yet interconnected set of studies
that reflect the growing convergence of computer science, data analytics, and
real-world societal needs. The chapters collectively highlight how advanced
computational methods are being applied across domains such as intelligent
commerce, healthcare, mental health, cloud infrastructure, and digital
simulation.

Beginning with multilingual sentiment analysis for intelligent product
recommendations, the book explores how language technologies and
artificial intelligence can enhance user-centric decision-making in global
markets. The focus then shifts to mental health informatics in Algeria,
offering an interdisciplinary perspective that bridges psychiatry and
computer science to address locally grounded yet globally relevant
healthcare challenges. Complementing this, the chapter on machine learning
for healthcare prediction demonstrates the potential of data-driven models to
support early diagnosis, risk assessment, and informed clinical decisions.

The technical foundations enabling these applications are further
examined in the chapter on cloud computing and distributed systems, which
discusses scalable, efficient infrastructures essential for modern data-
intensive solutions. Finally, the book concludes with an advanced study on
the combined physical and computational simulation of the moiré effect in
3D objects and displays, illustrating the role of simulation and modeling in
solving complex visual and engineering problems.

Together, these chapters offer readers a concise yet comprehensive
view of contemporary research at the intersection of computation,
innovation, and societal impact, making the book a valuable resource for
researchers, practitioners, and students alike.

Editorial Team
January 19, 2026
Tiirkiye
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CHAPTER 1
MULTILINGUAL SENTIMENT ANALYSIS FOR
INTELLIGENT PRODUCT RECOMMENDATIONS

Dr. Tejaswi Potluri

WNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India,
tejaswi_p@vnrvjiet.in, ORCID ID: 0000-0003-3384-6507
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INTRODUCTION

Businesses are increasingly utilizing cutting-edge technologies to
improve client experiences and optimize their services in today's quickly
changing digital market.Multilingual Sentiment Analysis is a cutting-edge field
of study and application that enables companies to comprehend and analyze
client feelings in a variety of languages.Businesses may better understand client
emotions by integrating multilingual sentiment analysis with intelligent product
recommendations, which also makes it easier to give highly tailored and
contextually relevant product recommendations.The Flask and Python-created
Multilingual Sentiment Analysis-based E-commerce Website provides a wide
selection of products together with detailed information such as name, price,
and user reviews.Sentiment analysis provides a sentiment score based on user
comments for every product, enabling customers to make well-informed
decisions.The website's most notable feature is its backend translation of user
evaluations, which allows it to function in over 12 languages, including

English, Hindi, Telugu, and French. This inclusion promotes interaction
across linguistic barriers by guaranteeing accessibility for a worldwide
audience.

The user experience is improved by features like sentiment score-based
dynamic sorting, category filters, and product name search.Combining
multilingual support with cutting-edge sentiment analysis techniques seeks to
create a user-centric e-commerce platform that accommodates a wide range of
language preferences around the globe. The website aims to maximize
customer pleasure and engagement by providing tailored experiences and
streamlining decision-making processes.By prioritizing comprehension and
utilization of client feeling, the initiative aims to overcome linguistic obstacles
and establish a smooth and uninterrupted purchasing encounter.The platform
seeks to establish itself as a reliable e-commerce destination by giving priority
to customer comments and preferences. This approach is intended to cultivate
trust and loyalty among its global user base.

The Flask and Python-powered mSA-powered e-commerce website
caters to a diverse clientele with Product Specifications that include details like
Name, Price, and User Reviews.
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The website stands out for its multilingual support, which translates user
reviews from actual users on the backend into 12 other languages, including
English, Hindi, Telugu, and French. Such a broad language appeal's universal
accessibility fosters communication beyond acknowledged linguistic
boundaries and increases audience engagement on a worldwide scale.

The following features enhance the user experience: category filters,
product title searches, and emotion score sorting for results. Owing to the
multilingual supplemental feature and sophisticated sentiment analysis
combined with the advantages of the user-focused e-commerce platform, this
combination provides a worldwide service that caters to a variety of linguistic
needs. The directory website will assist in enabling quick and customized
decision-making, providing consumers with an engaging and pleasant
experience.

By employing this mindset, the project helps clients comprehend
consumer psychology and creates an impenetrable barrier against any linguistic
or dialectal barriers that would prevent them from shopping. By continuously
improving based on customer comments and preferences, the e-commerce
platform hopes to establish itself as a reliable destination for all things e-
commerce. The users worldwide are encouraged to trust and stick with this.

1. LITERATURE REVIEW

Product Recommendation System from Users' Reviews using Sentiment
Analysis [2019]:

Using this approach, the initiative builds an impenetrable barrier against
any linguistic or dialectal barriers that would discourage clients from buying
and aids in their understanding of consumer psychology. The e-commerce
platform wants to become known as a trustworthy resource for everything
related to e-commerce, thus it will be constantly improving in response to
feedback and requests from customers. Users everywhere are urged to have
faith in and persevere with this. Additionally, this system enables more
personalized and accurate product recommendations by analyzing user
sentiments across diverse languages. By continuously learning from user
interactions, the platform adapts to changing expectations and market trends.
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Drawbacks

Its potential to misrepresent the subtleties of user sentiment and context,
to favor well-liked products with a higher number of reviews, and to fail to take
into consideration individual variances in preferences and tastes are some of its
limitations.

Deep Learning Based Product Recommendation System and its
Applications [2021]:

This investigation made use of The Visual Similarity Method To extract
characteristics from photos, a pre-trained Convolutional Neural Network
(CNN), namely VGG16, is employed.The nearly 5,000 photos in the Deep
Fashion Database have been gathered and categorized.makes effective use of
transfer learning to extract features from photos.uses cosine similarity and
visual similarity to provide precise suggestions.

Drawbacks

The fact that training deep learning models like VGG16 can be time and
computationally-intensive is a drawback. The system makes a lot of its product
recommendations based on image data.The online application is mentioned in
passing in the article, but user input, usability testing, or user-centric design
concerns are not included.

A comparative study of machine translation for multilingual sentence-
level sentiment analysis [2020]:

assesses and contrasts the sentiment analysis techniques currently in use
for various languages.offers a basic method for multilingual sentiment analysis
that works well.encourages the application of machine translation to enhance
sentiment analysis across languages. Support Vector Machines (SVM), Naive
Bayes, Random Forest, Cross-Lingual Adaptation, Rule-Based

Approaches, and Performance Metrics are all used.

Drawbacks

Might not sufficiently handle subtleties unique to a given
language.Depending on the language and situation, the baseline approach's
efficacy may change.
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Deep Learning Approaches for Multilingual Sentiment Analysis on
Social Media Data [2021]:

Deep learning techniques have demonstrated potential in enhancing the
precision and effectiveness of multilingual sentiment analysis on social media
information, which can be helpful for a range of purposes including customer
service, politics, and marketing. Attention-based models, BiLSTM-CNN
Double BiLSTM, and SAEKCS (a CNN-based architecture)

Drawbacks

Large guantities of labeled data are needed for deep learning techniques,
which can be computationally costly and may not always be available for all
languages and topics. Furthermore, deep learning models might not always be
easy to understand or offer a clear explanation for their predictions.

Machine learning based customer sentiment analysis for recommending
shoppers, shops based on customers’ review:

Comparing the suggested method against other methods now in use, the
mean absolute error (94%) is lower and accuracy is higher. Minimal variance
in the MSE score is another powerful sign of excellent precision and
accuracy.The technigues are regression-based classification, feature extraction,
and feature selection using Chi-squared testing. The experiment's dataset was
compiled from multiple publicly accessible data sources. Fifty thousand
customer review records.When compared to other methods already in use, the
suggested strategy has a greater accuracy and mean absolute error (94%)
percentage. The MSE score demonstrated negligible variance, which is yet
another potent sign of excellent accuracy and precision.

Drawbacks

The paper does not compare the suggested strategy with other cutting-
edge techniques for customer sentiment analysis, nor does it offer a thorough
explanation of the dataset.

2. EXISTING SYSTEM
Sentiment analysis gives us the ability to investigate the emotions
conveyed in a text.
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The already-existing sentimental analysis system solely examined texts
provided in the English language. Every consumer, regardless of sector or kind,
wants to know what their customers' opinions of them are, whether favorable
or unfavorable.

Typically, sentiment analysis uses simple machine learning techniques,
with the majority of the analysis focusing on keyword analysis to determine the
sentiment.Sentiment analysis makes it possible to investigate the feelings
expressed in text, regardless of the context or sector. Due to their primary focus
on English content, traditional sentiment analysis methods were not as
applicable in other linguistic contexts. Recognizing the universal need to
understand consumer sentiment, firms in all sectors look for ways to find out
what customers think—positive or bad.Sentiment analysis was formerly
dependent on crude machine learning algorithms and frequently used keyword-
based techniques to identify sentiment. These techniques, however, were
limited by linguistic boundaries and were not flexible enough to handle non-
English content. Consequently, companies encountered difficulties in precisely
representing the opinions of their international clientele.Businesses are now
able to assess sentiments expressed in several languages because of the
multilingual capabilities of sentiment analysis systems, which are made
possible by improvements in natural language processing and machine
learning. The field of sentiment analysis has seen tremendous growth as a result
of this progression, enabling companies all over the world to obtain a more
profound understanding of consumer attitudes. As a result, businesses are better
able to customize their goods, services, and communication plans to the various
demands and preferences of their international clientele, which eventually
improves consumer happiness and loyalty across linguistic barriers.

3. DRAWBACKS OF EXISTING SYSTEM

Limited Language Support

The current system might not support more than one language, which
limits the usefulness and accessibility of the system for users who prefer
languages other than the supported default language or languages.
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No Sentiment Analysis

In the absence of automated sentiment analysis features, the current
system can depend on human evaluation of user evaluations to determine the
sentiment of the product, which could result in errors and inefficiencies.

Inconsistent User Experience

Variations in the translation and interpretation of user evaluations in
other languages could result in disparities in sentiment analysis findings, which
could affect the system's dependability and credibility.

4. PROPOSED SYSTEM

The suggested system is a multilingual sentiment analysis-based e-
commerce website that aims to give customers a simple and welcoming buying
environment. The system, which was developed with the Flask and Python
programming languages, incorporates sophisticated sentiment analysis
algorithms to evaluate user evaluations and produce sentiment scores for every
product. Important elements of the suggested system consist of:

User Interface

The website's front-end interface will have an intuitive design that makes
it simple for customers to browse through the many product categories and
obtain comprehensive details about each one.- Users will be able to find
products fast by using intuitive search functionality that is based on product
names or specified keywords.- Category-based filters will help customers even
more to customize their product search results to suit their needs.

Product Catalog

The website will provide a wide variety of products in several categories,
giving customers access to a wide range of options. Every product listing will
have all the necessary information, including the product name, price, and
previous user.
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Sentiment Analysis

To evaluate user evaluations and determine sentiment scores for every
product, the system will make use of sentiment analysis algorithms.

Sophisticated algorithms for natural language processing (NLP) will be
used to precisely interpret the sentiment represented in user evaluations. Users
will have access to dynamically generated and updated sentiment scores for
every product, giving them a better understanding of the general opinion on a
given item.

Multilingual Support

The system's ability to support more than 12 languages, including
English, Hindi, Telugu, French, and others, is one of its primary features.

Multilingual support will be handled via backend systems, which will
include text translation tools to guarantee that user reviews in different
languages are handled consistently.

Users with different linguistic backgrounds will be able to interact with
the website with ease thanks to its multilingual capability.

Sorting and Ranking

Users will be able to prioritize products with more positive reviews by
sorting and ranking them based on their sentiment scores.Users will be able to
organize product listings according to sentiment score, price, or other pertinent
factors thanks to dynamic sorting functionalities.

Generally, this model means an interactive and smart e-commerce
website which is supported by LNM. Through users came about with key
discovery.Overall, by utilizing sentiment analysis and language support, the
suggested system seeks to provide an interesting and welcoming e-commerce
environment. The solution improves the shopping experience and gives
consumers the ability to make well-informed selections by giving them useful
insights about product sentiment across many languages.
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5. RESULTS

The proposed Multilingual Sentiment Analysis-based E-commerce
Website marks a groundbreaking leap in the domain of online shopping, poised
to revolutionize user experience and inclusivity. By seamlessly integrating
cutting-edge sentiment analysis techniques with multilingual support, this
system empowers users with a comprehensive grasp of product sentiment
across various languages, enabling informed purchasing decisions.

Home Page with Different Products

Round Table

Filter by Category

Filter

Fire-Boltt Smart Watch Noise Smart Watch Boat Smart Watch
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In the language section, we should select one language and provide a
review.

Here, we are selecting Telugu and providing reviews for the product

10
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Filter by Category

Filter

Noise Smart Watch Fire-Boltt Smart Watch Boat Smart Watch

High sentiment score products are displayed at the top of the webpage

CONCLUSION

In summary, the Multilingual Sentiment Analysis-based E-commerce
Website emerges as a trailblazer in the online shopping realm, positioned to
revolutionize the industry through its commitment to elevating user satisfaction
and inclusiveness. Seamlessly integrating advanced sentiment analysis with
support for over 12 languages, the platform offers users a comprehensive
understanding of product sentiment, empowering them to make informed
purchasing decisions effortlessly. Through automated sentiment analysis and
dynamic sorting based on sentiment scores, the platform not only streamlines
the user experience but also enhances engagement and contentment.

As we look ahead, the Multilingual Sentiment Analysis-based E-
commerce Website presents numerous avenues for growth and development.
By prioritizing the refinement of sentiment analysis algorithms, the platform
can delve deeper into user feedback and preferences. The implementation of
real-time translation mechanisms and Al-powered virtual assistants holds the
promise of further enhancing user experience by facilitating faster decision-
making and providing personalized recommendations.

11
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Additionally, broadening the scope of analysis to include various user-
generated content types and collaborating with language experts to expand
language support will ensure inclusivity and foster trust across diverse user
demographics. In essence, this system establishes a sturdy foundation for a
dynamic and inclusive e-commerce ecosystem, primed for ongoing innovation
and adaptation to evolving market dynamics and user expectations.

12
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INTRODUCTION

Faced with rapid technological advances and the growing complexity of
public health and mental health challenges, traditional, siloed approaches to
scientific research are proving insufficient and sometimes ineffective.
Interdisciplinary collaboration is now emerging as a fundamental driver of
innovation and the advancement of human knowledge and know-how. In this
chapter, we explore the dynamic intersection between computer science,
ubiquitous in human daily life, and health sciences, a primary human need and
necessity, with a particular focus on mental health. We examine how this
integration is transforming healthcare systems globally and what it could mean
for countries like Algeria, where digital transformation is still in its infancy.
This chapter also presents a case study from our university project titled
"Contributing to Mental Health Informatics in Algeria," which illustrates how
interdisciplinary research can address systemic gaps in mental healthcare
delivery and foster data-driven healthcare solutions. This project focuses on
three areas:

e The use of immersive environments for mental health assessment and
treatment through the creation of customizable and configurable
environments that allow therapists to stage assessment and therapy
scenarios.

o The visualization of mental health data, which falls within the scope of
information visualization, but is distinguished by the nature of mental
health data, which is not always standardized and can be directly
exploited by machines.

¢ The interpretation and analysis of facial expressions, which represents a
primary key for making diagnoses and assessing an individual's mental
and psychological abilities.

The Need for Interdisciplinary Collaboration

Interdisciplinary research integrates knowledge, methodologies, and
perspectives from different fields to solve complex problems. In the field of
health, this approach can lead to a deeper understanding of the human body, its
psyche, and diseases.

16
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It can also contribute to innovative treatments as well as different
avenues of therapy and care.In our case, the combination of clinical knowledge
and computational methods aims to leverage human expertise in health sciences
and the power of machines in terms of analytical, memorization, and
computational capabilities.

With the advent of artificial intelligence, this integration enables the
development of intelligent systems for diagnosis, monitoring, patient
management, and research. Technologies such as machine learning, data
mining, and interactive simulations can significantly improve the accuracy and

effectiveness of mental health interventions.

Barriers and Challenges
Despite its promising and valued potential, interdisciplinary work faces
several obstacles:

e Cultural and paradigmatic differences between disciplines often lead to
methodological differences that can create divergences in the
interpretation of findings, and consequently, divergences in the adoption
of solutions.

e The lack of a common vocabulary represents a communication barrier
between work teams.

e Funding structures often favor monodisciplinary research because
adopting a dual perspective on the same phenomenon requires dual
training in technical and clinical fields.

1. THE DIGITAL TRANSFORMATION OF HEALTHCARE

The widespread integration of digital technologies into healthcare has
fundamentally transformed the way services are delivered, managed, and
evaluated. From administrative tasks to clinical decision-making, the
digitalization of healthcare enables more efficient, personalized, and data-
driven approaches to patient care, drawing on global, rather than just local,
information. This transformation is particularly significant in the field of mental
health, where traditional service delivery models face numerous barriers such

as limited access, stigma, and workforce shortages.

17
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In this section, we examine key technological areas, ranging from
software engineering and data analytics to artificial intelligence and virtual
reality, that are driving innovation in healthcare and reshaping the landscape of
mental health services.

2. OVERVIEW OF DIGITAL TECHNOLOGIES IN

HEALTHCARE

Healthcare systems around the world have undergone a profound digital
transformation, driven by the emergence of advanced information and
communication technologies. These innovations are transforming the design,
delivery, and monitoring of healthcare services, offering unprecedented
opportunities to improve the accessibility, efficiency, and quality of care. These
innovations are driven by the need for performance and health disasters such as
Covid-19.

The first step in this transformation is the widespread adoption of
electronic medical records (EMRs), which replace traditional paper records and
enable the systematic collection, storage, and retrieval of patient data. They
improve continuity of care, reduce medical errors, and optimize clinical
decision-making through integrated access to a patient's medical history,
laboratory results, prescriptions, and medical imaging.

