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PREFACE

This volume brings together contemporary research at the intersection of
artificial intelligence, quantum computing, big data, and digital transformation.
Each chapter addresses foundational and applied dimensions of these
technologies, offering insights into their evolving roles in knowledge systems
and societal infrastructure.

The first set of chapters explores the development of modular and
trustworthy foundation models, and the application of big data analytics in
educational engineering. These contributions highlight the potential for
scalable, domain-specialized Al and data-driven pedagogical innovation.

Subsequent chapters examine the principles of quantum mechanics for
quantum computing and assess digital transformation efforts in the Western
Balkans. Together, the volume provides a multidisciplinary perspective on the
challenges and opportunities shaping the future of intelligent systems.

October 21, 2025
Tiirkiye
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CHAPTER 1
FOUNDATION MODELS AS OPERATING SYSTEMS
FOR KNOWLEDGE: TOWARD MODULAR,
TRUSTWORTHY, AND DOMAIN-SPECIALIZED Al
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INTRODUCTION

Artificial Intelligence (Al) has evolved rapidly over the past decades,
from early rule-based expert systems to the current age of large, generalized
models capable of handling a wide variety of tasks. Understanding this
progression is essential to appreciate how foundation models now serve as a
central paradigm, linking historical algorithmic approaches to current deep
learning and beyond.

Early AI and Rule-Based & Symbolic Systems

The origins of Al trace back to symbolic reasoning and rule-based
systems, where knowledge was encoded explicitly as logical rules, decision-
trees, or if-then statements. These systems performed well in narrowly defined
domains (e.g., diagnostics, theorem proving) but struggled to generalize beyond
their handcrafted rules. As datasets grew and computational resources
expanded, limitations of symbolic systems became evident: they required
enormous manual effort to encode domain knowledge and failed to adapt
flexibly when confronted with novel or noisy input.

Emergence of Statistical Machine Learning

In response to the brittleness of symbolic systems, the Al field shifted
toward statistical machine learning (ML). Instead of explicitly coded rules,
statistical ML models derive patterns from data. Techniques such as logistic
regression, decision trees, support vector machines, and ensemble methods
became staples in tasks like classification, regression, and clustering. These
models enabled Al systems to handle uncertainty and variability in data more
naturally, but they still required feature engineering: human domain expertise

to design appropriate inputs for the model.

Deep Learning and Representation Learning

Starting from around 2012, deep learning (DL) began to dominate as
breakthroughs in neural network architectures (especially convolutional
networks for vision, recurrent and then transformer-based architectures for

language) yielded substantial performance gains.
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Deep models can learn hierarchical representations automatically from
raw data, reducing the need for manual feature engineering. Representation
learning enabled systems to extract features at many levels (edges, textures,
semantics) in vision, or syntax and semantics in language. Furthermore,
architectures like Transformer have made it possible to capture long-range
dependencies efficiently in language and multimodal data (text, images, audio)
(Sarker, 2021).

Transfer Learning, Pretraining, and the Roots of Foundation

Models

The trend toward pretraining and transfer learning laid the groundwork
for foundation models. Pretrained models are first trained on large generic
datasets (e.g., large corpora of text or images) and then fine-tuned or adapted
for downstream tasks. Models like BERT, GPT-2/3, and vision transformers
showed that knowledge learned in one domain or over generic data can be
transferred with significant performance advantages to more specialized tasks
(Zhou et al., 2023). This shift reduced computational cost, data annotation
demands, and facilitated rapid development.

Defining Foundation Models

A foundation model is generally understood as a large model trained on
broad, diverse data—often using self-supervised or unsupervised learning—
that can be adapted (fine-tuned or prompted) to many downstream tasks
(Merritt, 2025; Stanford HAIL 2024). These models exhibit emergent
behaviours, meaning that they often demonstrate capabilities (e.g., few-shot
prompting, generalization across modalities) that were not directly
programmed or anticipated (Merritt, 2025; Tobia et al., 2025).

Why This Shift Matters

This evolution from symbolic rules to ML to deep learning to foundation
models is not just incremental improvement: it reflects a qualitative shift in how
intelligence is embodied in computational systems. Foundation models allow
for:
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e Scalability: Training over massive datasets and large parameter spaces.
o Generalization: Ability to adapt to new tasks with limited extra training
or via prompting in context.
e Modularity and reuse: Rather than building separate models per task,
many downstream applications reuse a single pretrained backbone.
e Multimodal capabilities: Many recent foundation models integrate text,
vision, and other data modalities.
However, with these advances come challenges: resource and compute
cost, ethical issues (bias, fairness), interpretability, societal impact, and
governance (Guo et al., 2025; Huang, 2025).

1. FOUNDATION MODELS AS KNOWLEDGE

OPERATING SYSTEMS

This section develops the metaphor of foundation models as knowledge
operating systems (K-OS): large, pretrained models (LLMs and multimodal
equivalents) that function as an infrastructure layer—coordinating data access,
modular components, tool use, and task execution—on which downstream,
domain-specialized capabilities run. I argue that treating foundation models as
K-OS helps explain (1) how they coordinate parametric and non-parametric
knowledge, (2) how modular extensions (adapters, retrieval, tool interfaces)
permit domain specialization, and (3) why this view clarifies key engineering
and governance challenges (factual grounding, provenance, updateability, and
safe tool orchestration).

1.1 The K-OS Metaphor: Responsibilities and Components
An operating system (OS) provides a consistent runtime, resource
management, APIs, and isolation so higher-level programs can run without
reimplementing core services. Foundation models play a similar role for
knowledge tasks:
* Runtime for reasoning and generation. Foundation models provide a
general computation layer that maps inputs (prompts, contexts,
multimodal signals) to outputs (text, code, actions) using learned internal

representations.
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They implement generic capabilities (language understanding,
generation, multimodal alignment) that many applications reuse
(Bommasani et al., 2022).

APIs and extension points. Prompting, fine-tuning, adapters, and
external tool APIs act like system calls—application developers do not
rewrite the core model but call or extend it for task-specific work (e.g., a
medical summarizer calling a retrieval function). Research on adapters
and PEFT (parameter-efficient fine-tuning) formalizes how small
modules plug into a large backbone (Hu et al., 2023).

Non-parametric memory and dynamic data. Like a filesystem accessed
by programs, external knowledge stores (vector DBs, corpora) provide
up-to-date or proprietary knowledge. Retrieval-augmented generation
(RAG) couples a retriever with a generator so the model can query and
incorporate external documents at runtime, improving factuality and
traceability (Lewis et al., 2020).

Tool orchestration and sandboxing. Recent work shows that models can
learn to call external tools (calculators, search, APIs) and incorporate
returned results into outputs; this is analogous to processes invoking
system utilities. Toolformer and related frameworks demonstrate self-
supervised learning of tool use, improving practical competence on tasks
small models alone struggle with (Schick et al., 2023).

Framing foundation models as K-OS therefore highlights the need to

design robust interfaces (retrieval, tool APIs, adapter registry), resource-aware

deployment (latency, compute), and governance (access controls, auditable

provenance).

Modularity: Adapters, PEFT and Lightweight Specialization

A core benefit of the K-OS view is that it encourages modular, low-cost

specialization. Rather than training separate full models per task, developers

attach modules that alter behavior or add capabilities:

e Adapter modules and PEFT methods enable low-cost model adaptation

by adding small parameter blocks while preserving the main model (Hu
et al., 2023).
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Benefits for deployment. Modularization reduces duplication (one
backbone, many adapters), enables quick updates to a module (e.g., fix a
bias in a medical adapter), and supports selective distribution (edge vs.
cloud). New PEFT variants continue to improve efficiency and
performance in real tasks (Mangrulkar et al., 2025).

Grounding and Dynamic Knowledge: RAG and Evolving
Datastores
A Knowledge-OS must be able to access accurate, current information.

RAG and its derivatives serve this role:

RAG architectures combine a retriever (dense/sparse vector index) and a
generator so the model conditions on retrieved passages during
generation; this yields more factual outputs and provides a natural
provenance trail for answers. RAG has become a standard building block
for knowledge-intensive applications (Lewis et al., 2020).

Multi-step retrieval and chaining. Newer approaches move beyond single
retrieval calls to chains of retrieval+reasoning (chain-of-retrieval) to
handle complex, multi-hop queries and to refine retrieved evidence
before generation (Shinn et al., 2023).

Tool Use and Autonomous Orchestration
Treating the foundation model as a K-OS foregrounds the possibility of

autonomous orchestration: models not only answer prompts but decide whether

to call tools, which tools to call, and how to integrate results:

Self-supervised tool learning. Toolformer shows models can learn when
and how to call external APIs (search, calculator, translator) with
minimal supervision, yielding better factuality and capability (Schick et
al., 2023).

Tool frameworks and benchmarks. ToolLLM and related tool-use
frameworks provide datasets and training recipes for tool integration,
making tool orchestration a reproducible engineering pattern (Qin et al.,
2023).
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Engineering and Governance Implications
Viewing foundation models as K-OS raises practical concerns:

e Provenance, auditing, and explainability. Systems must log retrievals,
tool calls, and adapter usage to enable human verification and regulatory
compliance. RAG architectures naturally support this logging by
returning source passages (Lewis et al., 2020).

o Security and access control. Tool APIs and knowledge stores must be
sandboxed; unregulated tool access can leak sensitive data or cause
unsafe actions (Weidinger et al., 2022).

e Resource & environmental costs. Maintaining large backbones with
many plugged modules and live retrieval services has compute and
carbon implications; PEFT and modularization partially mitigate these
costs (Dettmers et al., 2023).

1.2 Empirical Evidence for the Knowledge Operating System

Paradigm

The comparison in Table 1 illustrates how the knowledge operating
system (K-OS) metaphor is not only conceptual but also practically grounded
in diverse research strands. Retrieval-augmented generation (Lewis et al., 2020)
demonstrates how external, non-parametric knowledge bases can function as
the “file system” of the K-OS, allowing large language models to dynamically
access and integrate verified content. This principle has become central to
enterprise deployments where factuality and source attribution are critical.

Toolformer (Schick et al., 2023) and ToolLLM (Qin et al., 2023) extend
this analogy by showcasing how models can autonomously call APIs, similar
to how applications within an OS invoke system utilities. These works highlight
the increasing importance of self-supervised tool learning and benchmarked
tool orchestration as standard capabilities of foundation models.

On the modularization side, Hu et al. (2023) and subsequent surveys on
parameter-efficient fine-tuning (PEFT) (PEFT Survey, 2025) demonstrate the
viability of adapter-based approaches, where small, specialized modules plug
into a shared backbone. This aligns well with the notion of kernel modules in
operating systems, where additional functionalities are attached without
altering the core.
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These modular approaches not only reduce the computational burden but
also enable rapid customization for diverse tasks and domains. By treating
foundation models as flexible platforms, researchers can efficiently integrate
new capabilities without retraining the entire system. This paradigm shift
fosters a more scalable and maintainable ecosystem for building intelligent
applications.

Their results also confirm that such modularity drastically reduces
computational costs while preserving performance, making foundation models
more accessible for domain-specific applications.

Finally, Saxena et al. (2023) provide a unique perspective by training a
foundation model on operating system traces themselves. Although this work
lies outside the mainstream NLP/vision pipeline, it symbolically reinforces the
K-OS metaphor by showing that even operating systems can be modelled as
dynamic, data-rich environments.