In addition to this static digitization of data and information, the
proliferation of wearable sensors and connected health devices, such as
smartwatches, activity trackers, and biometric monitors, has enabled
continuous, real-time monitoring of physiological and behavioral parameters.
These devices are particularly useful for tracking indicators such as heart rate,
sleep patterns, physical activity, and even emotional state, essential for
managing physical and mental health.

Mobile health (mHealth) apps represent another growing component of
the digital health ecosystem. Designed for smartphones and tablets, these apps
facilitate self-monitoring, medication adherence, psychoeducation, and
communication between patients and healthcare professionals. In mental
health, for example, apps offer cognitive behavioral therapy exercises, mood
tracking, and mindfulness practices, thus expanding care beyond traditional

clinical settings.

18



INTELLIGENT SYSTEMS: FROM DATA TO DECISIONS

Telemedicine and remote diagnosis have also gained momentum,
particularly in response to the COVID-19 pandemic. These technologies enable
remote consultations, digital prescriptions, and remote monitoring, reducing the
need for in-person visits. For underserved or rural areas, this represents a major
step toward healthcare equity by overcoming geographic barriers.

Furthermore, the integration of cloud computing and interoperable
systems enables seamless data sharing between facilities, facilitating care
coordination and multicenter research. Combined with advances in
cybersecurity, these platforms also address concerns about data privacy and
patient confidentiality.

In short, the continued digitalization of healthcare not only optimizes
traditional processes but also paves the way for new models of prevention,
diagnosis, treatment, and monitoring. As we will explore in the following
sections, these technologies form the foundation upon which more specialized
tools, such as Al-powered diagnostics and immersive therapies, are built,
particularly in the field of mental health.

3. ROLE OF ARTIFICIAL INTELLIGENCE

Artificial intelligence (Al) has emerged as one of the most transformative
technologies in modern healthcare. It offers powerful solutions for analyzing
vast amounts of data, extracting meaningful patterns, and supporting decision-
making processes previously limited by human capabilities. In the fields of
physical and mental health, Al is establishing new practices and redefining how
clinicians diagnose conditions, personalize treatments, and monitor patient
outcomes.

Al is based on a set of techniques, such as machine learning, natural
language processing, and deep learning, which enable systems to learn from
data and improve their performance over time. In clinical settings, Al
algorithms are trained on large clinical datasets, imaging data, genetic
information, and patient-reported outcomes. These models can then be used to
predict disease onset, suggest treatment options, or identify high-risk patients
requiring urgent attention. In mental health, the potential of Al is significant
due to the complexity and subjectivity of diagnosis and treatment.

19
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Traditional psychiatric assessments rely heavily on subjective
assessment of patient speech and self-reports, as well as clinical observation,
which can be limited by bias, stigma, or poor or inconsistent communication.
Al can help fill these gaps by identifying subtle linguistic, behavioral, or
physiological markers that may indicate underlying mental disorders. For
example, machine learning algorithms can analyze vocal patterns, facial
expressions, or digital fingerprints (such as social media usage or typing speed)
to detect early signs of depression, anxiety, or cognitive decline.

Al is also playing an increasingly essential role in tracking and
monitoring symptoms in potential patients. By integrating data from connected
devices, mobile apps, and digital diaries, it can help clinicians and patients track
the evolution of mental health symptoms over time. These tools promise more
responsive care by detecting deviations from baseline behavior and alerting
caregivers to potential crises before they escalate.

Furthermore, Al can personalize treatments by identifying the
interventions most likely to be effective for a given individual, based on their
unique characteristics and clinical history. This is particularly valuable in
psychiatric care, where responses to the same treatments for the same condition
can vary considerably from patient to patient. Al can inform decisions such as
choosing the most appropriate medication, adjusting dosages, or recommending
complementary therapies.

It is important to note that Al can also contribute to population-level
mental health management by uncovering trends, forecasting demand for
services, and informing public health policies. Applied ethically and
responsibly, it can help optimize resource allocation and improve the overall
quality and equity of mental health services, thereby promoting good
governance in mental health and hygiene.

Nevertheless, the integration of Al in mental health raises important
questions regarding data privacy, algorithmic bias, and clinical accountability.
Developing transparent, explainable, and culturally appropriate Al systems is
essential to ensure trust and efficiency in diverse healthcare settings. In
summary, Al does not replace human clinicians, but rather serves as a powerful
complement that improves clinical decision-making, promotes individualized

care, and fosters a more proactive and predictive approach to mental health.
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4. VIRTUAL REALITY IN THERAPY AND TRAINING

Virtual reality (VR) is any immersive interactive computer simulation
across perceptual dimensions. It has emerged as a transformative tool in mental
health, creating immersive, controlled, and customizable virtual environments.
In therapeutic settings, VR allows clinicians to conduct exposure therapy in a
safe and reproducible manner. Patients suffering from post-traumatic stress
disorder (PTSD), phobias, or anxiety disorders can be gradually and safely
exposed to triggering stimuli in a controlled virtual space, helping them
desensitize and develop coping strategies under the supervision and guidance
of a therapist. This method is often more cost-effective, more engaging, and
safer than in vivo exposure.

Beyond patient care, VR is playing an increasingly important role in the
training of various mental health professionals. Through immersive
simulations, learners can interact with virtual patients exhibiting a variety of
symptoms and behavioral cues, enhancing their diagnostic and therapeutic
skills in a risk-free environment. These environments can also simulate crisis
management scenarios (e.g., suicidal ideation, psychosis) that are difficult to
replicate en masse in traditional educational settings. This application promotes
experiential learning and helps build the confidence and competence of
clinicians and paramedical staff. Furthermore, virtual reality can enhance
empathy training by simulating the experiences of people suffering from mental
health disorders, allowing clinicians, caregivers, and even policymakers to gain
a deeper understanding of the patient's perspective.

5. DATA ANALYTICS

Data analytics is a fundamental component of computer science,
particularly in IT fields focused on processing field data, such as mental health.
By collecting and analyzing longitudinal and real-time data from clinical
records, mobile health applications, sensors, and surveys, mental health
professionals can better understand the dynamics of illness and hygiene, both
at the individual and collective levels. The data collected, when translated into
information, is essential for:

e Tracking prevalence trends of conditions such as depression, anxiety, and
substance abuse by location and demographic group;
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e Predictive modeling to identify at-risk individuals or communities before
crises become realities;

o Evaluating the effectiveness of therapies and treatments, enabling
clinicians and institutions to make evidence-based decisions regarding
management methods, medications, and treatment protocols;

e Develop public health policies, as data reveal unmet needs, gaps in
access to care, or disparities in care delivery.

Advanced techniques such as machine learning and natural language
processing (NLP) also enable automated pattern extraction from unstructured
data (e.g., clinical notes, interviews, or patient-reported outcomes). Ethical
considerations, particularly those related to consent, data ownership, and
confidentiality, must be carefully considered to ensure the responsible use of
mental health data.

6. SOFTWARE ENGINEERING

Software engineering is the foundation of any scalable and effective
digital mental health solution. As applications move from pilot to real-world
deployment, the quality of software solutions becomes a critical success factor.
Key considerations include:

o Interoperability: Systems must integrate with existing electronic medical
records (EMRs), wearable devices, and data platforms. Standardized
APIs and data formats ensure efficient application communication across
ecosystems.

e Usability: Mental health software must be designed with end users in
mind, whether they are clinicians, patients, or administrators. User-
centered design practices improve engagement, reduce abandonment
rates, and ensure tools are accessible to people with varying digital skill
levels.

e Data security and privacy: Given the sensitivity of mental health data,
strong encryption, secure authentication, and regulatory compliance are
essential. Systems must also incorporate consent management features
and audit trails for greater transparency. Collaborative development
between software engineers, clinicians, and researchers ensures tools that
are both technically powerful and clinically relevant.
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Mental Health Informatics: Concepts and Global Trends

Mental health problems continue to worsen globally, and there is a
growing need for innovative, technological approaches to support mental health
care. Mental health informatics (MHI) has emerged as a critical
interdisciplinary field at the intersection of psychiatry, psychology, computer
science, and public health. By leveraging digital tools and data systems, MHI
aims to improve clinical decision-making, access to care, support research, and
empower patients. This section explores the core concepts of MHI, highlights
successful international implementations, and addresses key ethical issues
shaping its global evolution.

Definition and Scope

Mental health informatics (MHI) is a subfield of health informatics
specifically focused on mental health services, encompassing both clinical and
nonclinical domains. It integrates technologies such as electronic medical
records (EMRs), telepsychiatry platforms, wearable monitoring devices,
machine learning algorithms, and mobile mental health applications. MHI
supports a wide range of functions: tracking patient symptoms, delivering
remote therapies, managing medication adherence, analyzing large datasets for
public health planning, and facilitating mental health research. Its scope is
broad and evolving, with applications in hospital settings, community health
programs, and personal wellness tools.

Global Success Stories
Several countries have demonstrated how well-designed HCI strategies
can improve mental health outcomes:

e United States: The integration of Al into systems such as the PHQ-9
chatbot facilitates depression screening in primary care settings. The
Veterans Health Administration also makes extensive use of
telepsychiatry for remote mental health support.

e United Kingdom: The National Health Service (NHS) has integrated
digital tools such as SilverCloud, an online platform offering evidence-
based therapies for anxiety and depression.
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e Australia: Programs such as Head to Health offer centralized digital
mental health services, including self-assessment tools, guided therapies,
and clinician directories.

These initiatives demonstrate how HCI can expand services, reduce
stigma, and reach underserved populations when supported by strong policies,
funding, and stakeholder collaboration.

Ethical Considerations

While the potential of MHI is considerable and highly sought after,
ethical challenges must be addressed to ensure responsible and proper
implementation:

e Dataprivacy is paramount, particularly when it comes to sensitive mental
health information collected via mobile apps or cloud platforms.

e Algorithmic biases in Al models can lead to misdiagnoses or unequal
treatment recommendations if training data lacks diversity.

o Digital divide issues can exclude people living in rural or low-income
areas, who lack internet access or digital proficiency.

To manage these risks, MHI initiatives must be based on ethical
frameworks, transparent data governance policies, inclusive design principles,
and ongoing stakeholder engagement, including patients and mental health
professionals.

The Algerian Context

With globalization pervasive in all fields related to science and
knowledge, Algeria is no exception when it comes to mental health. The
challenges are the same, the constraints are the same, and the difficulties are the
same, even if the magnitude is not always the same: We cite the lack of qualified
healthcare personnel, the stigmatization of mental illness, and the special status
of informal caregivers for patients with mental disorders. In this regard, the
efforts of the Algerian government can only be commended in terms of
treatment coverage, free care, and the ongoing commitment to health coverage

throughout the country.
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Current Status

Despite the mass training of mental health care providers, including
doctors, psychologists, nurses, and administrators, the demand for care driven
by the growth in the rate of mental illness is overwhelming healthcare facilities.
This overwhelm is greatly slowing down any effort to transition from a
traditional healthcare ecosystem to a smart one, as the priority for healthcare
providers remains meeting the ever-increasing demand.

As such, although we are aware that the transition to a smart ecosystem
will, by definition, eliminate any overflow and streamline the flow of care, we

remain unable to make significant strides in this direction.

Infrastructure

Most healthcare facilities are still in the process of installing adequate
digital infrastructure, such as electronic medical records or centralized mental
health databases. This installation is accompanied by staff training, which is not
always straightforward given the workload.

Staffing and Training

There is a lack of professionals trained in digital health and informatics,
and few university programs bridge the gap between clinical psychology and
informatics. Furthermore, research in this area remains tentative and isolated
from the institutional environment, and therefore unable to translate into
practice.

Policy and Strategy

Although Algeria has taken steps toward the digitalization of healthcare,
and although mental health legislation is extensive and revised and updated
according to societal needs, there is no comprehensive national policy on
mental health informatics or Al in healthcare. This leaves this field open to
individual initiatives and unstructured research topics that are not oriented
toward a common national objective.
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Our Research Project: Contribution to Mental Health

Informatics in Algeria

The research and doctoral training project "Contribution to Mental

Health Informatics in Algeria" was initiated in 2023 as a research and doctoral

training initiative involving a psychiatrist, computer scientist, and doctoral

students. In this project, we aim to take advantage of advances in model-driven

engineering and recent artificial intelligence tools to develop and deliver IT

solutions with the aim of contributing to the creation of a smart ecosystem for

mental health.

Objectives and Vision

The overall objectives of our project are:

Automate support processes and assistance for the various stakeholders
in the mental health care system.

Design and develop visualization and concept modeling tools to assist in
therapeutic decision-making and patient monitoring.

To achieve these two objectives, the project stakeholders are tasked with:
Model the mental health care system in Algeria to provide an IT basis for
any subsequent solutions.

Propose solutions based on the established model to promote the mental
health care system and assist the various stakeholders in their decision-
making.

Given the time and resource constraints of research projects related to

doctoral training, we focused on three central solutions that we deemed

independent of all other solutions and that could serve as initial avenues and

foundations for further development. In this regard, we mention:

Solutions for personalized and interactive visualization of information at
different levels of abstraction.

Decision support solutions based on machine learning for therapeutic
management and for monitoring and guiding healthcare providers.
Event monitoring and forecasting solutions based on the system's history,
thus enabling personalized action and guidance.
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VR-Based Approach for Cognitive Assessment

The first area we focused on was augmenting the work dimension. To
overcome the limitations of space and time in the face of a constantly growing
service load, we must take advantage of the capabilities of virtuality made
available thanks to the explosion in computing and storage capacity. To this
end, we offer virtual reality-based solutions to enable therapists to overcome
the limitations of existing systems. We targeted a more specific use: the
assessment of cognition using virtual solutions.

This contribution investigates the integration of Virtual Reality (VR)
technologies into cognitive assessment practices, with the goal of enhancing
both the ecological validity and user experience of traditional evaluation tools.
Conventional tests, typically paper-based or screen-based, often lack the ability
to simulate real-life cognitive demands. As a result, they may fail to capture an
individual’s capabilities in everyday situations and often struggle to maintain
participant engagement.

With the enormous workload, therapists cannot configure real-world
environments or engage in on-site sessions, which risks limiting the number of
consultations and increasing waiting times. In this context, digital solutions that
can be implemented in treatment rooms and instantly configured on
workstations are proving to be a promising solution.

Design Rules for Cognition Assessment Ppps

The growing capabilities of immersive technologies, particularly VR,
offer promising opportunities to bridge this gap by creating more dynamic,
interactive, and realistic environments for assessment. This work responds to
this potential by proposing and developing VR-based test scenarios specifically
designed to evaluate cognitive functions such as attention, memory, and
executive functioning. The primary objective is to construct test environments
that are both scientifically valid and user-centered, enhancing realism without
compromising the methodological rigor of traditional cognitive science.

The first phase of the project focused on an in-depth exploration of
existing literature related to VR applications in cognitive assessment. This
phase included a comprehensive survey of recent VR-based tools and studies,
identifying strengths, weaknesses, and gaps in current solutions.
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Particular attention was given to the ergonomic aspects of VR usage, as
issues such as user discomfort, motion sickness, or poor interaction design can
negatively impact both performance and data reliability. As part of this
investigation, a set of ergonomic specifications and usability principles was
compiled to guide the development of future VR applications in the field. These
principles covered areas such as navigation ease, interaction simplicity,
accessibility, visual comfort, and user safety. In addition to reviewing existing
tools, the research established a set of design rules for cognitive test scenario
development, aiming to ensure accurate assessment while maintaining user

engagement through well-structured, immersive environments.

Solutions for cognitive functions

While the design of the A-Frame-based cognitive scenarios is still
underway, it is being developed in alignment with the previously established
ergonomic and design guidelines in collaboration with therapists, with parallel
testing with subjects to maximize the benefit of virtuality. As part of this
ongoing work, three interactive cognitive test games are currently being
developed using A-Frame, each targeting different cognitive functions:

e The first is a basketball attention and decision-making game, where the
user must quickly respond to a given rule and follow it as instructed, even
if it contradicts real-world expectations. This setup requires focused
attention and rapid decision-making, simulating cognitive conflict or
ambiguity often encountered in real-life situations.

e The second test focuses on working memory and word recall: the user is
shown a random word to memorize, after which balloons appear with
letters, and the user must select those that correspond to the memorized
word, engaging sustained attention and memory retrieval under time
constraints.

e The third test is designed around classification and memory. Users are
briefly shown boxes of different colors, which are then hidden. As
colored balls appear, the user must recall the corresponding box and
classify the balls correctly using intuitive VR-based hand interactions.
This scenario challenges visual memory, spatial reasoning, and cognitive
flexibility.
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In summary, this contribution advances the field of cognitive assessment
by introducing a structured and innovative approach to the development of VR -
based tools that are both immersive and methodologically sound. It bridges
theoretical insight with practical implementation, offering a model for
designing next-generation cognitive assessments aligned with everyday
cognitive challenges. Through its literature review, ergonomic framework,
prototype development, and scientific dissemination, this work sets the stage
for future intelligent and adaptive VR-based assessments to be deployed in

clinical, educational, and research contexts

Mental Health Information Visualization

psychiatric professionals work with a wide array of clinical information
that remains largely unstructured, handwritten, and fragmented across paper
records or non-standard digital formats. This makes longitudinal follow-up,
clinical synthesis, and inter-professional collaboration particularly challenging.
Unlike other medical domains that depend primarily on numeric and biological
data, psychiatric records consist of both somatic (physical symptoms,
medications, hospitalizations) and non-somatic (mood, social behavior,
cognitive state, personal narratives), information, which are difficult to
structure and visualize consistently. These data encompass a wide variety of
formats:

e Numerical data (e.g., clinical scale scores, treatment durations);

e Textual data (e.g., clinical notes, interview transcripts);

o Categorical data (e.g., diagnoses, family history, medications);

e Temporal data (e.g., episode timelines);

e qualitative data (e.g., behavioral observations, subjective experiences,
psychosocial factors).