Taken together, the works in Table 1 illustrate that the K-OS view is more
than a rhetorical device: it has empirical support across domains ranging from
knowledge retrieval to modular tuning and autonomous tool use. This
reinforces the argument that foundation models can indeed be regarded as an
emerging operating system for knowledge. This perspective encourages
rethinking foundation models not just as tools for specific tasks, but as general-
purpose platforms capable of orchestrating diverse knowledge-driven
processes. As more modular and efficient adaptation techniques emerge, the
accessibility and flexibility of these models will only increase. In this light,
foundation models are poised to serve as the backbone for future intelligent
systems across a wide range of domains. In addition to these advancements,
another key advantage of the modular approach is the ability to test and update
individual components independently. This flexibility accelerates experimental
workflows for both researchers and developers, while also simplifying the
isolation and resolution of errors. Moreover, the development of task-optimized
submodules enhances overall system efficiency and enables the delivery of
customized solutions tailored to diverse user needs.
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Table 1. Comparative Overview of Recent Advances Supporting the Knowledge

Operating System Paradigm

Work (ref) Key features Models / Key results / Representative
Methods claim applications
Lewis et al., Combines DPR retriever + SOTA on Open-domain
2020 (RAG). parametric BART generator; | several open- QA, enterprise
(arXiv) generator non- | end-to-end RAG domain QA doc QA, fact-
parametric tasks checking
retriever
Schick et al., Self- LM trained to Improved zero- | Question
2023 supervised decide API use shot answering with
(Toolformer) learning to call | and integrate performance on | search,
APIs/tools responses tasks requiring | calculators,
calculation, translators
lookup
Qinetal., Framework & | ToolBench Enables robust | Tool
2023 dataset for tool | dataset; tool-use orchestration
(ToolLLM) use instruction tuning | capabilities and | benchmarks;
for tool use evaluation agentic systems
Hu et al., 2023 | Adapters / Adapter modules | Competitive Domain
(Adapter PEFT integrated into performance vs | adaptation,
family / LLM- | framework LLMs full fine-tuning | multilingual
Adapters). with far fewer transfer
params
PEFT surveys | Overview of LoRA,adapters, PEFT reduces Medical
(2025) PEFT methods | prompts,quantum- | training costs imaging tuning,
inspired adapters | while retaining | specialized
performance NLP tasks
Saxena et al., Proposes a Foundation model | Argues for FM | Systems
2023 domainspecific | trained on OS utility in system | research,
(FoundationO) | FM for OS traces analysis anomaly
traces detection in OS

2. MODULARITY AND SPECIALIZATION

Foundation models (FMs) are powerful because they provide general-

purpose representations learned from vast datasets, yet this generality alone is

insufficient for highly specialized applications. Just as operating systems rely

on modular components such as drivers and plugins to extend functionality,

foundation models increasingly depend on modular adaptation techniques to

align with domain-specific needs.
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This section explores how modularity enables scalable specialization,
reduces computational costs, and facilitates responsible deployment.

Rationale for Modularity

One of the most significant challenges in adapting FMs to specific
domains is their enormous size and training cost. Fine-tuning entire models
with billions of parameters for each application is prohibitively expensive and
environmentally costly. Consequently, modular adaptation techniques—such as
adapters, prompt tuning, and low-rank adaptation (LoRA)—allow smaller,
specialized modules to be attached to a frozen backbone. These methods
maintain most of the general knowledge encoded in the FM while injecting
domain-specific expertise (Hu et al., 2023; Ding et al., 2024).

Moreover, modularity supports incremental updates. For instance, a
healthcare adapter can be updated with new medical knowledge without
retraining the entire model, similar to updating a device driver in an operating
system. This modular approach not only lowers cost but also enables agility in
fast-evolving fields like law, medicine, and climate science (Zhang et al., 2024).

Techniques for Modular Specialization
Recent studies classify modular adaptation strategies into three broad
categories:

1. Adapter-based methods. Small bottleneck layers inserted into the
transformer architecture capture new task knowledge efficiently. These
approaches have proven effective in multilingual transfer and domain
adaptation, reducing parameter updates by over 90% compared to full
fine-tuning (Houlsby et al., 2020; Pfeiffer et al., 2021).

2. Prompt-based tuning. By designing continuous or discrete prompts,
models can be guided toward domain-relevant behavior without altering
the main parameters. This method has shown promise in few-shot and
zero-shot settings where labeled data is scarce (Liu et al., 2023).

3. Low-rank adaptation (LoRA) and PEFT variants. LoRA decomposes
parameter updates into low-rank matrices, drastically cutting
computational overhead.

10
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Recent surveys indicate LoRA and its extensions are among the most

widely adopted parameter-efficient fine-tuning (PEFT) techniques for

FMs (Dettmers et al., 2023; Mangrulkar et al., 2025).

These approaches are not mutually exclusive: hybrid strategies
increasingly combine prompting with adapters or LoRA to balance flexibility
and efficiency.

Benefits of Specialization
Specialization through modularity provides several key benefits:

* Domain alignment. Medical FMs trained with adapters have shown
improvements in diagnostic tasks and biomedical literature
summarization (Singhal et al., 2023). Legal-domain adapters similarly
enhance contract analysis and case retrieval.

* Resource efficiency. Modular methods significantly reduce the
environmental footprint of FM deployment by lowering training energy
consumption (Dettmers et al., 2023).

* Security and compliance. Modular updates allow organizations to insert
compliance filters or audit modules that enforce ethical constraints
without altering the core FM (Bommasani et al., 2022).

* Interoperability. Modular FMs can switch between domains (e.g.,
healthcare, finance) by loading relevant adapters, enabling a single
backbone to serve multiple sectors.

Challenges and Open Questions
Despite the advantages, modular specialization raises several challenges:

* Compatibility and standardization. Current adapter and PEFT
frameworks lack universal standards, making it difficult to share modules
across institutions (Zhang et al., 2024).

» Catastrophic forgetting in shared backbones. When multiple domain
modules interact, ensuring stability and preventing interference remains
an open research area (Liu et al., 2023).

* Governance of modular contributions. As more organizations develop
and distribute adapters, ensuring quality control and preventing

malicious modules becomes essential.

11
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Toward Ecosystems of Specialized Modules

The future may see ecosystems of adapters, prompts, and PEFT modules
that function like app stores. Organizations could download certified modules
to extend the capabilities of their foundation model backbone, much like
installing extensions in modern software environments. Such ecosystems
would democratize access to specialized Al, while governance mechanisms
would ensure reliability and ethical safeguards.

In this way, modularity and specialization reinforce the metaphor of
foundation models as knowledge operating systems—a general-purpose kernel
enhanced by a growing library of domain-specific modules.

3. TRUST, ETHICS, AND GOVERNANCE OF

FOUNDATION MODELS

While foundation models (FMs) have emerged as transformative engines
for knowledge representation and application, their widespread adoption raises
profound ethical, societal, and governance challenges. Unlike task-specific
models, FMs are deployed across diverse domains and user groups, magnifying
the potential consequences of bias, misinformation, and misuse. Addressing
these risks requires frameworks that integrate trustworthiness, transparency,
accountability, and governance into both the design and deployment of such
systems.