Unlike other medical domains, which rely heavily on biological and
measurable data, psychiatry deals with both somatic and non-somatic elements,
often subjective, sensitive, and difficult to quantify. This makes their
structuring, storage, and interpretation particularly complex, especially in
settings with limited digital infrastructure. This project axis proposes a
comprehensive approach to the modeling, storage, and visualization of

psychiatric data in the Algerian context.
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The aim is to provide clinicians with a tool that transforms complex
patient information into structured, readable, and interactive visual summaries
that support diagnosis, decision-making, and longitudinal care. Our approach is
structured around three main components, each contributing to a different layer
of this clinical informatics solution[99].

Design of a Domain-Specific Metamodel for Psychiatry

The first phase involved creating a custom metamodel specifically
tailored to psychiatric data. This metamodel not only provides a unified
conceptual framework but also serves as a descriptor for the design of the
database and user interface. The goal at this stage is to define a generic
framework that can accommodate the current state of the art and any future
changes in the data defining individual and societal mental health.

Implementation of a Lightweight and Portable Database
Based on the metamodel, the second phase focused on the design of a
relational database using SQLite. This database was designed to be:
e Portable and usable without server infrastructure, thus allowing
deployment in clinics with limited resources;
o Compatible with mobile and web applications for use on tablets or
smartphones;
e Capable of containing structured and incremental data entry by
healthcare staff or researchers;
o Faithful to the metamodel, preserving data integrity and relationships.
Each entity in the metamodel was mapped to standardized tables, with
primary and foreign keys to ensure consistency. The database also allows for
basic queries, filtering, and data visualization. This component ensures a
centralized, organized, and reusable centralized clinical data layer accessible

from different platforms.

Development of a Clinical Visualization Interface
The third phase consists of developing an interactive interface prototype
intended for clinical use. Such an interface is designed to:
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e Present psychiatric case data in a visual and intuitive format, rather than
plain text or forms;

o Allow temporal exploration of a patient’s psychiatric trajectory (e.g.,
symptom evolution, hospitalization episodes, treatment changes);

o Provide dashboards summarizing key dimensions (diagnostic categories,
psychosocial indicators, treatment adherence);

o Offer interactive filtering (e.g., by time period, symptom, medication,
comorbidity).

This interface does not aim to automate diagnosis or replace clinical
judgment. Rather, it serves as a cognitive support tool, helping the psychiatrist
to see patterns, outliers, or red flags that may not be easily noticeable in
narrative records. The system is currently under iterative development, with
early feedback from clinicians guiding improvements in usability and
relevance.

Through these three phases, this work axis lays the groundwork for a
localized, clinically relevant, and technically feasible information visualization
system for psychiatry in Algeria. It highlights the importance of aligning data
structures with clinical logic, and shows that even in low-resource settings,
well-designed tools can significantly improve how psychiatric data is
understood and used.

Mimicry Analysis and Interpretation

Facial mimicry expressions, as reflections of human emotions, are a rich
source of non-verbal information. They constitute a universal mode of
communication, regardless of cultural differences.

Basic Definitions

Facial mimicry refers to the movement of facial muscles that convey
emotions and speech. According to the work of psychologist Paul Ekman,
certain expressions are universal and correspond to six basic emotions: joy,
sadness, anger, fear, surprise, disgust, and a seventh neutral state. The analysis
and interpretation of these expressions are often among the first signs revealing
mood disorders or psychiatric pathologies.
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Mimicry Analysis for Mental Health

Facial expression is an information-rich communication medium that is
complex and difficult to quantify. Its modeling and interpretation are always a
challenge for artificial intelligence and its applications due to the dimension of
the underlying emotion, the ambiguity and fuzzy limits between the different
neighboring expressions, and the interpretation and the related decision.

The domain applications range from the detection of facial expressions
in psychological and psychiatric interviews to the study of emotions and the
detection of critical and emergency situations in recognition and access
management applications.

Achieving an intelligent system that can classify facial expressions is not
a simple programming task but a process that relies on complex and difficult
modeling which must take into account the complex aspects of the subject,
namely:

e The anatomical complexity of facial expression;

e The human and subjective dimension of interpretation depending on
intrinsic and extrinsic factors such as personality, social background,
ethnicity, and others;

¢ And the contextual dimension of mimicry responding to the application,
the scene and the interlocutor.

These requirements imply a well-defined context-based solution thus
excluding the universal solution.

The aim of developing this work axis is to provide the therapist with a
section in the application allowing real-time monitoring of the patient's facial
expressions, thus guiding them in their interview and providing assistance with
diagnosis and treatment.

Tools and Applications
Automatic facial expression analysis systems rely on advanced image
processing and machine learning techniques. The recognition process can be
summarized in the following pipeline:
e Face detection: locating the face in an image or video.
e Feature extraction: identifying key facial landmarks (eyes, lips,
eyebrows).
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e Expression recognition: classifying emotions by comparing detected
movements with known expression databases.
Any implementation of such a solution must take into consideration the
requirements specific to the field of application and the specificities of the
people concerned.

CONCLUSION

The current state of mental health in Algeria requires serious and rigorous
work to move from direct and traditional digitalization to an intelligent
ecosystem capable of meeting the growing demand for care and support.

Our research project aims to implement personalized solutions adapted
to the national work context in three areas: the use of virtual environments in
the care process, information visualization, and facial expression analysis.

The work is ongoing, and preliminary results are being evaluated in the
field by specialists to adapt them to the practical context. The final completion
of the project will undoubtedly serve as a starting point for developing a more
comprehensive and global solution for mental health in Algeria.
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INTRODUCTION

The promise of machine learning in healthcare rests on its ability to
convert raw, heterogeneous clinical data into actionable predictions that support
earlier diagnosis, more precise risk stratification, and better allocation of
healthcare resources. Historically, clinical decision making relied on a
combination of clinician expertise, simple statistical models, and rule based
guidelines. While these approaches remain indispensable, they are limited
when confronted with nonlinear relationships, interactions among many
variables, temporal dependencies, and multimodal inputs. Machine learning
methods, ranging from classical algorithms like logistic regression and support
vector machines to modern deep learning architectures, can learn complex
mappings from inputs to outcomes and thereby augment clinician judgment.
The contemporary data landscape in healthcare is characterized by electronic
health records that capture longitudinal patient encounters, high resolution
medical images, continuous streams from wearable sensors, and molecular
profiles from genomic assays. Each of these modalities brings unique
opportunities and challenges. Electronic health records provide rich clinical
context but are often noisy, incomplete, and biased by care processes. Imaging
data are high dimensional and require specialized architectures to extract spatial
features. Wearable sensors produce dense time series that demand temporal
modeling and robust handling of irregular sampling. Genomic data present
extreme dimensionality and require careful feature selection or representation
learning. Integrating these modalities into coherent predictive systems requires
careful design choices at every stage: data curation, preprocessing, model
selection, evaluation, and interpretation.

1. THEORETICAL FOUNDATIONS

Machine learning is a branch of artificial intelligence focused on
algorithms that improve their performance on a task through experience,
typically by learning patterns from data. In healthcare prediction, the primary
objective is often supervised learning: mapping patient features to clinical
outcomes such as disease onset, progression, or response to therapy. Supervised
models learn from labeled examples and are evaluated on their ability to

generalize to new patients.
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Unsupervised learning, by contrast, seeks to discover latent structure in
data without explicit labels and is useful for tasks such as patient phenotyping
or anomaly detection.

A central theoretical concept in supervised learning is the bias—variance
tradeoff. Models with high bias are too simple to capture underlying
relationships and underfit the data, while models with high variance are overly
flexible and overfit to noise. Regularization techniques, cross validation, and
ensemble methods are practical tools to manage this tradeoff. Another
foundational idea is the representation of data: the choice of features and their
transformations often determines model performance more than the specific
learning algorithm. Feature engineering, dimensionality reduction, and
representation learning are therefore critical steps in the modeling pipeline.
For temporal and sequential data, recurrent neural networks and their gated
variants such as long short term memory networks are designed to capture
dependencies across time. These architectures address vanishing gradient
problems and enable models to learn long range dependencies in physiological
signals. For spatial data like images, convolutional neural networks exploit
local connectivity and weight sharing to learn hierarchical spatial features.
Ensemble methods such as Random Forests and gradient boosting combine
multiple weak learners to produce robust predictors that often perform well on
tabular clinical data.

Interpretability and explainability are theoretical and practical concerns
in healthcare. Clinicians require explanations for model predictions to trust and
act upon them. Model agnostic explanation methods, such as local surrogate
models and feature attribution techniques, provide post hoc insights into model
behavior. However, interpretability is not a single property; it encompasses
global model transparency, local explanation fidelity, and the ability to surface
biases or failure modes. Ensuring that explanations are clinically meaningful
and not misleading is an active area of research.

Evaluation theory in healthcare prediction extends beyond standard
metrics. While accuracy, precision, recall, and area under the receiver operating
characteristic curve are useful, clinical utility depends on calibration, decision
thresholds aligned with clinical risk tolerance, and the net benefit of acting on
model outputs.
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Calibration measures whether predicted probabilities correspond to
observed event rates, and decision curve analysis quantifies the clinical value
of predictions across a range of threshold preferences. Prospective validation
and randomized trials remain the gold standard for demonstrating clinical
impact, and model monitoring after deployment is essential to detect
performance drift.

2. MAJOR HEALTHCARE DATA SOURCES

Healthcare prediction draws on a variety of data sources, each with
distinct characteristics that influence modeling choices. Electronic health
records are perhaps the most ubiquitous source. They contain structured fields
such as demographics, diagnoses coded with standardized ontologies,
laboratory results, medication orders, and procedure codes, as well as
unstructured clinical notes. EHR data are longitudinal, reflecting the sequence
of encounters and interventions, but they are also shaped by the healthcare
delivery process: missingness may be informative, and recorded values may
reflect clinician behavior rather than underlying physiology. Public critical care
datasets have catalyzed research by providing de identified, richly annotated
records that enable reproducible studies and method benchmarking.

Medical imaging has been transformed by deep learning. Radiographs,
computed tomography scans, magnetic resonance imaging, and retinal fundus
photographs are high dimensional arrays that encode spatial patterns associated
with disease. Convolutional neural networks and their three dimensional
extensions are the dominant modeling paradigm for imaging tasks. Transfer
learning, where models pretrained on large natural image datasets are fine tuned
on medical images, has proven effective when labeled medical datasets are
limited. Imaging data also require careful attention to acquisition variability,
device differences, and annotation quality, as these factors can introduce
confounding signals that models may exploit inadvertently.

Genomic and other molecular data introduce extreme dimensionality,
with tens of thousands of features per sample. These data are valuable for
precision medicine applications such as cancer subtyping and
pharmacogenomics. Dimensionality reduction, feature selection, and

regularized models are commonly used to avoid overfitting.
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Representation learning approaches, including autoencoders and
variational methods, can learn compact embeddings that capture biologically
relevant variation. Integrating genomic data with clinical phenotypes remains a
frontier area that promises more personalized risk prediction but also raises
challenges in interpretability and clinical actionability.

Wearable devices and sensors generate continuous streams of
physiological signals, including electrocardiograms, photoplethysmography,
accelerometry, and glucose monitoring. These time series enable detection of
transient events and monitoring of disease trajectories outside clinical settings.
Challenges include irregular sampling, sensor noise, and the need for energy
efficient algorithms for on device inference. The potential for early detection
and remote monitoring is substantial, particularly for chronic disease
management and post discharge surveillance.

Environmental, behavioral, and social determinants of health are
increasingly recognized as critical inputs for prediction. Data on air quality,
socioeconomic status, mobility patterns, and social support can augment
clinical features and improve risk stratification, particularly for chronic diseases
influenced by context. Incorporating these data requires careful linkage,
privacy safeguards, and an understanding of causal pathways to avoid spurious
associations.

3. DATA PREPROCESSING AND FEATURE

ENGINEERING

Effective preprocessing is a prerequisite for reliable machine learning in
healthcare. Raw clinical data are rarely analysis ready. Missing values are
pervasive and arise for many reasons: tests may not be ordered if clinicians
deem them unnecessary, patients may miss appointments, or data may be lost
during transfer. Simple imputation strategies such as mean or median
substitution can be appropriate for some variables, but more sophisticated
approaches that account for the mechanism of missingness, such as multiple
imputation or modeling missingness indicators, often yield better results. For
time series data, interpolation and forward filling can preserve temporal
continuity, but care must be taken to avoid introducing bias by imputing values
that mask clinically meaningful gaps.
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Outlier detection is another essential step. Clinical measurements may
contain erroneous entries due to transcription errors or device malfunctions.
Robust statistical methods and anomaly detectors can identify implausible
values for review or exclusion. Categorical variables require encoding; one hot
encoding is straightforward but can lead to high dimensionality, while target
encoding or embedding representations can be more efficient for tree based or
neural models respectively. Feature scaling is important for algorithms sensitive
to feature magnitudes. Distance based methods and gradient based optimizers
benefit from normalization or standardization. For high dimensional genomic
or imaging features, dimensionality reduction techniques such as principal
component analysis or learned embeddings via autoencoders reduce
computational burden and mitigate overfitting.

Feature engineering bridges raw data and model inputs by creating
clinically meaningful variables. Aggregating laboratory results into summary
statistics, computing rolling averages for vital signs, deriving composite risk
scores, and encoding temporal patterns as features are common strategies.
Domain knowledge is invaluable here: features that reflect known
physiological relationships or clinical heuristics often improve model
interpretability and performance. For example, transforming raw glucose
measurements into clinically interpretable categories or computing the rate of
change of creatinine over time can provide signals that are more predictive than
raw values alone.

Class imbalance is a frequent challenge in healthcare datasets where
adverse events are rare. Oversampling methods, synthetic data generation, and
cost sensitive learning can help models detect minority classes without being
overwhelmed by the majority. However, synthetic oversampling must be
applied cautiously to avoid amplifying noise or creating unrealistic examples.
Ensemble approaches and threshold tuning based on clinical utility can also
mitigate imbalance effects.

Finally, data partitioning for model development must respect temporal
and patient level dependencies. Splitting data by encounter rather than by
patient can lead to information leakage when the same patient appears in both
training and test sets. Temporal splits that simulate prospective deployment are

preferred for evaluating real world performance.

42



INTELLIGENT SYSTEMS: FROM DATA TO DECISIONS

Cross validation strategies should be chosen to reflect the intended use
case, and external validation on independent cohorts is essential to assess
generalizability.

4. METHODOLOGY AND MODEL DEVELOPMENT

The methodological pipeline for healthcare prediction begins with
problem formulation: defining the prediction target, the prediction horizon, and
the acceptable tradeoffs between sensitivity and specificity. Once the problem
is specified, data curation and preprocessing prepare inputs for modeling.
Model selection then proceeds by considering the data modality and the clinical
constraints.

For structured tabular data, classical machine learning algorithms such
as logistic regression, Random Forests, support vector machines, and gradient
boosting machines are strong baselines. Logistic regression offers
interpretability and well understood statistical properties, making it a useful
benchmark. Random Forests provide robustness to noisy features and yield
measures of variable importance that can inform clinical interpretation.
Gradient boosting machines, particularly implementations optimized for speed
and regularization, often achieve state of the art performance on tabular tasks
by sequentially fitting residuals and combining weak learners into a powerful
ensemble.

For imaging tasks, convolutional neural networks are the standard
approach. Architectures such as ResNet, DenseNet, and EfficientNet
incorporate design principles that facilitate training deep networks and
extracting hierarchical features. Transfer learning from large natural image
datasets accelerates convergence and improves performance when labeled
medical images are scarce. For volumetric imaging, three dimensional
convolutions capture spatial context across slices.

Temporal and sequential data are well suited to recurrent architectures
and temporal convolutional networks. Long short term memory networks and
gated recurrent units mitigate vanishing gradient problems and can model long

range dependencies in physiological signals.
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Attention mechanisms and transformer architectures, originally
developed for natural language processing, are increasingly applied to clinical
time series to capture variable length dependencies and to provide interpretable
attention weights.

Hybrid models that combine modalities, such as concatenating tabular
features with image embeddings or feeding time series representations into
downstream classifiers, enable multimodal prediction. Designing such systems
requires careful alignment of modalities, synchronization of temporal windows,
and strategies for handling missing modalities at inference time. For example,
when imaging and laboratory data are available at different time points,
temporal alignment strategies and imputation of missing modality embeddings
can preserve predictive power.

Model training must incorporate regularization, hyperparameter tuning,
and robust validation. Cross validation, nested when hyperparameter search is
extensive, helps estimate generalization error. Early stopping, dropout, and
weight decay are common regularization techniques for neural networks. For
tree based models, limiting tree depth and applying learning rate schedules
control complexity. Hyperparameter optimization using grid search, random
search, or Bayesian optimization can yield substantial performance gains, but
these searches must be nested within cross validation to avoid optimistic bias.

Evaluation metrics should reflect clinical priorities. For binary
classification, sensitivity and specificity are central, but the choice of operating
point depends on the clinical context. Area under the receiver operating
characteristic curve provides a threshold independent measure of
discrimination, while precision recall curves are informative when classes are
imbalanced. Calibration plots assess whether predicted probabilities
correspond to observed event rates, which is crucial when predictions inform
risk communication or decision thresholds. Beyond metrics, prospective
validation and randomized evaluations of model guided care are the gold
standard for assessing clinical impact. Model deployment should include
monitoring pipelines that track performance metrics, data drift, and fairness

indicators over time.
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5. EXPLAINABILITY AND TRUST

Explainability is a prerequisite for clinical adoption. Clinicians need to
understand why a model produced a particular prediction to assess its
plausibility and to integrate it into decision making. Post hoc explanation
methods such as SHAP values quantify the contribution of each feature to an
individual prediction, enabling case level reasoning. Local surrogate models
approximate complex models with interpretable surrogates in the neighborhood
of a prediction, offering intuitive explanations. For imaging models, gradient
based localization methods such as Grad CAM produce heatmaps that highlight
regions of the image that most influenced the prediction, which can be
compared with known radiographic signs.

However, explanations must be interpreted cautiously. Attribution
methods can be sensitive to model architecture and input perturbations, and
they do not guarantee causal relationships. Explanations that are technically
correct but clinically meaningless can erode trust. Therefore, explanation
pipelines should be validated with clinicians, and explanation outputs should
be accompanied by uncertainty estimates and checks for plausibility. Human in
the loop evaluation, where clinicians assess explanation fidelity and usefulness,
is an important step before deployment.