The Trustworthiness Imperative

Trust in FMs hinges on their ability to provide accurate, consistent, and
interpretable outputs. However, phenomena such as hallucination—where
models generate plausible but false information—undermine reliability in
critical sectors like medicine and law (Ji et al., 2023). Recent studies emphasize
the role of retrieval-augmented generation (RAG) and grounding strategies in
reducing hallucinations, thereby improving factual consistency (Lewis et al.,
2020). Trustworthiness also depends on explainability: users need to understand
not only what outputs are produced but why. Although FMs are often criticized
as “black boxes,” new interpretability methods, such as probing and causal
tracing, aim to make their internal decision-making more transparent (Kovaleva
et al., 2024).

12
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Bias, Fairness and Equity

Because FMs are trained on vast web-scale datasets, they inherit and
sometimes amplify societal biases. These biases may manifest in gendered
stereotypes, racial disparities, or exclusion of underrepresented languages
(Bender et al., 2021; Huang et al., 2025). Bias mitigation strategies include
curating balanced datasets, fine-tuning with fairness objectives, and integrating
human-in-the-loop auditing. However, no solution is comprehensive, and
ethical risks remain, particularly in high-stakes areas such as recruitment or
criminal justice (Weidinger et al., 2022). Thus, fairness in FMs is both a
technical and socio-political challenge.

Governance and Accountability

The governance of FMs involves regulatory, organizational, and
technical layers. On the regulatory side, frameworks such as the EU Artificial
Intelligence Act (2024) propose classifying FMs as “high-risk” systems,
mandating transparency and auditing. On the organizational level, institutions
like Stanford’s Center for Research on Foundation Models (CRFM) and the
Partnership on Al advocate for governance protocols around data provenance,
documentation, and model usage guidelines (Bommasani et al., 2022).
Technically, governance mechanisms include model cards, datasheets for
datasets, and auditing pipelines to ensure accountability in deployment
(Mitchell et al., 2021).

Accountability also extends to responsibility attribution: when an FM
causes harm, determining liability between model developers, fine-tuners, and
end-users remains unresolved (Hacker et al, 2023). Clear governance
frameworks are thus needed to prevent the diffusion of responsibility.

Security and Misuse Concerns

Foundation models can be weaponized to generate disinformation,
deepfakes, or malicious code (Goldstein et al., 2023). Security risks also
include adversarial attacks, data extraction, and prompt injection, where
attackers manipulate inputs to extract sensitive knowledge from the model.
Recent proposals suggest red teaming—systematic adversarial testing—as a
governance best practice (Shelby et al., 2024).

13
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Mitigation strategies also include watermarking outputs, restricting
access through APIs, and embedding content moderation layers.

Ethical Frameworks for Responsible Deployment
To foster ethical FM ecosystems, several guiding frameworks have been
proposed:

e Transparency and documentation. Detailed records of training data,
model architecture, and limitations build user trust (Mitchell et al., 2021).

e Human oversight. Embedding human judgment in critical decision-
making loops mitigates the risk of automation bias (Floridi & Chiriatti,
2020).

e Value alignment. Ensuring that FMs respect cultural, legal, and
organizational norms requires participatory approaches to system design
(Huang et al., 2025).

o Global equity. Addressing the dominance of English and Western-centric
datasets is essential for inclusive Al development (Bender et al., 2021).

Looking Ahead: Toward Ethical and Governable FMs

The future of FMs depends on their ability to balance innovation with
ethical safeguards. Building governable models means embedding ethical
reasoning and compliance checks directly into the system’s architecture.
Furthermore, cross-disciplinary collaboration—among technologists, ethicists,
policymakers, and civil society—is essential for crafting governance regimes
that are both practical and globally adaptable.

In this light, governance is not a constraint on progress but rather a
precondition for sustainable innovation. Without trust, transparency, and
accountability, FMs risk eroding public confidence, which would ultimately

undermine their transformative potential.

4. APPLICATIONS ACROSS DOMAINS
Foundation models (FMs) are increasingly integrated into diverse
sectors, acting as “knowledge operating systems” that power innovation,

accelerate discovery, and support decision-making.

14
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Their modular adaptability, combined with retrieval and fine-tuning
strategies, makes them suitable for domains as varied as healthcare, education,
sustainability, industry, and robotics. This section highlights how FMs are being
applied across domains, the benefits they bring, and the unique challenges they

introduce.

Healthcare and Biomedicine

Healthcare has emerged as one of the most promising fields for FMs.
Clinical large language models (LLMs), such as MedPalLM and PubMedBERT,
demonstrate impressive capabilities in diagnosis support, biomedical literature
summarization, and question answering (Singhal et al., 2023). Similarly,
multimodal biomedical models integrate genomic, clinical, and imaging data to
accelerate drug discovery and precision medicine (Guo et al., 2025). Despite
these advances, ethical concerns remain, particularly regarding data privacy
and biases in underrepresented populations.

Education and Personalized Learning

FMs are increasingly embedded in digital education platforms, where
they enable personalized tutoring, adaptive assessment, and automated content
generation. By leveraging prompt engineering and RAG, educational FMs
deliver context-aware responses that align with learners’ needs (Kasneci et al.,
2023). They also enhance accessibility through multilingual translation and
speech-to-text services for students with disabilities. However, reliance on
automated feedback raises concerns about overdependence and the potential
erosion of critical thinking skills (Zawacki-Richter, 2023).

Sustainability and Climate Science

Another area where FMs are proving valuable is sustainability research
and climate modelling. Recent studies employ FMs for predictive analytics in
energy optimization, environmental monitoring, and climate impact modelling
(Rolnick et al., 2023). For instance, LLMs assist in synthesizing scientific
literature on climate change, helping policymakers make evidence-based
decisions. Yet challenges include ensuring model transparency and avoiding
misinterpretation of uncertain climate data (Huang et al., 2025).