Model fairness and bias mitigation are integral to trustworthy Al
Predictive models trained on historical data can perpetuate or amplify existing
disparities if the training data reflect biased care patterns. Auditing models
across demographic subgroups, adjusting for confounders, and incorporating
fairness constraints during training are strategies to detect and mitigate bias.
Transparent reporting of model development, including data provenance,
preprocessing steps, and subgroup performance, supports accountability.
Ethical governance frameworks that involve clinicians, ethicists, patients, and
data stewards help ensure that models are developed and deployed in ways that

respect patient autonomy and equity.
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6. CASE STUDIES
Case studies that span structured data, temporal modeling, and imaging.

Case Study 1

The first case study addresses diabetes risk prediction using structured
clinical features. The dataset comprises demographic variables, anthropometric
measures, laboratory values, and clinical history. The modeling pipeline begins
with careful handling of missing laboratory values and encoding of categorical
comorbidities. Feature engineering produces derived variables such as body
mass index and composite comorbidity indices. Multiple models are trained and
compared, including logistic regression as an interpretable baseline, Random
Forests for robust variable selection, and gradient boosting machines for high
predictive accuracy. Model explainability using SHAP reveals that fasting
glucose, age, and body mass index are dominant contributors to predicted risk,
aligning with clinical knowledge. Calibration analysis ensures that predicted
probabilities correspond to observed incidence rates, which is essential for risk
communication and threshold selection. The case study highlights the
importance of addressing class imbalance, as undiagnosed or early stage
diabetes cases may be underrepresented in clinical datasets; oversampling and
cost sensitive learning improve sensitivity for the positive class without unduly
sacrificing specificity.

Case Study 2

The second case study focuses on cardiovascular disease prediction and
demonstrates the value of temporal modeling. The dataset includes longitudinal
vital signs, laboratory trends, medication histories, and lifestyle factors.
Temporal dependencies are captured using long short term memory networks
that process sequences of measurements over time, while tree based ensembles
operate on summary statistics and engineered temporal features. Comparative
evaluation shows that when rich time series data are available, recurrent models
outperform static models by capturing trajectories such as rising blood pressure

or progressive lipid abnormalities.

46



INTELLIGENT SYSTEMS: FROM DATA TO DECISIONS

Explainability techniques applied to the recurrent models, including
attention visualization and feature attribution over time, help clinicians
understand which periods and measurements most influenced risk estimates.
The case study also examines the integration of nonclinical contextual data,
such as socioeconomic indicators, which modestly improve predictive
performance and underscore the multifactorial nature of cardiovascular risk.

Case Study 3

The third case study examines COVID 19 detection from chest
radiographs using deep convolutional networks. The imaging dataset contains
labeled radiographs from patients with confirmed COVID 19, other
pneumonias, and healthy controls. A transfer learning approach leverages a
pretrained ResNet backbone, fine tuned on the medical images to adapt learned
filters to radiographic features. Data augmentation strategies, including
rotation, scaling, and intensity perturbations, mitigate overfitting and simulate
variability in acquisition. Model evaluation on held out test sets demonstrates
high discrimination between COVID 19 and non COVID 19 cases, and Grad
CAM visualizations show that the network attends to lung regions with
opacities consistent with viral pneumonia. The case study emphasizes the need
for external validation across institutions and imaging devices to ensure
generalizability, and it discusses pitfalls such as confounding by acquisition
artifacts or dataset shift.

Case Study 4

Predicting Patient Satisfaction Using Explainable Ensemble Learning

To further demonstrate the real-world applicability of machine learning
in healthcare beyond disease diagnosis, this chapter includes an additional case
study focused on predicting patient satisfaction using routine healthcare service
data (Rahman et al., 2025). Patient satisfaction is a critical indicator of
healthcare quality, influencing treatment adherence, healthcare utilization, and
system trust. This case study illustrates how ensemble machine learning models
combined with explainable Al techniques can be used to identify key
determinants of patient satisfaction and support data-driven quality

improvement initiatives.
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6.1 Background and Objective

While the previous case studies focus on disease diagnosis and risk
prediction, machine learning also plays a critical role in evaluating healthcare
service quality. Patient satisfaction is a key indicator of healthcare performance,
influencing treatment adherence, continuity of care, and trust in health systems.
This case study presents a real-world application of machine learning to predict
patient satisfaction using routine service and interaction data, and demonstrates

how explainable Al can identify actionable factors for quality improvement.

6.2 Dataset Description and Exploratory Analysis

The dataset comprises patient demographic characteristics (age, gender,
education level) and doctor—patient interaction variables, including
appointment ease, waiting time, consultation duration, provision of treatment
plans, medication explanations, involvement in decision-making, and
perceived neglect during visits. The target variable is binary patient satisfaction
(satisfied vs. dissatisfied).

Frequency analysis reveals that most patients are between 26 and 45
years of age, with a near-equal gender distribution. Approximately two-thirds
of patients report satisfaction with healthcare services. Operational factors
show variability: while appointment scheduling is generally perceived as easy,
prolonged waiting times and limited communication regarding medications or
decision-making involvement emerge as potential sources of dissatisfaction.
This exploratory analysis highlights the relevance of service-process variables
in shaping patient experience.

e Sample size: 312
e Outcome: satisfied vs dissatisfied

e (ategories: demographics, interaction characteristics
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Table 1. Frequency distribution of patient characteristics, interaction variables, and

satisfaction levels

Categories Main categories Sub-categories Frequency (percent)
16-25 70 (22.44%)
26-35 63 (20.19%)
Age 36-45 74 (23.72%)
46-55 48 (15.38%)
55+ 57 (18.27%)
Pati
atient male 152 (48.72%)
characteristics Gender
female 160 (51.28%)
illiterate 52 (16.67%)
rimar 49 (15.71%
Education level P Y ( ®)
secondary 95 (30.45%)
higher education 116 (37.18%)
) yes 196 (62.82%)
Appointment ease
no 116 (37.18%)
0-60 219 (70.19%)
Waiting time (minutes) 61-120 59 (18.91%)
120+ 34 (10.90%)
yes 246 (78.85%)
Treatment plan
no 66 (21.15%)
5 84 (26.92%)
Int ti
eraction o 10 120 (38.46%)
Characteristics | Visiting time (minutes)
15 81 (25.96%)
15+ 27 (8.65%)
o yes 162 (51.92%)
Decision involves
no 150 (48.08%)
o ) yes 188 (60.26%)
Medicine details
no 124 (39.74%)
) yes 60 (19.23%)
Ignore patient
no 252 (80.77%)
) ) ) satisfied 198 (63.46%)
Target Patient satisfaction —
dissatisfied 114 (36.54%)
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6.3 Model Development and Performance Evaluation

The dataset exhibits class imbalance, with a higher proportion of satisfied
patients. To address this issue, the Synthetic Minority Over-sampling Technique
(SMOTE) was applied only to the training set, while the test set was kept
unchanged to preserve real-world data characteristics. Multiple ensemble
learning models were evaluated, including Adaptive Boosting (Freund &
Schapire, 1997), Bagging, Random Forest (Breiman, 2001), Extreme Gradient
Boosting (Chen & Guestrin, 2016), Categorical Boosting (Prokhorenkova et al.,
2018), Gradient Boosting (Friedman, 2000), and Light Gradient Boosting
Machine (LightGBM) (Ke et al., 2017).

Model performance was assessed using accuracy, area under the receiver
operating characteristic curve (AUC), and Matthews Correlation Coefficient
(MCC), the latter being particularly informative for imbalanced healthcare
datasets. Comparative results indicate that LightGBM trained on the original
(non-SMOTE) data achieves the best overall performance, with the highest
MCC and competitive accuracy and AUC values. Although SMOTE improves
class balance, it generally leads to reduced MCC and AUC, suggesting potential
overfitting to synthetic samples and diminished generalization.

Matrices Formula Range
(worst, best)
Accuracy TP +TN (0, 1)
TP +TN + FP + FN
Sensitivaty, or TP (0, 1)
TP+ FN

Recall, or

tive rate (TPR)

I'rue p

Sp or TN (0, 1)
Tt te (TNR) TN + FP
Precision, or TP (0, 1)
P ctive value(PPT TP +FP
F1 score 2(precision X recall) 2TP (0, 1)
precision + recall 2(TP + FP + FN)
MCC TPxTN — FPx FN (-1, +1)
J@TP + FP)x (TP + FN) x (TN + FP) x (TN + FN)
AU Sp—np(n, +1)/2 (0, 1)
Npny,
Kappa statistics (i) 2(TPxTN — FP x FN) (-1, +1)

(TP + FP) X (TN + FP) + (TP + FN) X (TN + FN)

Figure 1. Model Performance Comparison
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Table 2. Performance comparison of ensemble classifiers before and after SMOTE

Model Accuracy ROC-AUC MCC
Adaptive Boosting Classifier 0.833333 0.746071 0.630346
Adaptive Boosting Classifier (SMOTE) 0.820513 0.723214 0.601338
Bagging Classifier 0.846154 0.791786 0.668492
Bagging Classifier (SMOTE) 0.833333 0.8175 0.631432
Categorical Boosting Classifier 0.858974 0.828929 0.6906
Categorical Boosting Classifier (SMOTE) 0.833333 0.828929 0.63524
Extreme Gradient Boosting 0.846154 0.816429 0.662292
Extreme Gradient Boosting (SMOTE) 0.846154 0.835357 0.671898
Gradient Boosting Classifier 0.846154 0.805357 0.662292
Gradient Boosting Classifier (SMOTE) 0.807692 0.803214 0.579062
Light Gradient Boosting Machine 0.858974 0.832857 0.696065
Light Gradient Boosting Machine (SMOTE) 0.846154 0.811786 0.659399
Random Forest Classifier 0.833333 0.806071 0.640714
Random Forest Classifier (SMOTE) 0.820513 0.8025 0.61
Confusion Matrix ROC Curve
1.0 -
"E _ True Neg False Pos 40 o 08-
g 18 10 2
23 0 -
3 :g _ False Neg True Pos i g .
% : i 10 & 02
(Iissallisﬁcd satisfied 0.0 -5 - ._ RIOC"AU(I. 70'833.
Predicted label 000 025 050 075 1.00
Accuracy=0.859 False Positive Rate

Figure 2. Confusion matrix and ROC curve for the LightGBM classifier

6.4 Model Interpretation Using SHAP

To ensure transparency and clinical relevance, the optimal LightGBM
model was interpreted using TreeSHAP. Global feature importance analysis
shows that provision of a treatment plan is the most influential predictor of
patient satisfaction, followed by age, appointment ease, waiting time, and
clarity of medication information.
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These findings align with established evidence emphasizing
communication and process efficiency as determinants of patient experience.

SHAP summary and dependence plots provide further insight into
feature effects. Longer waiting times and perceived neglect during
consultations are associated with negative contributions to satisfaction, whereas
clear treatment plans, easier appointment scheduling, and adequate medication
explanations positively influence satisfaction. Older patients tend to report
higher satisfaction levels, while gender shows minimal impact. Education level
exhibits a mixed but generally positive association, suggesting that health
literacy may moderate patient perceptions. Interestingly, limited involvement
in decision-making does not uniformly reduce satisfaction, possibly reflecting
trust in physician expertise within the study context.
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Figure 3. SHAP global feature importance and summary plot for the LightGBM
model
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Figure 4. SHAP dependence plots for patient demographic characteristics
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Figure 5. SHAP dependence plots for doctor—patient interaction characteristics

This case study complements the earlier disease-focused examples by
demonstrating how machine learning can also be applied to healthcare service
evaluation and quality improvement. Together, the four case studies illustrate
the versatility of machine learning across clinical, operational, and patient-
centered healthcare outcomes.

6.5 Implications for Healthcare Quality Improvement

This case study demonstrates how ensemble machine learning combined
with explainable Al can support healthcare service evaluation. By identifying
modifiable service-related factors—such as waiting time management,
treatment communication, and patient engagement—predictive models can
inform targeted interventions aimed at improving patient-centered care. Unlike
disease-focused prediction tasks, this example highlights the broader
applicability of machine learning in operational and policy-oriented healthcare
decision-making.

Together with the preceding case studies, this example illustrates the
versatility of machine learning across clinical, operational, and experiential
dimensions of healthcare. Each case study includes a discussion of
experimental design choices, hyperparameter tuning strategies, and validation
protocols. For example, in the diabetes study, nested cross validation was used
to select tree depth and learning rate for gradient boosting models, while

calibration was improved using isotonic regression on held out folds.
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In the cardiovascular study, sequence length and sampling frequency
were varied to assess the sensitivity of recurrent models to temporal resolution,
and attention maps were inspected to ensure that models did not rely on
spurious temporal artifacts. In the imaging study, external test sets from
different hospitals were used to evaluate robustness, and sensitivity analyses
examined the impact of image preprocessing pipelines on model performance.

7. RESULTS AND SYNTHESIS

Across the case studies, several consistent findings emerge. Gradient
boosting machines tend to perform strongly on structured clinical data due to
their ability to model nonlinear interactions and handle heterogeneous feature
types. Recurrent neural networks and transformer based temporal models excel
when dense longitudinal data are available, capturing dynamic patterns that
static models miss. Convolutional neural networks remain the state of the art
for imaging tasks, particularly when combined with transfer learning and
careful augmentation. Explainability methods such as SHAP and Grad CAM
provide complementary insights: SHAP quantifies feature contributions for
tabular models, while Grad CAM localizes salient image regions for
convolutional models. Calibration and subgroup analyses are essential
complements to discrimination metrics; a highly discriminative model that is
poorly calibrated or that performs unevenly across demographic groups may be
unsafe for clinical deployment.

The synthesis of these results underscores a broader lesson: no single
algorithm is universally best. Model selection should be driven by data
modality, clinical objectives, and operational constraints. Equally important is
the end to end pipeline: data quality, preprocessing, feature engineering,
validation strategy, and interpretability collectively determine whether a model
will be useful and trustworthy in practice. The results also highlight the
importance of external validation and prospective evaluation. Models that
perform well on retrospective datasets may degrade when confronted with new
populations, different measurement devices, or shifts in clinical practice.
Continuous monitoring and retraining strategies are therefore necessary

components of a sustainable deployment plan.
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8. DISCUSSION

The application of machine learning to healthcare prediction offers
substantial benefits but also faces significant challenges. On the positive side,
predictive models can enable earlier detection of disease, more efficient
allocation of resources, and personalized treatment strategies. They can surface
latent patterns in multimodal data that inform new clinical hypotheses and
support population health initiatives. Explainable models can augment clinician
decision making by highlighting relevant risk factors and by providing case
level rationales for predictions.

However, practical barriers remain. Data privacy regulations and
institutional policies limit access to large, diverse datasets, which constrains
model generalizability. Class imbalance, missingness, and measurement error
are endemic in clinical data and require careful methodological responses. Deep
learning models demand substantial computational resources for training and
may be challenging to deploy in resource constrained settings. Moreover, the
sociotechnical aspects of deployment—clinician workflows, user interfaces,
alert fatigue, and medico legal considerations—are often underestimated. A
model that performs well in retrospective evaluation may fail to deliver clinical
benefit if it is poorly integrated into care processes or if clinicians do not trust
its outputs.

Ethical considerations are paramount. Predictive models can
inadvertently perpetuate disparities if training data reflect biased care patterns.
Transparent reporting, subgroup performance audits, and stakeholder
engagement are necessary to identify and mitigate such risks. Federated
learning and privacy preserving techniques offer promising avenues to train
models across institutions without sharing raw data, but they introduce new
technical and governance complexities. The interpretability of models must be
balanced with predictive performance; in some contexts, a slightly less accurate
but more interpretable model may be preferable because it facilitates clinician
acceptance and safer decision making.

Operationalizing machine learning in healthcare requires attention to
deployment pipelines, integration with electronic health record systems, user

experience design, and clinician education.
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Alerting thresholds should be tuned to minimize false positives that
contribute to alert fatigue while preserving sensitivity for clinically actionable
events. Monitoring systems should track model performance, data drift, and
fairness metrics, and governance structures should define responsibilities for

model maintenance, updates, and incident response.

Deployment and Integration into Clinical Workflows

Translating a predictive model from a research prototype into a clinical
tool requires more than technical excellence; it demands careful integration
with existing workflows, attention to user experience, and alignment with
institutional priorities. Successful deployment begins with stakeholder
engagement, where clinicians, nurses, informaticians, and administrators
collaborate to define the clinical question, acceptable operating characteristics,
and the decision pathways that will follow a model’s output. Integration with
electronic health record systems is often necessary so that predictions appear at
the point of care in a manner that is timely and actionable. This integration must
respect clinical timing: alerts that arrive too early or too late can be ignored,
and frequent low value alerts contribute to fatigue. The user interface should
present predictions alongside concise, clinically relevant explanations and
suggested next steps rather than raw probabilities alone. Logging and audit
trails are essential for traceability, enabling clinicians and administrators to
review model outputs, the inputs that produced them, and subsequent actions
taken. Equally important is the design of feedback loops that capture clinician
responses and patient outcomes so that models can be monitored and retrained
as practice patterns and populations evolve. Operational readiness also includes
infrastructure for model serving, latency guarantees for real time predictions,
and fallback mechanisms when inputs are missing or systems are offline.
Finally, governance structures must define roles and responsibilities for model
maintenance, versioning, and incident response to ensure that predictive

systems remain safe and effective over time.
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Regulatory, Privacy, and Ethical Considerations

Regulatory frameworks and privacy protections shape what is feasible in
clinical machine learning. Models intended to inform diagnosis or treatment
may fall under medical device regulations in many jurisdictions, requiring
documentation of development processes, validation evidence, and risk
assessments. Compliance with data protection laws is nonnegotiable; de
identification, secure storage, and controlled access are baseline requirements,
while newer approaches such as differential privacy and secure multiparty
computation offer technical means to reduce privacy risks during model
training. Ethical considerations extend beyond privacy to include informed
consent, transparency about how patient data are used, and mechanisms for
patients to opt out where appropriate. Equity considerations require proactive
auditing for disparate performance across demographic groups and the
implementation of mitigation strategies when disparities are detected. Ethical
deployment also involves anticipating downstream effects: a model that
increases detection of a condition must be paired with capacity to provide
confirmatory testing and treatment, otherwise increased detection may create
unmet demand and unintended harms. Institutional review boards, ethics
committees, and multidisciplinary oversight bodies play a critical role in
evaluating the societal implications of predictive systems and ensuring that
deployment aligns with patient welfare and public trust.