15
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Industry and Robotics

In industrial contexts, FMs are used to enhance predictive maintenance,
supply chain optimization, and digital twin simulations (Cai et al., 2024).
Robotics benefits from multimodal FMs that integrate vision, language, and
sensor data, enabling robots to understand natural instructions and perform
complex manipulation tasks (Brohan et al., 2023). This has wide applications
in logistics, manufacturing, and disaster response. However, issues of safety,

autonomy, and accountability remain pressing.

4.1 Cross-Domain Challenges

While the applications of foundation models (FMs) span diverse sectors,
they are consistently shaped by a common set of challenges that hinder broader
adoption and reliable deployment. As summarized in Table 2, these challenges
manifest across healthcare, education, sustainability, and industry, revealing
both domain-specific issues and cross-cutting constraints.

First, generalization limits remain a major barrier. Although models such
as MedPaLM or PubMedBERT achieve high performance in biomedical
question answering, their accuracy is often biased toward well-represented
populations, leading to underperformance in low-resource or non-Western
contexts (Singhal et al., 2023; Guo et al., 2025). This highlights the tension
between large-scale pretraining and the need for inclusivity in global
applications.

Second, ethical risks recur across all domains. In healthcare, privacy
concerns are tied to sensitive patient data; in education, the risk of overreliance
on Al tutors threatens critical thinking skills (Kasneci et al., 2023; Zawacki-
Richter, 2023). In sustainability research, the use of predictive models raises
questions about transparency and accountability, especially when outputs guide
high-stakes climate policies (Rolnick et al., 2023; Huang et al., 2025).
Similarly, robotics applications raise issues of safety and liability when
autonomous systems act without direct human oversight (Brohan et al., 2023;
Cai et al., 2024).

16
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Third, integration hurdles pose technical and regulatory challenges. Each
domain has unique compliance requirements: for example, HIPAA in
healthcare, GDPR in education technologies, and evolving environmental
standards in sustainability. These hurdles complicate the smooth incorporation
of FMs into operational pipelines, often requiring additional layers of auditing,
domain-specific adapters, or explainability modules.

Finally, the sustainability of compute presents a systemic challenge
across domains. Training and deploying large-scale FMs consume vast amounts
of energy, which is paradoxical in sectors like sustainability where ecological
responsibility is paramount. Methods such as quantization and parameter-
efficient fine-tuning (Dettmers et al., 2023) partially mitigate this issue, but
long-term solutions will require innovation in hardware efficiency and
algorithmic optimization.

In sum, Table 2 illustrates that while foundation models have enabled
remarkable progress across domains, the persistence of generalization limits,
ethical risks, integration hurdles, and sustainability concerns underscores the
necessity of a balanced approach. Future research must address these issues not
in isolation but through systemic frameworks that recognize the interconnected
nature of modularity, trust, and specialization in real-world deployments.

Synthesis

Across these domains, FMs act as general-purpose kernels, augmented
by domain-specific modules. This confirms the knowledge operating system
paradigm, where models function as shared infrastructures that enable a wide
spectrum of applications. Nevertheless, without careful governance, ethical
oversight, and continued research into domain adaptation, their potential could
be undermined by misuse, inequity, or inefficiency. To fully realize their
benefits, interdisciplinary collaboration is essential, bringing together technical
experts, domain specialists, and policy-makers. Establishing standardized
evaluation frameworks can also help ensure responsible deployment across
diverse contexts. Ultimately, long-term success will depend not just on
technological innovation, but on aligning these systems with human values and

societal goals.
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Table 2. Foundation Model Applications Across Domains

Domain Representative Key Results Applications Key Challenges
Models /
Approaches

Healthcare MedPalLM, High accuracy | Diagnosis Data privacy, bias
PubMedBERT, in medical support, drug in
multimodal Q&A, discovery, underrepresented
biomedical FMs biomedical precision groups
(Singhal et literature medicine
al.,2023) summarize

Education GPT-4 + RAG, Improved Intelligent Overreliance,
adaptive tutoring | learner tutoring, erosion of critical
systems (Kasneci | engagement, accessibility thinking
etal., 2023; personalized tools
Zawacki-Richter, content
2023) deliver

Sustainability | LLMs for climate | Improved Climate policy | Transparency of
science (Rolnick synthesis of support, smart | predictions,
etal., 2023; climate energy grids uncertainty
Huang et al., literature management
2025)

Industry & Multimodal FMs, | Robots follow | Digital twins, | Safety, autonomy,

Robotics robotics natural predictive liability in
transformers language maintenance, automation
(Brohan et instructions logistics
al.2023)

5. FUTURE DIRECTIONS:

CENTRIC Al

Foundation models (FMs) represent a paradigm shift in artificial

TOWARD KNOWLEDGE-

intelligence, yet their current forms are not the endpoint of innovation. As

organizations, governments, and research communities increasingly adopt

these models, the trajectory of Al research points toward more knowledge-

centric systems—models that are not only powerful generators but also

trustworthy, adaptive, and aligned with human values. This section explores

emerging trends shaping the next generation of Al. Among these trends are the

integration of symbolic reasoning with deep learning and the development of

models capable of continual learning. Such advances aim to overcome current

limitations in generalization, transparency, and contextual understanding.
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From  General-Purpose Models to Knowledge-Centric

Ecosystems

Today’s FMs often operate as monolithic systems. The future is likely to
involve ecosystems of specialized models and modules interacting
collaboratively. Multi-agent architectures, where several FMs coordinate as
agents with complementary expertise, are gaining traction for problem-solving,
simulation, and scientific discovery (Park et al., 2023). In this vision, a central
backbone coordinates multiple specialized agents, much like an operating
system orchestrates processes.

Integration with External Knowledge and Memory

A defining limitation of current FMs is their reliance on static pretraining
data. Future systems will need to incorporate dynamic, updatable memory
mechanisms that combine parametric knowledge with external retrieval sources
(Lewis et al., 2020). Advances in retrieval-augmented generation (RAG) and
hybrid neuro-symbolic approaches suggest that FMs will increasingly behave
like knowledge operating systems, accessing, updating, and verifying
information in real time (Shinn et al., 2023).