Practical Implementation Roadmap

A pragmatic roadmap for implementing machine learning in healthcare
begins with a clear problem definition and a feasibility assessment that
considers data availability, clinical need, and potential impact. The next phase
involves data curation and pilot modeling to establish baseline performance and
identify data quality issues. Early engagement with end users informs the
design of outputs and the thresholds for clinical action. A staged validation
strategy moves from retrospective internal validation to external validation on
independent cohorts and finally to prospective pilot studies embedded in
clinical workflows. During pilots, mixed methods evaluation that combines
quantitative performance metrics with qualitative feedback from clinicians

uncovers usability issues and contextual barriers.
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If pilot results are favorable, institutions should plan for scaled
deployment with robust monitoring, retraining schedules, and governance
processes. Throughout implementation, documentation of data provenance,
preprocessing steps, model architectures, and hyperparameters supports
reproducibility and regulatory compliance. Training programs for clinicians
and staff help build trust and competence in interpreting model outputs. Finally,
economic evaluation that estimates costs, potential savings, and return on
investment informs long term sustainability decisions and helps prioritize

models that deliver measurable clinical and operational value.

Limitations and Mitigation Strategies

Despite their promise, machine learning models have limitations that
must be acknowledged and mitigated. One fundamental limitation is the
reliance on historical data that may not represent future patients or evolving
clinical practices; models can therefore degrade over time if not monitored and
updated. To mitigate this, continuous performance monitoring and scheduled
retraining using recent data are essential. Another limitation is the potential for
confounding and spurious correlations in observational data; causal inference
techniques and careful study design can reduce the risk of drawing incorrect
conclusions about interventions. Interpretability methods provide partial
mitigation for opacity, but they do not replace rigorous validation and clinician
oversight. Data heterogeneity across institutions can limit generalizability;
external validation and federated learning approaches can help build models
that are robust across diverse settings. Resource constraints, particularly in low
and middle income settings, may restrict the feasibility of deploying
computationally intensive models; model compression, edge computing, and
simpler yet interpretable algorithms can provide practical alternatives. Finally,
social and behavioral responses to predictive systems—such as changes in
clinician ordering behavior or patient anxiety—must be studied and managed

through careful implementation design and communication strategies.
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Future Research Directions

The frontier of machine learning for healthcare prediction lies at the
intersection of methodological innovation and real world applicability.
Multimodal learning that seamlessly integrates clinical notes, structured EHR
data, imaging, genomics, and sensor streams promises richer patient
representations and more personalized predictions. Advances in self supervised
and representation learning may reduce dependence on labeled data, enabling
models to leverage vast unlabeled clinical corpora. Federated and privacy
preserving learning paradigms will be critical for collaborative model
development across institutions while respecting patient confidentiality. Causal
machine learning methods that move beyond correlation to estimate the effects
of interventions will enhance the clinical utility of predictive models by
informing treatment decisions rather than merely forecasting risk. Research on
human Al collaboration, including how best to present uncertainty and
explanations to clinicians, will determine whether models augment decision
making effectively. Finally, embedding rigorous prospective evaluation and
health economic analyses into research pipelines will accelerate the translation
of promising models into interventions that demonstrably improve patient
outcomes and system efficiency.

Final Remarks

Machine learning for healthcare prediction stands at a pivotal moment.
The technical foundations are mature enough to support impactful applications,
yet the path to routine clinical use requires careful attention to data quality,
interpretability, governance, and human factors. By combining robust
methodological practices with thoughtful deployment strategies and ethical
stewardship, researchers and healthcare organizations can harness predictive
models to enhance patient care while minimizing risks. The work ahead is
inherently interdisciplinary and iterative: progress will come from close
collaboration among clinicians, data scientists, engineers, ethicists, and
patients, guided by rigorous evaluation and a commitment to equity and

transparency.
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As models move from the laboratory into the clinic, the ultimate measure
of success will be improved health outcomes, more efficient care delivery, and
greater trust between patients and the systems designed to serve them.

CONCLUSION

Machine learning has matured into a powerful set of tools for healthcare
prediction, capable of transforming raw clinical, imaging, sensor, and
molecular data into actionable insights. The combination of classical machine
learning, deep learning, and explainable Al yields models that can be both
accurate and interpretable when developed with careful attention to data quality,
validation, and clinical context. Future work should prioritize privacy
preserving model development, robust multimodal architectures, systematic
bias detection and mitigation, and seamless integration into clinical workflows.
Ultimately, the goal is not to replace clinicians but to augment their capabilities
with reliable, transparent, and ethically designed predictive systems that
improve patient outcomes. Realizing this vision will require interdisciplinary
collaboration among clinicians, data scientists, engineers, ethicists, and
patients, as well as sustained investment in data infrastructure, governance, and
prospective evaluation.
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INTRODUCTION

The rapid growth of information technology and the increasing demand
for high-performance computing have led to the evolution of advanced
computing paradigms. Traditional computing models, which relied heavily on
standalone machines and centralized systems, are no longer sufficient to handle
the massive volume of data and dynamic workloads generated by modern
applications. To overcome these limitations, distributed systems and cloud
computing have emerged as powerful solutions that enable scalable, reliable,
and efficient resource utilization.

Distributed systems form the foundational backbone of modern
computing infrastructures. A distributed system consists of multiple
independent computers that communicate and coordinate with each other
through a network to achieve a common goal. These systems allow resources
such as processing power, storage, and software services to be shared across
geographically dispersed locations. By distributing workloads across multiple
nodes, distributed systems improve performance, fault tolerance, and
availability while reducing the dependency on a single point of failure.

Cloud computing builds upon the principles of distributed systems and
introduces a service-oriented approach to computing. It provides on-demand
access to a shared pool of configurable computing resources, including servers,
networks, storage, and applications, over the Internet. One of the defining
characteristics of cloud computing is its pay-as-you-go model, which allows
users to pay only for the resources they consume. This model significantly
reduces capital expenditure and makes advanced computing resources
accessible to individuals, startups, and large enterprises alike.

Virtualization plays a crucial role in cloud computing by abstracting
physical hardware into multiple virtual resources. Through virtualization
technologies such as virtual machines and containers, cloud providers can
efficiently allocate and manage resources among multiple users while ensuring
isolation and security. This abstraction enables elasticity, allowing cloud
systems to dynamically scale resources up or down based on application

demand, which is a key advantage over traditional computing models.
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Modern cloud platforms support various service models, including
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS). These service models cater to different levels of user
control and responsibility, enabling flexibility in application development and
deployment. Additionally, cloud environments integrate distributed storage
systems, NoSQL databases, orchestration tools, and service-oriented
architectures to handle large-scale data processing and high availability
requirements.

With the continuous evolution of technology, cloud computing is
incorporating emerging paradigms such as microservices, serverless
computing, and edge computing. These advancements address challenges
related to latency, scalability, and efficient resource utilization. As a result,
understanding cloud computing and distributed systems has become essential
for computer science and engineering students, researchers, and professionals.
This chapter provides a comprehensive foundation for understanding how
distributed systems principles are applied in cloud environments to build
resilient, scalable, and high-performance computing solutions.

1. FUNDAMENTALS OF DISTRIBUTED SYSTEMS

Distributed systems form the core of modern computing infrastructures,
enabling multiple independent machines to work together as a unified system.
Understanding the fundamentals of distributed systems is essential for
designing scalable, reliable, and efficient cloud-based and networked
applications. This section explains the basic concepts, design goals,
characteristics, and components that define distributed systems.

1.1 Definition and Scope of Distributed Systems

A distributed system is defined as a collection of autonomous computers
that communicate and coordinate with one another through a network to
achieve a common objective. Each computer, often referred to as a node,
operates independently but contributes to the overall functionality of the
system. From the user’s perspective, the system appears as a single coherent
unit, even though its components may be geographically dispersed.
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The scope of distributed systems is broad and includes distributed
databases, web services, cloud platforms, peer-to-peer networks, and content
delivery networks. These systems are designed to support applications that
require high availability, large-scale data processing, and continuous operation.
As a result, distributed systems are widely used in banking systems, e-
commerce platforms, social media applications, and scientific research

environments.

1.2 Distributed System Models

Distributed systems can be organized using different architectural
models, depending on application requirements and communication patterns.
The most common model is the client—server model, where clients request
services and servers provide them. This model simplifies management and is
widely used in web-based applications and enterprise systems.

Another important model is the peer-to-peer (P2P) model, in which all
nodes act as both clients and servers. This decentralized approach improves
scalability and fault tolerance, as there is no single point of control. Hybrid
models combine elements of both client—server and peer-to-peer architectures,
offering flexibility and improved performance for large-scale systems.

1.3 Goals of Distributed Systems

The primary goal of distributed systems is resource sharing, which
allows users and applications to access hardware, software, and data resources
across the network. By sharing resources, systems can reduce costs and
improve utilization. Another key goal is performance improvement, achieved
through parallel execution and load balancing across multiple nodes.

Scalability is also a fundamental goal, enabling systems to handle
increasing workloads by adding more resources rather than upgrading existing
ones. Additionally, fault tolerance and reliability ensure that the system
continues to function correctly even when some components fail. These goals
collectively make distributed systems suitable for mission-critical applications.
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1.4 Characteristics of Distributed Systems

Distributed systems exhibit several defining characteristics, including
concurrency, where multiple processes execute simultaneously across different
nodes. This enhances system throughput and reduces response time. Another
important characteristic is heterogeneity, as distributed systems often consist of
diverse hardware platforms, operating systems, and programming languages.

Transparency is a key feature that hides the complexity of distribution
from users. Types of transparency include location transparency, access
transparency, and failure transparency. Together, these characteristics enable
distributed systems to provide seamless and efficient services despite their
underlying complexity.

1.5 Communication Mechanisms in Distributed Systems

Communication is a critical aspect of distributed systems, as nodes must
exchange information to coordinate actions. One common communication
mechanism is message passing, where processes send and receive messages
over a network. Message passing is flexible and widely used in distributed
applications.

Another important mechanism is Remote Procedure Call (RPC), which
allows a process to invoke a procedure on a remote system as if it were a local
function call. Modern distributed systems also use higher-level communication
techniques such as RESTful APIs and message queues to support scalable and
asynchronous communication.

1.6 Synchronization and Consistency

Synchronization ensures proper coordination among concurrent
processes in a distributed environment. Since nodes operate independently and
may not share a global clock, synchronization becomes challenging.
Techniques such as logical clocks and distributed locking mechanisms are used
to manage concurrency.

Consistency refers to maintaining uniform data across distributed nodes.
Distributed systems often face trade-offs between consistency, availability, and
partition tolerance, as explained by the CAP theorem. Understanding these
trade-offs is essential for designing reliable distributed applications.
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1.7 Fault Tolerance and Reliability

Failures are inevitable in distributed systems due to hardware faults,
network issues, or software errors. Fault tolerance is achieved through
redundancy, replication, and error detection mechanisms. By replicating data
and services across multiple nodes, systems can continue to operate even if
some components fail.

Reliability ensures that the system performs its intended function
correctly over time. Techniques such as checkpointing, failure recovery, and
monitoring help maintain system reliability. These mechanisms are particularly
important in cloud environments where large-scale distributed systems operate

continuously.

1.8 Security in Distributed Systems

Security is a major concern in distributed systems because data and
resources are shared across networks. Common security challenges include
unauthorized access, data breaches, and denial-of-service attacks. To address
these issues, distributed systems employ authentication, authorization, and
encryption techniques.

Secure communication protocols, access control mechanisms, and
intrusion detection systems help protect distributed environments. As
distributed systems increasingly support cloud and internet-based applications,
ensuring robust security has become a critical requirement.

1.9 Middleware in Distributed Systems

Middleware acts as an intermediary layer between applications and
underlying network infrastructure. It provides services such as communication
management, resource discovery, and transaction handling. Middleware
simplifies application development by hiding low-level networking details.

Examples of middleware include message-oriented middleware, object
request brokers, and cloud orchestration platforms. Middleware plays a vital
role in ensuring interoperability, scalability, and reliability in distributed

systems.

68



INTELLIGENT SYSTEMS: FROM DATA TO DECISIONS

1.10 Relationship Between Distributed Systems and Cloud

Computing

Cloud computing is built on the principles of distributed systems,
incorporating additional features such as virtualization, automation, and service
abstraction. Distributed systems provide the foundation for cloud services by
enabling resource sharing, fault tolerance, and scalability.

Understanding the fundamentals of distributed systems helps in
comprehending cloud architectures, service models, and deployment strategies.
This relationship highlights the importance of distributed systems as a core

subject in computer science and engineering education.

2. CLOUD COMPUTING ARCHITECTURE

Cloud computing architecture defines the structural design of cloud
systems and explains how various components interact to deliver computing
services over the Internet. It provides a conceptual framework that enables
scalability, reliability, availability, and efficient resource management.
Understanding cloud architecture is essential for designing, deploying, and
managing modern cloud-based applications.

2.1 Overview of Cloud Architecture

Cloud computing architecture is broadly divided into two major parts:
the front end and the back end. The front end consists of client-side components
such as web browsers, mobile applications, and thin clients that allow users to
access cloud services. The back end includes cloud servers, storage systems,
virtual machines, databases, and management software.

These components communicate through the Internet using standard
protocols. From the user’s perspective, cloud services appear simple and
seamless, while the underlying architecture manages complex tasks such as
load balancing, data replication, and fault handling. This layered structure

allows cloud providers to deliver services efficiently at a global scale.
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2.2 Front-End Architecture

The front-end architecture represents the user interface of cloud
computing. It includes client devices such as desktops, laptops, smartphones,
and tablets, along with applications like web browsers or dedicated cloud apps.
These components enable users to request services, upload data, and interact
with cloud-hosted applications.

The front end is designed to be lightweight and platform-independent,
ensuring accessibility from anywhere and on any device. Technologies such as
HTML, CSS, JavaScript, and APIs are commonly used to create responsive and
user-friendly cloud interfaces. This design enhances usability while minimizing

client-side processing requirements.

2.3 Back-End Architecture

The back end is the core of cloud computing architecture and consists of
powerful servers, storage systems, and networking components housed in data
centers. It is responsible for processing client requests, managing resources, and
storing data. Cloud providers maintain large-scale data centers distributed
across multiple geographic locations to ensure high availability.

Key components of the back end include application servers, database
servers, distributed storage systems, and virtualization platforms. These
components work together to deliver scalable and reliable services while
handling millions of user requests simultaneously.

2.4 Role of Virtualization

Virtualization is a fundamental technology in cloud architecture that
enables multiple virtual machines (VMs) or containers to run on a single
physical server. By abstracting hardware resources such as CPU, memory, and
storage, virtualization allows efficient utilization of physical infrastructure.

Through virtualization, cloud providers can dynamically allocate
resources based on demand. This flexibility supports elasticity, enabling
systems to scale up during peak loads and scale down during low usage periods.
Virtualization also enhances security by isolating applications and users from

one another.
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2.5 Cloud Service Layers

Cloud architecture is commonly organized into service layers that define
how resources are delivered to users. Infrastructure as a Service (I1aaS) provides
basic computing resources such as virtual machines, storage, and networking.
Users have control over operating systems and applications while the provider
manages the physical infrastructure.

Platform as a Service (PaaS) offers development platforms, middleware,
and runtime environments that simplify application development. Software as
a Service (SaaS) delivers fully functional applications over the Internet,
allowing users to access software without installation or maintenance. These

layers provide flexibility and support different application requirements.

2.6 Resource Management and Load Balancing

Resource management is a critical function of cloud architecture,
ensuring optimal utilization of computing resources. Cloud management
software monitors system performance and allocates resources dynamically to
meet application demands. This prevents overloading and improves system
efficiency.

Load balancing distributes incoming requests across multiple servers to
prevent any single server from becoming a bottleneck. By evenly distributing
workloads, load balancing improves response time, availability, and fault
tolerance in cloud environments.

2.7 Distributed Storage Architecture

Cloud computing relies heavily on distributed storage systems to manage
massive volumes of data. Instead of storing data on a single machine, cloud
storage distributes data across multiple servers. This approach improves
scalability, reliability, and data availability.

Distributed storage systems often use data replication and redundancy
techniques to ensure fault tolerance. Even if one storage node fails, data remains
accessible from other nodes. Examples include object storage systems and
distributed file systems used by major cloud providers.
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2.8 Networking and Communication Infrastructure

Networking forms the backbone of cloud computing architecture. High-
speed networks connect data centers, servers, and users across the globe. Cloud
networks use technologies such as virtual private networks (VPNs), software-
defined networking (SDN), and network virtualization to manage traffic
efficiently.

These networking technologies enable secure data transmission, low
latency, and reliable connectivity. Effective communication infrastructure
ensures seamless interaction between distributed cloud components and end

users.

2.9 Security Architecture in Cloud Computing

Security is an integral part of cloud architecture due to the shared and
distributed nature of cloud environments. Cloud security architecture includes
mechanisms such as authentication, authorization, encryption, and access
control. These measures protect data and applications from unauthorized
access.

Cloud providers also implement monitoring, intrusion detection, and
compliance mechanisms to ensure system integrity. Security responsibilities are
often shared between cloud providers and users, depending on the service
model used.

2.10 High Availability and Fault Tolerance

High availability is achieved by deploying cloud services across multiple
servers and data centers. Redundant components ensure that failures do not
disrupt service delivery. Fault tolerance mechanisms detect failures and
automatically redirect workloads to healthy components.

Techniques such as replication, backup, and disaster recovery planning
are essential elements of cloud architecture. These features make cloud
platforms suitable for mission-critical applications that require continuous
operation.
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2.11 Relationship Between Cloud Architecture and Distributed

Systems

Cloud computing architecture is deeply rooted in distributed system
principles such as decentralization, concurrency, and fault tolerance.
Distributed coordination mechanisms enable cloud components to function
cohesively despite being geographically dispersed.

By integrating distributed systems concepts with virtualization and
automation, cloud architecture provides a powerful platform for modern
computing applications. Understanding this relationship helps students and
professionals design efficient and resilient cloud solutions.

3. CLOUD SERVICE MODELS

Cloud service models define how computing resources and services are
delivered to users over the Internet. These models determine the level of
control, responsibility, and flexibility provided to users and organizations. The
three primary cloud service models are Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS). Each model
serves different application needs and development scenarios.

Infrastructure as a Service (laasS)

Infrastructure as a Service provides fundamental computing resources
such as virtual machines, storage, networking, and load balancers. In this
model, cloud providers manage the physical infrastructure, including servers,
data centers, and networking hardware, while users are responsible for
managing operating systems, applications, and data.

laaS offers high flexibility and scalability, allowing users to provision
and deprovision resources on demand. It is particularly suitable for
organizations that require full control over their computing environment or
need to migrate legacy applications to the cloud. Common examples of laaS

include virtual servers, cloud storage services, and virtual networks.
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Platform as a Service (PaaS)

Platform as a Service provides a complete development and deployment
environment in the cloud. It includes operating systems, middleware,
development tools, databases, and runtime environments, enabling developers
to focus on application logic without worrying about infrastructure
management.

PaaS simplifies application development by offering built-in scalability,
load balancing, and security features. It supports rapid application development
and continuous integration and deployment (CI/CD) practices. This model is
widely used for web and mobile application development, where speed and
efficiency are critical.

Software as a Service (SaasS)

Software as a Service delivers fully functional software applications over
the Internet. Users can access these applications through web browsers without
installing or maintaining any software locally. The cloud provider manages the
entire stack, including infrastructure, platform, and application software.

SaaS offers ease of use, automatic updates, and reduced operational
costs. It is commonly used for email services, customer relationship
management (CRM), enterprise resource planning (ERP), and collaboration
tools. This model is ideal for users who want ready-to-use applications with
minimal technical involvement.

Comparison of Cloud Service Models

The key difference among laaS, PaaS, and SaaS lies in the level of
control and responsibility assigned to users. laaS provides maximum control
over operating systems and applications, while SaaS offers minimal control but
maximum convenience. PaaS falls between the two, balancing flexibility and
simplicity.

Choosing the appropriate service model depends on factors such as
application complexity, budget, technical expertise, and business requirements.
Understanding these differences helps organizations make informed decisions
when adopting cloud services.

74



INTELLIGENT SYSTEMS: FROM DATA TO DECISIONS

Use Cases of Cloud Service Models

IaaS is commonly used for hosting websites, disaster recovery, and large-
scale data analysis. PaaS is ideal for application development, testing, and
deployment environments. SaaS is widely adopted for productivity tools,
communication platforms, and business applications.

Each service model supports different workloads and industries, making
cloud computing adaptable to diverse computing needs. Organizations often

use a combination of service models to optimize performance and cost.

Advantages of Cloud Service Models

Cloud service models offer numerous advantages, including cost
efficiency, scalability, and flexibility. Users can quickly scale resources based
on demand, avoiding over-provisioning and reducing capital expenditure. The
pay-as-you-go pricing model further enhances cost control.

Additionally, cloud service models enable faster innovation by reducing
time-to-market for applications. Built-in security, reliability, and availability
features make cloud services suitable for modern, large-scale applications.

Challenges and Limitations

Despite their benefits, cloud service models also face challenges. These
include data security concerns, vendor lock-in, and limited control in higher-
level service models such as SaaS. Performance issues may also arise due to
network dependency.

Organizations must carefully evaluate these challenges and adopt
appropriate strategies, such as hybrid cloud models and strong security
practices, to mitigate potential risks.

Role of Service Models in Cloud Architecture

Cloud service models play a vital role in shaping cloud architecture by
defining responsibilities between providers and users. They influence
application design, deployment strategies, and operational workflows.

By selecting the right service model, organizations can achieve optimal
balance between control, scalability, and ease of use. This understanding is
essential for effective cloud adoption and management.
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4. CLOUD DEPLOYMENT MODELS

Cloud deployment models define how cloud infrastructure is deployed
and accessed by users. These models determine ownership, access control,
security level, and scalability of cloud resources. Selecting an appropriate
deployment model is crucial for meeting organizational requirements related to
data privacy, compliance, cost, and performance. The main cloud deployment
models include public cloud, private cloud, hybrid cloud, and community
cloud.

Public Cloud

The public cloud is a cloud deployment model in which computing
resources are owned and managed by a third-party cloud service provider and
made available to the public over the Internet. Multiple users, known as tenants,
share the same infrastructure while maintaining data isolation through
virtualization and security mechanisms.

Public clouds offer high scalability, cost efficiency, and ease of access.
Since users do not need to invest in hardware or maintenance, this model is
ideal for startups, small businesses, and applications with variable workloads.
However, concerns related to data privacy and regulatory compliance may limit
its adoption for sensitive applications.

Private Cloud

A private cloud is dedicated exclusively to a single organization. It may
be hosted on-premises or managed by a third-party provider, but the
infrastructure is not shared with other users. This model offers greater control
over data, security, and system configuration.

Private clouds are suitable for organizations that handle sensitive data or
must comply with strict regulatory requirements. While they provide enhanced
security and customization, private clouds involve higher costs due to
infrastructure investment and maintenance responsibilities.
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Hybrid Cloud

Hybrid cloud combines two or more cloud deployment models, typically
public and private clouds, allowing data and applications to be shared between
them. This model provides flexibility by enabling organizations to keep critical
workloads in a private cloud while leveraging the scalability of the public cloud
for less sensitive operations.

Hybrid cloud environments support workload portability, disaster
recovery, and cost optimization. However, they require careful integration and
management to ensure seamless communication and consistent security

policies across different cloud environments.

Community Cloud

A community cloud is shared by multiple organizations with similar
requirements, such as regulatory compliance, security standards, or business
objectives. The infrastructure may be managed internally or by a third-party
provider and is accessible only to members of the community.

This model allows organizations to share costs while maintaining a
higher level of control compared to public clouds. Community clouds are
commonly used in sectors such as healthcare, education, and government,
where organizations share common goals and compliance needs.

Comparison of Cloud Deployment Models

Each cloud deployment model offers distinct advantages and limitations.
Public clouds excel in scalability and cost efficiency, private clouds provide
enhanced security and control, hybrid clouds offer flexibility, and community
clouds balance cost and compliance.

The choice of deployment model depends on factors such as data
sensitivity, workload characteristics, budget constraints, and regulatory
requirements. Many organizations adopt a multi-cloud or hybrid approach to

leverage the strengths of multiple models.
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Advantages of Cloud Deployment Models

Cloud deployment models enable organizations to tailor cloud usage
according to their needs. They support scalability, improved resource
utilization, and business continuity. Organizations can select models that align
with their operational goals and risk tolerance.

Additionally, deployment models facilitate innovation by providing
flexible environments for application development, testing, and deployment.
This adaptability makes cloud computing a powerful tool for digital

transformation.

Challenges in Cloud Deployment

Despite their benefits, cloud deployment models face challenges such as
data security risks, interoperability issues, and complex management. Hybrid
and multi-cloud environments, in particular, require sophisticated tools and
expertise to manage effectively.

Organizations must address these challenges through strong governance,
security policies, and careful planning to ensure successful cloud adoption.

Role of Deployment Models in Cloud Strategy

Cloud deployment models play a critical role in shaping an
organization’s cloud strategy. They influence decisions related to application
architecture, data management, and compliance.

A well-chosen deployment model enables organizations to maximize
cloud benefits while minimizing risks. Understanding these models is essential
for designing efficient and secure cloud solutions in modern computing
environments.

5. DISTRIBUTED STORAGE AND DATA MANAGEMENT

Distributed storage and data management are essential components of
cloud computing and distributed systems. As modern applications generate
massive volumes of data, traditional centralized storage systems are no longer
sufficient. Distributed storage systems store data across multiple machines and
locations, ensuring scalability, reliability, and high availability.
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Effective data management techniques enable efficient storage, retrieval,

consistency, and security of data in cloud environments.

Need for Distributed Storage Systems

The rapid growth of data generated by web applications, IoT devices, and
enterprise systems has increased the demand for scalable storage solutions.
Centralized storage systems face limitations in terms of capacity, performance,
and fault tolerance. Distributed storage systems overcome these limitations by
spreading data across multiple nodes.

By distributing data, these systems can handle large workloads and
support parallel access. This improves performance and ensures continuous
availability even when individual storage nodes fail. As a result, distributed
storage is widely used in cloud platforms and big data applications.

Architecture of Distributed Storage

Distributed storage architecture consists of multiple storage nodes
connected through a network. Each node stores a portion of the data, and
metadata services track data locations and replicas. This architecture enables
data to be accessed transparently by users and applications.

The system uses coordination mechanisms to manage data placement,
replication, and recovery. Load balancing ensures that storage requests are
evenly distributed, preventing bottlenecks and improving overall system
performance.

Data Replication and Redundancy

Data replication involves creating multiple copies of data across different
storage nodes. This technique improves data availability and fault tolerance by
ensuring that data remains accessible even if one or more nodes fail.

Redundancy also protects against data loss due to hardware failures or
network issues. Distributed storage systems use replication strategies such as
synchronous and asynchronous replication to balance consistency and

performance.
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Distributed File Systems

Distributed file systems provide a unified file storage interface while
storing data across multiple machines. Examples include systems designed for
cloud and big data environments. These systems support high throughput and
fault tolerance.

They are commonly used for storing large files, logs, and datasets
required for analytics and machine learning applications. Distributed file
systems enable multiple users and applications to access data concurrently.

Object Storage Systems

Object storage stores data as objects rather than files or blocks. Each
object contains data, metadata, and a unique identifier. This model supports
massive scalability and is well-suited for unstructured data such as images,
videos, and backups.

Object storage systems are widely used in cloud environments due to
their durability, cost efficiency, and ease of access through APIs. They support
replication and geographic distribution for high availability.

Distributed Databases and NoSQL Systems

Distributed databases manage structured and semi-structured data across
multiple nodes. NoSQL databases are designed to handle large-scale data with
high availability and flexible schemas.

These systems prioritize scalability and performance, often relaxing
strict consistency guarantees. They are commonly used in applications
requiring real-time data processing and large-scale analytics.

Data Consistency Models

Consistency models define how updates to data are propagated across
distributed storage systems. Strong consistency ensures that all users see the
same data at the same time, while eventual consistency allows temporary
differences.

Choosing an appropriate consistency model involves trade-offs between
performance, availability, and reliability. Understanding these trade-offs is
critical for designing effective data management solutions.
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Data Management Techniques

Data management techniques include data partitioning, indexing,
caching, and compression. Partitioning divides data into smaller segments for
efficient storage and access, while caching improves performance by storing
frequently accessed data closer to users.

These techniques help optimize storage utilization and reduce latency.
Automation tools are often used to manage data lifecycle tasks such as backup,
archiving, and deletion.

Security and Privacy in Distributed Storage

Security is a major concern in distributed storage systems due to data
being stored across multiple locations. Encryption, access control, and
authentication mechanisms are used to protect data from unauthorized access.

Data privacy regulations require organizations to ensure compliance
through secure data handling practices. Distributed storage systems incorporate
monitoring and auditing tools to detect and prevent security breaches.

Fault Tolerance and Disaster Recovery

Fault tolerance ensures that storage systems continue to operate despite
hardware or network failures. Techniques such as replication, data recovery,
and automatic failover are used to maintain availability.

Disaster recovery strategies include data backups and replication across
geographically distributed data centers. These strategies ensure data integrity
and continuity in the event of large-scale failures.

Role of Distributed Storage in Cloud Computing

Distributed storage is a foundational element of cloud computing,
supporting scalability, elasticity, and high availability. It enables cloud
providers to offer reliable storage services to millions of users worldwide.

By integrating distributed storage with cloud management and
orchestration tools, cloud platforms can efficiently handle diverse workloads

and data-intensive applications.
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6. FAULT TOLERANCE AND RELIABILITY

Fault tolerance and reliability are critical aspects of distributed systems
and cloud computing environments. Due to the presence of multiple
interconnected components, failures in hardware, software, or networks are
inevitable. A well-designed distributed system must be capable of continuing
its operation even when some of its components fail. This section discusses the
concepts, techniques, and importance of fault tolerance and reliability in
modern computing systems.

Understanding System Failures

System failures in distributed environments can occur due to various
reasons, including hardware malfunctions, software bugs, network outages, and
human errors. These failures may affect individual components or entire
subsystems. Since distributed systems rely on communication among nodes,
even minor failures can disrupt system performance.

Failures are generally categorized as crash failures, omission failures,
timing failures, and Byzantine failures. Understanding these failure types helps
system designers develop appropriate strategies to detect, isolate, and recover
from failures efficiently.

Importance of Fault Tolerance

Fault tolerance ensures that a system continues to function correctly even
in the presence of failures. In cloud and distributed systems, fault tolerance is
essential to maintain service availability and prevent data loss. Users expect
uninterrupted access to services, especially in mission-critical applications such
as banking, healthcare, and e-commerce.

By incorporating fault tolerance mechanisms, systems can minimize
downtime and ensure consistent performance. This not only enhances user trust

but also reduces financial losses associated with system outages.

Reliability in Distributed Systems
Reliability refers to the ability of a system to perform its intended
function correctly over a specified period of time. A reliable distributed system

delivers correct results despite component failures and varying workloads.
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Reliability is often measured using metrics such as mean time to failure
(MTTF) and mean time between failures (MTBF).

In distributed systems, reliability is closely linked to fault tolerance.
While fault tolerance focuses on handling failures, reliability emphasizes long-
term system stability and correctness. Together, these concepts ensure
dependable system behavior.

Redundancy and Replication Techniques

Redundancy involves adding extra components or resources to a system
to compensate for potential failures. Replication is a common redundancy
technique where multiple copies of data or services are maintained across
different nodes. If one replica fails, others can continue to serve requests.

Replication improves both fault tolerance and availability but introduces
challenges such as data consistency and synchronization. Distributed systems
use coordination protocols to ensure that replicas remain consistent while
maintaining high performance.

Failure Detection and Recovery Mechanisms

Failure detection mechanisms monitor system components to identify
faults promptly. Techniques such as heartbeat messages, monitoring agents, and
health checks are commonly used to detect failures in distributed systems.
Quick detection allows systems to respond effectively before failures
propagate.

Recovery mechanisms include restarting failed components, switching
to backup resources, and reassigning workloads to healthy nodes. Automated
recovery is especially important in cloud environments, where systems must
handle failures without manual intervention.

Checkpointing and Rollback

Checkpointing is a technique in which a system periodically saves its
state to stable storage. In the event of a failure, the system can roll back to the
last saved checkpoint and resume operation. This approach minimizes data loss

and reduces recovery time.

83



INTELLIGENT SYSTEMS: FROM DATA TO DECISIONS

Checkpointing is widely used in distributed applications and cloud-based
workloads, particularly in long-running computations. It ensures continuity and

improves overall system reliability.

Load Balancing and Failover

Load balancing distributes workloads evenly across multiple nodes,
preventing any single node from becoming a bottleneck. By spreading tasks
across available resources, load balancing improves performance and
resilience. If one node fails, others can handle the additional workload.

Failover mechanisms automatically redirect requests from failed
components to operational ones. These mechanisms ensure uninterrupted
service delivery and are a key component of high-availability cloud

architectures.

High Availability Systems

High availability (HA) systems are designed to provide continuous
operation with minimal downtime. This is achieved through redundancy,
replication, and automated recovery mechanisms. HA systems are essential for
applications that require near-zero downtime.

Cloud providers implement HA by deploying services across multiple
data centers and geographic regions. This geographic distribution further
enhances fault tolerance and reliability.

Consistency and Fault Tolerance Trade-offs

Distributed systems often face trade-offs between consistency,
availability, and partition tolerance, as described by the CAP theorem. To
achieve fault tolerance, systems may relax strict consistency requirements,
leading to eventual consistency.

Understanding these trade-offs allows system designers to make
informed decisions based on application requirements. Different applications
may prioritize consistency or availability depending on their use cases.
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Reliability Engineering in Cloud Environments

Reliability engineering focuses on designing systems that maintain
dependable performance under varying conditions. In cloud environments, this
involves monitoring, automated scaling, and continuous testing. Techniques
such as chaos engineering are used to test system resilience by intentionally
introducing failures.

By proactively identifying weaknesses, reliability engineering helps
improve system robustness. These practices are increasingly important as cloud
systems grow in complexity and scale.

Benefits of Fault Tolerance and Reliability

Fault tolerance and reliability provide numerous benefits, including
improved user experience, reduced downtime, and enhanced system
trustworthiness. They enable organizations to deliver consistent services even
in the face of failures.

In distributed and cloud systems, these features are essential for
supporting large-scale, mission-critical applications. A strong emphasis on fault
tolerance and reliability ensures long-term system success.

7. SECURITY AND PRIVACY IN CLOUD AND

DISTRIBUTED SYSTEMS

Security and privacy are major concerns in cloud computing and
distributed systems due to shared resources, remote data storage, and network-
based access. As data and applications move to cloud environments, protecting
sensitive information from unauthorized access and cyber threats becomes
critical. This section discusses the key security challenges and protection

mechanisms in modern cloud and distributed systems.

Security Challenges in Distributed Environments

Distributed systems face unique security challenges such as data
breaches, insider threats, and distributed denial-of-service (DDoS) attacks.
Since system components are spread across multiple locations, ensuring

consistent security policies becomes complex.
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Network vulnerabilities further increase the risk of attacks. Attackers
may exploit weak authentication mechanisms or insecure communication
channels, making robust security frameworks essential for distributed
environments.