Edge Deployment and loT Integration

Most FMs currently operate in cloud environments, but the demand for
low-latency, privacy-preserving Al is accelerating research into lightweight and
distributed models. Future directions include federated fine-tuning,
quantization methods, and PEFT approaches that make FMs suitable for edge
devices and Internet of Things (IoT) ecosystems (Dettmers et al., 2023;
Mangrulkar et al., 2025). This transition will democratize access, bringing Al-
powered decision-making closer to real-world environments such as smart

homes, autonomous vehicles, and industrial monitoring systems.

Toward Trustworthy and Governable Al
The push toward knowledge-centric Al must also prioritize trust,
governance, and ethics. Current governance frameworks remain fragmented,
and without embedded safeguards, the risk of bias, disinformation, and harmful
applications will persist (Bommasani et al., 2022; Hacker et al., 2023).
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Future models may incorporate built-in auditing systems, interpretability
layers, and policy-aware mechanisms that enforce compliance during inference
rather than as external add-ons. This aligns with global regulatory initiatives,
such as the EU Al Act (2024), which emphasize accountability and
transparency.

Human-AI Collaboration and Cognitive Augmentation

Rather than replacing humans, knowledge-centric Al will increasingly
serve as a cognitive augmentation tool. Research on collaborative intelligence
suggests that pairing human domain experts with adaptive FMs leads to
superior outcomes in fields like medicine, law, and climate science (Kasneci et
al., 2023; Singhal et al., 2023). Future systems may move beyond chat-based
interaction to multimodal, context-aware collaboration that understands intent,

context, and emotion.

Pathways Toward Specialized and General Intelligence

The debate between artificial general intelligence (AGI) and domain-
specialized intelligence remains open. Some scholars argue that scaling FMs
could eventually yield general reasoning abilities, while others believe modular,
specialized intelligence is more practical and trustworthy (Huang et al., 2025).
The future likely lies in a hybrid approach: scalable backbones supporting
modular, domain-specific extensions that ensure both versatility and reliability.

Open Challenges
Despite exciting prospects, several open challenges remain:

* Energy efficiency. Training FMs consumes enormous resources, raising
sustainability concerns (Rolnick et al., 2023).

» Evaluation metrics. Current benchmarks fail to capture trust, reasoning,
or long-term reliability.

* Global inclusivity. Most FMs remain Anglocentric, limiting accessibility
for underrepresented languages and cultures (Bender et al., 2021).

» Safety and autonomy. As FMs act more like autonomous agents, aligning
their goals with human values becomes increasingly urgent (Weidinger
et al., 2022).
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CONCLUSION

The rapid evolution of artificial intelligence has brought foundation
models (FMs) to the forefront as general-purpose engines for reasoning,
learning, and decision-making. This chapter has framed these models through
the metaphor of an operating system for knowledge (K-OS), highlighting their
role as infrastructure upon which specialized, modular, and trustworthy
applications can be developed. Much like traditional operating systems abstract
hardware complexities to enable diverse software ecosystems, FMs abstract the
complexity of massive data and computation into reusable capabilities.

The analysis has underscored three interdependent pillars that will define
the sustainable growth of FMs. Modularity enables scalability by allowing
lightweight adapters, parameter-efficient fine-tuning, and retrieval modules to
extend general models without retraining their cores. Trust and governance
remain essential to ensure that the power of FMs is not undermined by biases,
hallucinations, or misuse. Effective auditing, transparent documentation, and
ethical safeguards are critical in maintaining public confidence. Specialization
ensures that FMs remain relevant to distinct domains such as healthcare,
education, sustainability, and robotics, where tailored knowledge and
compliance with sectoral norms are indispensable.

Looking forward, the next decade of Al research will likely be
characterized by a shift from monolithic FMs to knowledge-centric ecosystems.
These ecosystems will integrate dynamic external memory, modular
specialization, and multi-agent collaboration, creating systems that are
adaptive, transparent, and context-aware. Advances in parameter-efficient fine-
tuning, retrieval-augmented generation, and trustworthy Al governance will
converge to support applications that are both powerful and socially
responsible. At the same time, global regulatory frameworks, sustainability
imperatives, and inclusivity efforts will shape how these systems are designed
and deployed.

The vision is not of Al replacing human intelligence but rather
augmenting human decision-making, functioning as a reliable and governable
operating system for knowledge. If modularity, trust, and specialization can be
successfully balanced, foundation models may evolve into a cornerstone of
scientific discovery, education, and societal progress in the coming decade.
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INTRODUCTION

The rapid growth of digital learning technologies and platforms has
generated vast streams of learner data, often referred to as “Big Data” in
education. These data sources, ranging from learning management systems
(LMSs), intelligent tutoring systems, and online assessments to discussion
forums, programming environments, and immersive AR/VR simulations,
provide rich insights into learner behaviors, competencies, and engagement
patterns (Papamitsiou & Economides, 2014). In parallel, the proliferation of
educational technologies has increased the demand for systematic approaches
to analyzing and applying such data. Educational engineering, sometimes
called learning engineering, addresses this challenge by combining scientific
research on learning with data science methodologies and engineering
practices. Its aim is to design, test, and iteratively refine learning environments
through evidence-based feedback loops (Baker et al., 2022).

Educational Data Mining (EDM) and Learning Analytics (LA) provide
the foundational pillars upon which educational engineering builds (Koedinger
et al., 2015; Papamitsiou & Economides, 2014). EDM focuses on developing
new algorithms and modeling techniques to extract insights from educational
datasets, while LA emphasizes translating those insights into actionable
interventions, tools, and institutional strategies (Romero & Ventura, 2020;
Lemay et al.,, 2021; Siemens & Long, 2011). Together, these fields have
produced a growing body of methods ranging from predictive models for
dropout detection to dashboards supporting learner self-regulation (Paulsen &
Lindsay, 2024; Susnjak et al., 2022; Sun et al., 2023).

What differentiates educational engineering is its pragmatic, design-
focused orientation. Measurement and data are not used solely for retrospective
evaluation but are embedded into the very process of instructional design and
delivery, allowing for rapid cycles of experimentation, analysis, and
improvement. For instance, adaptive learning systems powered by knowledge
tracing algorithms can adjust instructional content in real time, while early-
warning models enable timely interventions to support at-risk students (Karimi-
Haghighi et al., 2021; Rabelo & Zarate, 2025; Yu et al., 2021).
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By systematically integrating standards, data pipelines, and ethical
governance, educational engineering provides the scaffolding to transform Big
Data from fragmented signals into actionable intelligence that advances both

learning outcomes and institutional goals.