Authentication and Access Control

Authentication ensures that only authorized users can access cloud
resources. Techniques such as passwords, multi-factor authentication, and
biometric verification are widely used in cloud systems.

Access control mechanisms determine the level of access granted to
users. Role-based access control (RBAC) and attribute-based access control
(ABAC) help enforce security policies by restricting access based on user roles
and permissions.

Data Encryption and Secure Communication

Encryption is a fundamental technique for protecting data in cloud
environments. Data is encrypted both at rest and during transmission to prevent
unauthorized access.

Secure communication protocols such as HTTPS and TLS ensure safe
data exchange between users and cloud services. Encryption plays a vital role
in maintaining data confidentiality and integrity.

Privacy Issues in Cloud Computing

Privacy concerns arise when user data is stored and processed on remote
servers managed by third-party providers. Issues such as data ownership, data
location, and unauthorized data sharing are major challenges.

Cloud providers implement privacy-preserving mechanisms and comply
with data protection regulations to ensure user trust. Transparency and strong

governance are essential for maintaining privacy in cloud systems.

Compliance and Regulatory Requirements
Organizations using cloud services must comply with legal and
regulatory standards related to data protection and privacy. These regulations
vary across regions and industries.
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Cloud providers offer compliance tools and certifications to help
organizations meet regulatory requirements. Compliance management is an
important aspect of cloud security strategy.

Security Best Practices

Best practices for cloud security include regular security audits,
vulnerability assessments, and continuous monitoring. Organizations must
adopt a shared responsibility model, where both cloud providers and users play
roles in ensuring security.

Implementing strong security policies and educating users about security
risks further enhances system protection.

8. EMERGING TRENDS IN CLOUD COMPUTING AND

DISTRIBUTED SYSTEMS

Cloud computing and distributed systems continue to evolve rapidly,
driven by advancements in technology and changing application demands.
Emerging trends aim to improve scalability, efficiency, and performance while
addressing limitations of traditional cloud models.

Microservices Architecture

Microservices architecture divides applications into small, independent
services that communicate through APIs. Each service can be developed,
deployed, and scaled independently.

This approach enhances flexibility and resilience, making it popular for
cloud-native applications. Microservices enable faster development cycles and
improved fault isolation.

Serverless Computing

Serverless computing allows developers to build and run applications
without managing servers. Cloud providers automatically handle resource
provisioning, scaling, and maintenance.

This model reduces operational complexity and cost, making it suitable

for event-driven applications and microservices-based workloads.
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Edge Computing

Edge computing brings computation closer to data sources, such as loT
devices and sensors. By processing data at the edge of the network, latency is
reduced and real-time responses are improved.

Edge computing complements cloud computing by handling time-
sensitive tasks locally while offloading heavy processing to centralized cloud
data centers.

Containerization and Orchestration

Containerization packages applications and their dependencies into
lightweight containers, ensuring consistency across environments. Container
orchestration platforms automate deployment, scaling, and management.

These technologies enhance portability and efficiency, supporting

modern cloud-native development practices.

Artificial Intelligence and Cloud Integration

Cloud platforms increasingly integrate artificial intelligence and machine
learning services. These services enable advanced analytics, automation, and
intelligent decision-making.

Cloud-based Al solutions allow organizations to leverage powerful
computing resources without investing in specialized hardware.

Multi-Cloud and Hybrid Strategies

Organizations are adopting multi-cloud and hybrid cloud strategies to
avoid vendor lock-in and improve resilience. These strategies involve using
services from multiple cloud providers.

Effective management and interoperability tools are essential for

handling the complexity of multi-cloud environments.

9. CASE STUDIES AND REAL-WORLD APPLICATIONS

Cloud computing and distributed systems are widely adopted across
industries, enabling scalable and reliable applications. Case studies highlight
how these technologies address real-world challenges.
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Cloud Computing in E-Commerce

E-commerce platforms rely on cloud computing to handle fluctuating
traffic and large volumes of transactions. Cloud infrastructure enables
scalability during peak shopping seasons.

Distributed databases and content delivery networks ensure fast and
reliable user experiences across geographic regions.

Cloud Applications in Healthcare

Healthcare organizations use cloud systems for electronic health records,
medical imaging, and telemedicine. Cloud computing enables secure data
sharing and remote access.

Distributed systems improve data availability and support collaboration
among healthcare professionals while ensuring patient privacy.

Financial Services and Banking Systems

Banks and financial institutions use cloud and distributed systems for
transaction processing, fraud detection, and risk analysis. High availability and
fault tolerance are critical in these applications.

Cloud platforms support real-time analytics and secure data
management, improving operational efficiency.

Big Data Analytics Platforms

Big data platforms leverage distributed computing frameworks to
process large datasets. Cloud-based analytics enable scalable data processing
and storage.

These platforms support applications such as recommendation systems,

predictive analytics, and scientific research.

Cloud Computing in Education
Educational institutions use cloud services for online learning platforms,
virtual labs, and collaboration tools. Cloud computing supports remote
education and resource sharing.
Distributed systems ensure reliable access to learning materials for
students across different locations.
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Industrial and IoT Applications

Industries use cloud and distributed systems to manage loT devices,
monitor operations, and optimize processes. Edge and cloud integration enables
real-time data analysis.

These applications improve efficiency, automation, and decision-making
in industrial environments.

Benefits of Real-World Cloud Adoption

Real-world case studies demonstrate benefits such as cost reduction,
scalability, and improved service delivery. Cloud computing enables
organizations to innovate rapidly.

By leveraging distributed systems, organizations can build resilient and
high-performance applications.

CONCLUSION

Cloud computing and distributed systems represent a transformative shift
in computing paradigms, providing scalable, flexible, and cost-effective
solutions for modern applications. Distributed systems form the backbone of
cloud infrastructure, enabling fault tolerance, concurrency, and efficient
resource sharing. Cloud computing abstracts hardware complexity through
virtualization, containers, and orchestration, offering on-demand access to
services like laaS, PaaS, and SaaS. Emerging trends such as serverless
computing, edge/fog computing, and AI/ML integration continue to expand the
capabilities of cloud platforms. Security, privacy, and compliance remain
critical challenges, requiring robust mechanisms to safeguard data and ensure
regulatory adherence. Real-world applications across healthcare, finance, e-
commerce, and big data analytics demonstrate the practical value of cloud
computing. Understanding the principles of distributed systems and cloud
technologies is essential for computer science engineers to design, deploy, and
maintain resilient, high-performance applications. As cloud adoption grows, it
will continue to drive innovation, efficiency, and global connectivity in
computing.
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INTRODUCTION

The moiré effect is an optical interaction (interference) between
projections of layers observed in periodic structures (grids, lattices) viewed in
transmission. Moir¢ fringes are alternating dark and light areas with a relatively
low spatial frequency that is absent in the original structures Bryngdahl (1974),
Sciammarella (1982), Amidror (2009), Saveljev (2022).

Typically, the effect is considered in coplanar layers, i.e., in two
dimensions. Sometimes, the moiré effect is investigated in three dimensions
Saveljev (2018a), e.g., in flat layers separated by a gap Sciammarella & Chiang
(1968), Saveljev & Kim (2010, 2011) and in three dimensions: in rec-tangular
parallelepiped Saveljev (2022), wedge (triangular prism) Saveljev et al.
(2020a), cylinder Saveljev et al. (2017, 2020b), Saveljev (2023a), and their
combinations Saveljev & Heo (2024).

The macro-level moiré has been investigated in visual displays Bell et al.
(2007), Kong et al. (2013). The structure of multiview autostereoscopic
displays typically comprises two parallel layers with a cell-size ratio close to
an integer. The moiré effect negatively affects the quality of the visual image;
therefore, this harmful (in displays) effect should be avoided or at least reduced
(mini-mized), especially in autostereoscopic and volumetric 3D displays Lee et
al. (2016). Particularly, there are methods of removal, particularly, based on
geometry Yurlov et al. (2018), image pro-cessing Qi et al. (2024), and special
design Xia et al. (2025), Fukano et al. (2025). From the opposite point of view
(i.e., as a useful effect), the moiré effect is used for security Cadarso et al.
(2013), Saunoriene et al. (2023) and measurements Theocaris (1969), Kafri &
Glatt (1990), Patorski & Kuja-winska (1993), Post et al. (1994), Jeong et al.
(2019). The moiré effect is investigated at the nano-scale Suenaga et al. (2007),
Sadan et al. (2008), Warner et al. (2011); particularly, in sin-gle-walled Tu
(2018), Konevtsova et al. (2022), Arroyo-Gascon et al. (2023) and double-
walled nanotubes He et al. (2019), Wittemeier et al. (2022). Also, the effect is
investigated in 2D materials including twistronics Latychevskaia et al. (2019),
Wu et al. (2020), Hennighausen & Kar (2021), *Wittemeier et al. (2022), Wang
et al. (2023) ands well as in three- and multilayuered graphene Xu et al. (2014),
Ren et al. (2025).
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The moiré effect is complex phenomenon, affected by many factors.
However, not all problems can be solved analytically. In many cases, modeling
is required, which includes either computer simulation or a physical model.
Apart from that, the simulation has a more general meaning: it shows a clear
visual effect, making it understandable. Computer simulation, combined with
ex-periments on a physical model, constitutes a comprehensive study. The
combined simulation in-volves physical modeling and computer simulation.

In particular, the moiré effect is simulated in visual displays Saveljev &
Kim (2010, 2011), Yur-lov et al. (2018), Guo et al. (2022), including the color
effect Kim et al. (2009), Li et al. (2018), as well as using special software Joo
& Shin (2009), Byun et al. (2014). Also, display elements (backlight,
touchscreen) were modeled Joo & Ko (2014), Xie et al. (2018), Su et al. (2021).
Simulation of projec-tion moiré was also made (basically, for measurements)
Wegdam et al. (1992), Buytaert et al. (2012). We also have to mention general-
purpose and special simulators Aleksa (2011), Mol (2012), Ste-phens (2017),
Hsu (2018). At the nano-level, the moiré effect is simulated in graphene and in
other bilayers Soejima et al. (2020), Tang et al. (2020), Ascrizzi et al. (2024).

The current paper describes computer simulation and physical model
using three examples: i) parallel planar layers (displays); ii) 3D shell objects
(cylindrical nanoparticles, SWNT), spherical surface; iii)) 3D volumetric
multilayered objects (3D array such as an LED cube).

We assume that the radius of the visibility circle Amidror (2009) is
shorter than the distance from the origin of the spectral domain to the closest
spectral component of either grid. In such a case, the grids themselves are
unrecognizable (as higher spatial frequencies), whereas the moiré patterns
(lower spatial frequencies) are clearly visible and can be visually separated. We
only con-sider the period and orientation of the moiré patterns.

In Sec. 2, the computer simulation tool shows moir¢ patterns in planar,
parallel layers. The tool is controlled interactively and operates in two modes:
overview and detailed. In Sec. 3, the moiré effect in objects with radial
symmetry (hollow single-walled cylindrical and spherical objects) was

investigated.
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The moiré effect in chiral nanoparticles has been modeled using
macroscopic objects or planar grids, and the resulting patterns can be simulated
using comput-er-generated images. The combined approach can be applied to
MWNT.

In Sec. 4, the moiré effect in the essentially volumetric 3D case (a cube)
is investigated. Visual corridors are moiré patterns. We carried out computer
simulations and physical experiments; the distinctive angles of the moiré
patterns are determined in three types of cubic lattices (simple, body-, and face-
centered). These three cases (dual/multiple layers, cylinders, sphere/cube)
confirm the usefulness of the combined simulation.

1. COMBINED SIMULATION OF THE MOIRE EFFECT IN

PARALLEL LAYERS OF DISPLAYS

For planar displays, simulating each case individually was practically
inconvenient, although the experimental values demonstrated a good agreement
with the simulation (within 2—4%) Savel-jev & Kim (2010, 2011). Therefore,
specialized computer simulation tools were developed to study the behavior of
moiré waves in autosterecoscopic displays. The simulation is based on spectral
tra-jectories, the multiplicative model, the Fourier transform, the projection
transform, and the concept of the visibility circle Amidror (2009).

The positions of the spectral components in parallel layers are as follows,

T = pke™ +..+ pke™, (1)

Spectral trajectories Saveljev & Kim (2012, 2013) in layered displays
appear when one parame-ter in Eq. (1) is not constant (like a, p, 61, or 62 in
Egs. (2)-(5) below)

Ta(t) (k01+||)+(m02 )peia(t) (2)
T,(t)=(ko, +il)+(mo, +in)p(te™ (3
T,1(t)= (ko (t)+i1)+ (Mo, +in)ee™ (4)

—
Q
N
—t
\/
—_

= (ka, +il)+ (mo,(t)+in)pe™ (5)
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where the values kn, on, pn, qn are attributed to the n-th grid (n=1, ...,
N) as follows: two former val-ues are the basic wavenumber and the rotation

angle, while pn is an integer number within the lim-its -qn and +qn, and t is a

dimensionless parameter.
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Figure 1. Examples of spectral trajectories with one harmonic (sinusoidal case),
obtained by simulation for different running parameters; in (a) .. (d), parameters are o,
p, 61, and 63, respectively. Adapted from Saveljev & Kim (2012) with permission.

The developed tool shows the simulated moiré patterns in computer-
generated black-and-white sinusoidal grids Saveljev & Kim (2011, 2013,
2014a). Source images from an external file can also be used. The tool (see
Figure 2) enables semi-automatic measurements and visual tracking of spectral

peaks.

97



INTELLIGENT SYSTEMS: FROM DATA TO DECISIONS

The outline mode displays the spectral trajectories (sketches or result of
FFT); the detail mode shows the visual effect along with the numerical
characteristics of the patterns, see Figure 2.

Grid parameters are adjustable (the periods, the observer's displacement
by two coordinates, the distance to the screen, the gap, the slant angle, and the
like). Direct calculations using the Fouri-er transform additionally confirm the

simulation.
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Figure 2. Simulation tool. (a) outline mode, (b) detail mode. Adapted from Saveljev
(2023b) with permission.
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Simulations Saveljev & Kim (2011, 2012) refer to the sinusoidal case.
However, sometimes, the sinusoidal waves were insufficient to accurately
represent a real-life situation.

The trajectories with p =1 and p = 2 presented in Saveljev & Kim (2013)
include the first and second harmonics of the grid profile. The paper Saveljev
& Kim (2014a) describes a non-sinusoidal simulation based on the extended
limited spectrum. The non-sinusoidal simulation Saveljev & Kim (2014b)
allowed us to determine minimization parameters, particularly, discrete moiré
angles.

In Saveljev & Kim (2014a), the number of the spectral components
reached 3. The integer num-bers m and n in Egs. (2) — (5) run between -1 and
1 in the sinusoidal case and between -3 and 3 in the non-sinusoidal case
(extended limited spectrum). The examples of trajectories with 3 spectral com-
ponents in each grid are shown in Figure 3.

Figure 3. Spectral trajectories with 3 harmonics (non-sinusoidal profile) for p = 1.2
(simulation). Reproduced from Saveljev & Kim (2014a) with permission.

Based on the layout of trajectories p = 1.2 within the visibility circle
shown in Figure 3, one may expect that the moiré waves appear at 0, 27°, 45°
(arctan 0, arctan 1/2, and arctan 1).
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The moiré patterns observed in superposed computer-generated grids at
these angles are shown in Figure 4. Note that in Figures 4a) and (c) the moiré
patterns are almost parallel to the axis of the rotated grid, while in Figure 4(b)
they are not. The configuration of spectral trajectories shows that in this case,
the trajectory centered at (2, 1) approaches the origin (slightly above it), leading
to a sharp change in the moiré angle. Note approximately equal spatial
frequencies at 0 and 45°.

‘ A\
(a) (b) ©
Figure 4. Experimentally observed moir¢é patterns for p=1.2 at 0, 27°, and 45°.

/

Reproduced from Saveljev & Kim (2014a) with permission.

Since the above moiré waves at 27° (p = 1.2) result from the second
harmonic, their amplitude (and visual contrast in the screen) is noticeably lower
than that of the moiré waves at 0° and 45° (both caused by the first, sinusoidal
component).

Particularly, the moiré effect was minimized by 4 parameters (distances 1-2 m,
angles 0-90°). The typical normalized RMS deviation between physical
experimental and computer simulation is 3 - 5%.

3. COMPUTER SIMULATION AND PHYSICAL MODEL

OF MOIRE EFFECT IN CYLINDRICAL NA-

NOPARTICLES

3.1 Cylindrical Shell

In cylindrical nanoparticles, the moiré effect can be studied using a
physical model observed from infinity. However, recognizing details at large
distances is difficult in practice.
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Therefore, the moiré effect in chiral nanoparticles was modeled
alternatively, using coplanar hexagonal grids and their virtual equivalents.

The observation condition under the microscope (TEM) yields a long
(theoretically infinite) pe-riod of the moiré patterns in the symmetric cylinders
Saveljev (2016). However, the moiré period, larger than the size (diameter) of
the cylinder, makes the moiré patterns unrecognizable. Therefore, the moiré
effect in the symmetric nanoparticles cannot be observed under TEM. At the
same time, it can be observed in the symmetric cylinders at short distances or
in the asymmetric chiral cylinders at infinity Saveljev et al. (2017). Figure 5
confirms that the moiré patterns can appear in the chiral cylinders at long
distances Saveljev (2023a). In the combined simulation, we used coplanar
hexag-onal metal meshes and their virtual equivalents (computer files), which
were installed at the double chiral angle.

(a) (b) (©)
Figure 5. Photographs of chiral cylinder (line grid with a period 0.1 mm and angle =

2.5° at L=200. Chiral cylinders (hexagonal mesh, chiral angles 5° and 2.5°), L = 200.
Reproduced from Saveljev et al. (2017) with per-mission.