1. DATA SOURCES AND INTEROPERABILITY

The foundation of Big Data analytics in educational engineering lies in
the identification, integration, and management of diverse data sources. Modern
educational ecosystems generate data at unprecedented scale and velocity,
reflecting learners’ cognitive, behavioral, and affective dimensions. These data
can be broadly categorized into institutional, learner interaction, assessment,
sensor-based, and social/behavioral streams.

Institutional data include demographic information, enrollment records,
course registrations, and prior academic history stored in student information
systems (SIS). These datasets are essential for contextualizing learner
performance and enabling longitudinal analyses of persistence, retention, and
success across cohorts (Ifenthaler et al., 2019). When combined with finer-
grained activity logs, institutional data provide baseline indicators that guide
predictive models.

Learner interaction data represent one of the most abundant sources,
generated through LMSs, e-learning platforms, and intelligent tutoring systems.
Clickstream logs, time-on-task measures, forum posts, and resource access
patterns enable detailed mapping of engagement and learning behaviors
(Romero & Ventura, 2020). Massive Open Online Courses (MOOCs), for
instance, produce terabytes of interaction data each semester, which can be
mined to identify at-risk learners, optimize course sequencing, or personalize
pathways (Kizilcec & Lee, 2022).

Assessment data, ranging from traditional exam results to digital
formative quizzes and open-ended assignments, are vital for evaluating
mastery. Ever more, automated essay scoring, peer assessment platforms, and
gamified quizzes add to this corpus, generating rich artifacts for both
descriptive and predictive analysis (Rahimi & Shute, 2021). Assessment data
also enable real-time feedback loops when coupled with adaptive testing
systems.
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Sensor and multimodal data are emerging as transformative sources.
Eye-tracking, motion sensors, biometric devices, and virtual reality telemetry
provide insight into cognitive load, affective states, and embodied interactions
in simulated environments. In engineering education, for example, wearable
sensors in laboratory experiments record student movement and physiological
stress levels, enriching the understanding of hands-on skill acquisition (Ochoa
& Wise, 2021).

Social and behavioral data, derived from online discussion boards, social
media platforms, and collaborative tools, shed light on peer interactions,
discourse quality, and networked learning. Sentiment analysis of forum
discussions has been applied to predict persistence in online programs,
demonstrating the potential of natural language processing (NLP) in capturing
affective dimensions of learning (Wen et al., 2014).

While the availability of heterogeneous data sources creates
opportunities, it also introduces interoperability challenges. Educational data
are often siloed across proprietary platforms, each with distinct schemas and
access restrictions. Vendor lock-in and inconsistent metadata standards impede
the integration of learning data at scale. For example, aligning log data from an
LMS with advising records stored in a separate SIS may require complex
extract-transform-load (ETL) processes.

To address these issues, interoperability frameworks such as the
Experience API (xAPI) and IMS Caliper Analytics have gained prominence
(1EdTech, 2002; 1EdTech Caliper Analytics). xAPI captures learning
experiences in the form of activity statements (“actor—verb—object”), enabling
flexible tracking of both online and offline learning events. Caliper, by contrast,
emphasizes a standardized metric profile for higher education, facilitating
comparative analytics across institutions (Sclater, 2015; Dixon et al., 2025).
Both approaches rely on Learning Record Stores (LRSs) to collect, store, and
exchange event data (Conformant LRSs, xAPI Adopters; xAPl.com Get an
LRS). Institutional adoption of interoperability standards remains uneven,
however.
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While large universities and consortia may invest in enterprise-scale
integration, smaller institutions often struggle with resource limitations,
technical expertise, or concerns about data governance. This creates disparities
in the ability to leverage Big Data analytics effectively.

A related challenge is data sovereignty and privacy regulation, which
influence where and how educational data can be stored and shared. European
institutions, for instance, must comply with the General Data Protection
Regulation (GDPR), which restricts the transfer of personal data outside the
EU. Similar frameworks exist in other jurisdictions, complicating cross-border
collaborations in multinational educational programs (Slade & Prinsloo, 2013).

Despite these hurdles, progress is being made through initiatives
promoting open educational data ecosystems. Projects such as OpenLAP and
LearnSphere aim to provide open-source platforms and datasets for research,
fostering replicability and innovation (Aleven et al., 2017). Moreover, cloud-
based architectures now enable the creation of scalable educational data lakes,
where structured and unstructured data can be harmonized for advanced
analytics. Ultimately, the richness of educational data sources, coupled with
effective interoperability mechanisms, forms the backbone of educational
engineering. Without robust data integration and standards, analytics efforts
risk remaining fragmented and limited in impact. Ensuring interoperability is
therefore not a technical afterthought but a strategic imperative, one that
underpins the ability of institutions to harness Big Data for continuous
improvement in teaching and learning.

2. THE EDUCATIONAL DATA PIPELINE

Transforming raw educational data into actionable insights requires a
carefully designed data pipeline, comprising the processes of collection,
storage, integration, analysis, and visualization. In educational engineering, the
pipeline functions as the connective tissue that links disparate data sources to
analytical models and decision-making tools. Its design must balance
scalability, accuracy, security, and usability while accommodating the unique

constraints of educational contexts.
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2.1 Data Collection

The first stage involves capturing learning events from multiple
environments. These include LMS activity logs, SIS records, e-assessment
systems, and third-party learning tools. More frequently, collection also
encompasses real-time streams from sensors and immersive technologies. The
adoption of interoperability standards such as xAPI enables activity capture
beyond digital platforms, for instance, recording laboratory work or field-based
learning experiences (Zapata-Rivera & Petrie, 2018). Robust collection
practices must ensure timestamp accuracy, identity management, and metadata
annotation to facilitate downstream integration.