The photographs of superimposed planar line grids and the
corresponding computer files are shown in Figure 6. There can be compared
with Figure 5(a),

101



INTELLIGENT SYSTEMS: FROM DATA TO DECISIONS
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Figure 6. (a). Photograph of identical planar line grids with a period 0.1 mm and a. =
2.5°. (b) Computer files for the same conditions. Reproduced from Saveljev et al.
(2017) with permission.

Figure 7 models the near-axis moiré effect in the chiral cylinders (a
physical model in planar hexagonal meshes and computer files, resp.), as shown

in Figures 5(b) and (c).

(c) (d)

Figure 7. (a) and (b) Photographs of planar coplanar hexagonal grids a period 2.54
mm; angles (double chiral angles) are 10° and 5°. (c), (d) Simulated moiré patterns
(superimposed computer files) for the same angles. Re-produced from Saveljev et al.
(2017) with permission.
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There is almost no visual difference between Figures 5(a) and 6.
Compare the experimental photos of the physical model of chiral cylinders in
Figures 5(b) and (¢) with the photographs of printed line grids and the simulated
computer images in Figure 7. Therefore, the moiré patterns near the cylinder's
axis can be modeled as planar grids (either a physical model or a computer file)
at the double chiral angle. For coplanar grids (Figures 6 and 7), the distance L
does not matter.

3.2. Spherical Shell

A 3D moiré can be observed in a spherical shell built from parallels
Saveljev (2022). A sketch of such a sphere is shown in Figure 8(a); the visual
effect is shown in Figure 8(b).

(a) (b)

Figure 8. (a) Schematic image of a wired sphere. (b) Moir¢ effect in sphere
(photograph). Reproduced from Saveljev (2022).

In this case, the moiré period changes similarly to the cylinder along the
radius; however, it is applied from the center of the sphere symmetrically in any
radial direction. In the sphere, the mag-nification factor p along the radius
follows Eq. (3.116) from Saveljev (2022).
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The moiré patterns form concentric circles, as shown in Figure 9(a). The
computer simulation of the moiré patterns in the virtual model of the sphere
constructed of parallels is shown in Figure 9(b).

(b)

Figure 9. Moiré patterns in a sphere made of parallels. (a) Photograph (adapted from
Saveljev et al., 2018b) under CC BY-ND 2.0 license). (b) Computer simulation
(reproduced from Saveljev, 2022)).

4. MULTILAYERED 3D ARRAY (CUBE)

To simulate the moiré effect in volumetric displays, we explored a
physical object in a cube ob-served from a finite distance (Figure 10a), and
performed a computer simulation using the interac-tive module vpython

(Vpython, 2020). For instance, there are eight wide corridors near the center of
Figure 10(b).

(a) (b)
Figure 10. (a) Photograph of the overall layout of the physical object (LED cube). (b)
Screenshot of computer simulation with the image of the frontal camera (see Sec 3.1).
Adapted from Saveljev (2023b) with permission.
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Along with surfaces, volumetric arrays may also produce the moiré effect
Saveljev (2023b). For instance, we investigated the moiré effect in a discrete
3D object — a cube constructed from voxels (spheres of relatively small
diameter) located at the nodes of cubic Bravais lattices (simple, body-, and face-
centered), see Figure 11.

(a) (b) (c)

Figure 11. Elementary cells of three cubic Bravais lattices: (a) simple, (b) body-
centered, and (¢) face-centered

Corridors were observed in 3D cubes Wyatt & Wujanto (2005), Rowe
(2012) as well as in the cubic lattice Weisstein (2020). The distinctive angles of
the corridors are independent of the lattice constant and the distance to the
camera; therefore, the corridors pass through the entire volume of the cube. The
widest corridors connect the anchor points (projections of the cube vertices); in
the frontal camera; there are also perpendiculars to them. The main (and most
noticeable) corridors are shown in Figure 12 for a simple cubic lattice.

Based on the rephrased definition Saveljev (2022) - the moiré effect is
the formation of patterns of a longer period caused by a point-by-point
interaction (interference) in corresponding points between projections of
similar periodic structures of shorter periods and the averaging in the
neighborhood of those points - we attribute these corridors to the moiré
phenomenon, probably incomplete because of the lack of averaging due to a
short distance.

The lattice itself produces the corridors, which have nothing to do with a
useful image in a volumetric display. Therefore, in displays, such an
undesirable effect (moiré corridors) should be eliminated.
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(b)

Figure 12. Moir¢ patterns and main corridors for a simple cubic lattice. Adapted from

Saveljev & Heo (2025) under the terms and conditions of the Creative Commons
Attribution (CC BY) license.

A volumetric 3D display with static nodes Frances (2013), Lidbeck
(2020), Particulate (2020) consists of light sources uniformly distributed in
space along three coordinate axes. A volumetric LED cube is a set of square
layers (non-twisted, non-coplanar matrices), see Figure 13. It represents a
simple cubic lattice.

Figure 13. Multi-layered cube and one layer (square grid). Adapted from Saveljev
(2023b) with permission.

The physical display used in this research was a work of art (light
sculpture "Pure Water") Light sculpture (2022) shown in Figure 10(a). The size
of this physical display is approximately 6.3 x 6.3 x 10.5m (18 x 18 x 30 LEDs).
The voxel period is approximately 33 cm, the size is 3 cm; the distance to the
camera was about 10-15 m.

In simulation, identical, identically oriented square layers represent the
simple cubic lattice (matrices stacked into a cube).
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To simulate the body-centered lattice, a shifted layer was added be-tween
the planes, and for the face-centered lattice, two shifted layers (in the plane and
between the planes) were added. The typical size of the simulated virtual object
was 20x20x20 voxels; the voxel radius was about one-tenth the distance
between them. Sometimes, we increased or decreased (the size of the cube in
voxels), but the minimum thickness was 4 voxels (otherwise, the corridors do
not appear).

The visual effect was considered for three camera positions: the camera
facing the cube's face, the edge, and the vertex. The axes of all cameras point
to the cube's center. The cameras and the crystallographic planes Giacovazzo et
al. (1992) perpendicular to the camera axes are shown in Figure 14.

(010) (110) s (111)

,
L o [ =1

(a) (o) <)

Figure 14. Three virtual cameras (indicated by arrow): (a) frontal camera, (b) edge

camera, and (c¢) vertex camera. The Miller indices (Giacovazzo et al., 1992) of the

crystallographic planes are shown. The face, edge, and vertex closest to the camera

are highlighted. Reproduced from Saveljev & Heo (2025) under the terms and con-
ditions of the Creative Commons Attribution (CC BY) license.

4.1 Moiré Patterns in Frontal Camera
The frontal camera with the axis perpendicular to the face of the cube is
shown in Figure 15.

lf.

Figure 15. Frontal camera, multi-layered cube, and one layer (square grid).

Reproduced from Saveljev (2023b) with permission.
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The planes perpendicular to the camera axis are parallel to the
crystallographic plane (010). Each layer is a square grid. The observed moiré
patterns and the basic structure of main corridors are shown in Figures 16 and
17. The vertices of the cube closest to the camera are marked in Figure 16(a)

with circles.

(b) (©

Figure 16. Moiré patterns of the front camera in simple, body-, and face-centered
cubic lattices. Distinctive angles of main corridors and their tangents: 45°, 26.6°,
18.4% 1/1, ', 1/3. Adapted from Saveljev & Heo (2025) under the terms and
conditions of the Creative Commons Attribution (CC BY) license.

(a) (b) (0
Figure 17. Main moir¢ corridors in the cube. Reproduced from Saveljev & Heo
(2025) under the terms and conditions of the Creative Commons Attribution (CC BY)
license.

In the camera image, the main corridors are the radial rays with following

distinctive angles Saveljev (2023b),

p
Orace = arctan; (7)
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Note that these angles only depend on the running integer numbers, but
not on the distance or the lattice constant.

The radial corridors that start at the origin lie at the same angle in any
layer; their structure is repeated in any layer, and thus the corridors “penetrate”
through the volume of the cube. There-fore, the visual picture does not depend
on lateral displacement; the overall visual appearance (cor-ridors, angles
between them, their relative positions, etc.) remains unchanged. The overlapped
lay-ers exhibit a distinct visual structure because the distinctive angles are
independent of the geomet-ric parameters.

There are also perpendiculars to the angles (7) that can be treated as non-
radial corridors; these pass through other anchor points at the same angles,
except the origin. As a result, we have several families of radial lines with
rational tangents crossing the origin, plus the non-radial lines crossing anchor
points.

The rise in moiré patterns can be schematically explained as follows. Due
to differences in the apparent sizes of the layers, the voxel projections are
grouped (clustered) and therefore arranged denser and sparser, as shown in
Figure 18. The moiré patterns in a cube form “corridors” with dif-ferent visual
densities. A small difference in the apparent size of layers is enough to cause
moiré patterns to clearly appear in a multi-layered 3D lattice. This effect is
essentially multilayered and disappears when the number of layers is small.

e 0o o o e 0 o o o 0o @ © \"'

e o o0 o e 0 0 0 o0 0 0 oo I

o 0 o o e 0o 0 0 e 0 0 o C A W]

o0 o 0 e o 00 oo 'E RN

2 layers 2 next layers 2 next layers

Figure 18. How moiré corridors appear.

The 2D spectrum (Fourier transform) of the frontal image is shown in
Figure 19, where the ra-dial line segments are clearly recognizable.
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Figure 19. Fourier transform of image of frontal camera. Reproduced from Saveljev
(2023b) with permission.

One may find a certain similarity between Figure 19 and the spectral
trajectories Saveljev & Kim (2012, 2013) for running p (Figure 1(b)), i.e.,
changed scale. The overall structure of the Fourier transform in Figure 19 is
similar to the radial moiré corridors in Figures 16 and 18.

4.2 Edge Camera
The axis of the edge camera is perpendicular to the edge and points
toward the cube’s center. The layer and voxels layout is shown in Figure 20.

e o 0o 0 @ a2 Y
oo 00 o ﬁ\===
® & & & © o009
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‘ e @ © o © [ N N N N ]
M 5 8 B

(@) (b)
Figure 20. Voxels and layers of the edge camera. (Schematic, not a projection.) One
layer (camera view) is shown in (a), top view in (b). Adapted from Saveljev (2023b)
with permission.

The layers (planes perpendicular to the camera's axis) are parallel to the
crystallographic plane (110). The interlayer distance is aV2/2 (Figure 20(left)).
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The visible vertical and horizontal intervals between voxels in (110) are
as follows: the interval a in the vertical direction and aV2 in the hori-zontal
direction, as shown in Figure 20 (right). Thus, each plane perpendicular to the
camera axis is a rectangular grid with an aspect ratio of V2. The “phase” of the
neighboring planes is opposite (the phase difference is 7).

Compared to the distance to the camera, the interlayer distance is
relatively small, and there-fore, to understand the visual effect, we can
approximately merge the pairs of layers (two adjacent layers) into a single
rectangular grid with an aspect ratio of ¥2/2 and the double interlayer distance
of aV2, see Figure 21.

o0 000
o0 000
o0 00O
o0 000
o0 o000

Figure 21. Two visually merged successive layers (scheme)

As a result, the approximate effective layout is a set of rectangular grids
with an aspect ratio of V2. The interlayer distance between pairs is aV2. (One
side is a, the other a/N2 vertically and a/\2 horizontally).

The structure of such paired layers is the same at any distance, and thus,
the corridors also pen-etrate through the cube, as shown in Figure 22.

0,

Figure 22. Moir¢é patterns of the camera opposite the edge for the three types of cubic
lattices, as in Figure 16. Distinctive angles and their tangents: 35.3°, 25.2°, 19.5%
\2/2,V2/3, N2/4. Adapted from Saveljev & Heo (2025) under the terms and
conditions of the Creative Commons Attribution (CC BY) license.
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(@

(b)
Figure 23. Main moiré corridors in the edge camera. Reproduced from Saveljev &

(©
Heo (2025) under the terms and conditions of the Creative Commons Attribution (CC
BY) license.

The corridor structures in the frontal and edge cameras near the origin
are quite similar. The major difference between the images of the two cameras
is in the “squeezed” angles of the edge camera,

p

= arctan L
?= V2q

®)

The non-radial corridors are no longer perpendicular to the radial ones.
4.3 Vertex Camera
Figure 24.

The vertex camera is located on the cube’s space diagonal. The planes
perpendicular to the camera axis are parallel to the plane (111), as shown in
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Figure 24. Voxels and layers of vertex camera. (b) Visual picture of a triplet
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consisting of three successive layers (from 6th to 9th). Several elemental triangles

show the structure. Adapted from Saveljev (2023b) with per-mission.
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Here, the corridors differ significantly from the two previous cases
because of non-orthogonal layout of planes. The planes perpendicular to the
camera axis near the vertex comprise Pascal’s pyramid (Pascal’s tetrahedron)
Duczek et al. (2016), Pascal’s pyramid (2020). Each layer of Pascal’s pyramid
is a triangular grid with the side of the triangle of aV2, where a is the lattice
constant.

In this camera, the cross-sections can be considered by triplets with the
phases differing by one-third of the period (a phase difference of 27/3). For the
visual effect, three merged successive layers can be approximately thought of
as a triangular grid with a reduced side of aV2/v/3 (as com-pared to the single
cross-section) in the plane (111). The schematic picture is shown in Figure 25.
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Figure 25. Scheme of three successive layers: layers 1-3, layers 6-8. Adapted from
Saveljev (2023b) with permission.

Similar to the edge camera, the above representation is approximately
valid for the visual ob-servation and simulation (= central projection). Then, the
distinctive angles defined by triplets are identical. This means that in the vertex
camera, as in the two previous cameras, the corridors also “penetrate” through
the cube, however at different angles. In the regular triangular grid, the dis-
tinctive angles are arctan(V3/3), arctan(N3/5), arctan(¥3/7), etc., i.e., 30°,
19.11°, 13.90°, etc. There-fore, the angles of the corridors are,

2s+1

¢ = arctan = ©)

wheres=1, 2, ...
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The exact angle of 30° gives rise to the triangular/hexagonal symmetry,
see Figure 26. The gen-eral trend maintains: the repeated nodes on wider bands,
with narrower bands connecting these and the intermediate nodes.

(b)
Figure 26. Moir¢ corridors of the camera opposite the vertex for three types of cubic
lattices, as in Figure 16. Distinctive angles:30°, 19.1°, 13.9% V373, V3/5, \3/7. Adapted
from Saveljev & Heo (2025) under the terms and conditions of the Creative
Commons Attribution (CC BY) license.

(a) (b) (c)
Figure 27. Main moiré corridors. Reproduced from Saveljev & Heo (2025) under the
terms and conditions of the Creative Commons Attribution (CC BY) license

5. DISCUSSION

In real layered displays, moiré waves with a 4th (and sometimes even a
5th) harmonic can be observed. The number of trajectories to be analyzed (a
square number of components) is much higher than in the sinusoidal case. Thus,
the simulation should be organized effectively.

Identical moiré periods were observed in planar hexagonal grids and in
the chiral cylinders near the axis. This allows the moiré effect in chiral
nanoparticles to be modeled using coplanar macroscopic bodies or by computer
simulation. The physical model provides the experimental evi-dence; the
computer simulation provides clear images of the moir¢ patterns.
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The moiré effect in MWNTSs can also be simulated in a similar manner,
treating the relative layer spacing as a small parameter.

The conditions for the moiré fringes to appear in the cubic lattice are:
identical layers with iden-tical spatial orientation (non-twist), with the voxel
size V2 times smaller than the period, over four layers. In particular, to reduce
moiré patterns in a volumetric 3D cube, the voxel diameter should be increased.
(However, to observe the voxels with a larger diameter, the observation distance
should be increased.)

The moiré effect in the cube can be simulated in a parallelepiped with
the same camera axis but a different voxel layout across the layers. Namely, the
layers of the frontal camera remain un-changed. However, the layers of the edge
camera form a parallelepiped with an aspect ratio of V2, the interlayer distance
a/N2, and interlaced layers (phases 0 and m) can model the layers of the edge
camera. Similarly, the layers of the vertex camera form a parallelepiped with a
triangular grid, with sides of a\2, the interlayer distance of a/2, and interlaced
triplets of layers (phases 0, /3, and 27/3). The results of the simulation of two
cameras in the alternative (rectangular) layout are shown in Figure 28 and are
similar to those presented in Sec. 3.

7
A

(b)
Figure 28. Moiré¢ corridors of the two cameras obtained in the alternative layer
layouts.
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The main corridors observed in the basic layout (the same cube but
different camera axes), see Figures 22(a), 26(a) and in the alternative layouts
(the parallelepiped with different layers but the same camera) are almost
identical. The differences are of little significance.

CONCLUSION

We demonstrated the combined simulation in three cases.

The parallel computer simulation and physical experiment layers ensure
the minimization of the extended limited spectrum. The parameters of the moiré
waves were measured semi-automatically in a simulation. The simulation tool
is controlled interactively. The typical normalized RMS deviation between
experiment and theory is 3-5%.

The moiré patterns can be observed in the chiral nanotubes at a large
observer distance when m is greater than 10. The near-axis moiré effect in
nanoparticles can be effectively modeled by macro-scopic meshed bodies
(planar printed grids or perforated metal ones) or computer files. The results
can be applied to the moiré effect in meshed cylinders in general and to chiral
nanoparticles in par-ticular, for instance, to the measurement of chiral indices
based on moiré images.

The moiré effect was investigated in a multi-layered simple cubic lattice
using three cameras (directions [010], [110], and [111]). The moiré corridors
were observed in simulation and in a phys-ical volumetric display. The
conditions for the appearance of moiré patterns were formulated. The corridors
cross the anchor points at distinctive angles, which tangents in the three cameras
are re-lated as 1:N2:3. These properties are observed in all three types of cubic
lattices. (The corridors in the body- and face-centered lattices generally follow
a simple lattice, but differ in width.) This re-search provides direct observation
of the moiré effect in crystallographic planes, which can be use-ful in
crystallography. The results can be used to minimize the moiré effect in

volumetric 3D dis-plays with fixed voxel positions, such as static LEDs.
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