Once collected, data must be stored in a manner that supports scalability
and secure access. Institutions have traditionally relied on relational databases
and data warehouses, which are structured and optimized for querying
historical records. However, the velocity and variety of educational data
progressively necessitate data lakes and cloud-based architectures capable of
ingesting structured, semi-structured, and unstructured data (Almotiry et al.,
2021). Integration often involves extract-transform-load (ETL) pipelines, in
which raw data are cleaned, anonymized, and harmonized into consistent
schemas. Modern approaches also use data virtualization and APIs to enable
real-time interoperability without duplicating datasets.

Data Processing and Analytics

Educational data pipelines must support both batch processing and
streaming analytics. Batch processing suits retrospective analyses, such as end-
of-semester performance reports or curriculum redesign studies. By contrast,
streaming analytics are essential for real-time feedback applications, such as
adaptive tutoring or early-warning alerts (Ifenthaler et al., 2019). Frameworks
such as Apache Kafka and Spark Streaming are steadily adopted to process
continuous event flows, enabling near-instantaneous detection of anomalies in
learner behavior. An important element of this stage is data cleaning. Missing
values, duplicate records, and noisy data can significantly distort analytics

outputs.
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Automated cleaning tools, combined with human oversight, are
necessary to maintain data integrity. Additionally, feature engineering, the
process of deriving meaningful variables from raw data, is central to building
predictive and prescriptive models. For example, clickstream logs may be
transformed into features representing session length, burstiness of activity, or
collaborative contributions.

Visualization and Dashboards

The pipeline culminates in visualization layers that translate complex
analytics into accessible insights for instructors, administrators, and learners.
Dashboards can display key performance indicators, progression trajectories,
and risk alerts. The design of these interfaces must consider principles of
usability and cognitive load to avoid overwhelming users (Schwendimann et
al., 2017). Instructors may require aggregate class-level patterns, while learners
benefit from personalized feedback. Ever more, visualization tools incorporate
interactive elements, allowing users to drill down into specific data segments
or simulate “what-if” scenarios.

Governance and Security

A robust educational data pipeline must be underpinned by effective
governance frameworks. These include access control policies, audit trails, and
compliance with legal regulations such as GDPR and FERPA (U.S. Department
of Education, n.d.). Data anonymization and pseudonymization techniques help
safeguard learner privacy while enabling large-scale analytics. Moreover,
ethical governance frameworks encourage transparency by providing students
with insights into what data are collected and how they are used (Slade &
Prinsloo, 2013).

Scalability and Sustainability

Finally, pipelines must be designed with long-term sustainability in
mind. Pilot analytics projects often fail when scaled institution-wide due to
cost, technical complexity, or resistance from stakeholders. Cloud-native
infrastructures offer elasticity, allowing institutions to scale storage and
computation as demand fluctuates.
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Equally critical is capacity building, training educators and IT staff to
interpret analytics outputs and embed them into pedagogical practice (Ochoa &
Wise, 2021). All in all, the educational data pipeline is not a purely technical
artifact but an enabler of continuous improvement. Its effectiveness depends on
robust integration, ethical governance, and usability for diverse stakeholders.
As educational institutions embrace more complex data sources and analytical
methods, pipelines must evolve into flexible, interoperable infrastructures that
bridge the gap between raw data and actionable intelligence.

3. METHODS OF BIG DATA ANALYTICS

Educational engineering relies on diverse analytical methods to
transform raw data into insights that guide instructional design, learner support,
and institutional policy. These methods can be broadly categorized into
descriptive, predictive, prescriptive, and causal analytics. Each serves a distinct
purpose within the feedback loops that underpin continuous improvement.

3.1 Descriptive Analytics

Descriptive analytics focuses on summarizing historical data to identify
patterns, trends, and anomalies. In education, descriptive methods are
commonly used in dashboards that visualize learner activity, engagement
levels, or assessment outcomes (Schwendimann et al., 2017). For example,
time-on-task analyses reveal how students allocate effort across different
learning modules, while heatmaps of forum participation highlight
collaborative dynamics.

Common techniques include descriptive statistics, clustering, and
association rule mining. Clustering algorithms, such as k-means, have been
used to identify groups of learners with similar engagement profiles, enabling
tailored interventions (Romero & Ventura, 2020). Association rules can
uncover relationships between learning behaviors, for instance, the likelihood
that students who frequently revisit lecture videos also perform well in
quizzes.While descriptive analytics provide valuable situational awareness,
their primary limitation is that they are retrospective, offering little guidance on

future outcomes or actionable interventions.
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3.2 Predictive Analytics

Predictive analytics aims to forecast future outcomes based on historical
and real-time data. In education, this often involves identifying students at risk
of dropout or poor performance. Machine learning models such as logistic
regression, decision trees, random forests, and neural networks are widely
employed for this purpose (Khalil & Ebner, 2016).

For instance, Purdue University’s Course Signals project used predictive
models to generate early-warning alerts, significantly improving retention rates
(Arnold & Pistilli, 2012). Similarly, Georgia State University deployed
predictive analytics to monitor over 30,000 students, enabling advisors to
intervene proactively and reduce equity gaps in graduation rates (Renick,
2019). Recent advances have introduced deep learning models capable of
handling multimodal data such as text, video, and sensor streams. Natural
language processing (NLP) models, for example, can analyze forum
discussions to predict disengagement or negative sentiment (Wen et al., 2014).
Predictive models thus play a pivotal role in enabling just-in-time interventions
that align with learners’ evolving needs.

3.3 Prescriptive Analytics

Prescriptive analytics goes beyond prediction by recommending specific
actions to optimize outcomes. In educational contexts, prescriptive methods
underpin adaptive learning systems that personalize instruction. For example,
Bayesian knowledge tracing and deep knowledge tracing algorithms
dynamically adjust the difficulty and sequencing of practice problems based on
learners’ demonstrated mastery (Piech et al., 2015).

Recommendation systems, another form of prescriptive analytics,
suggest resources or learning activities tailored to individual preferences and
performance. MOOCs frequently employ recommendation engines to guide
learners toward supplemental readings, peer groups, or practice exercises
(Kizilcec & Lee, 2022).

Prescriptive approaches also support institutional decision-making.
Simulation models can project the impact of curriculum redesigns on retention,
allowing administrators to test alternative strategies virtually before

implementation.
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However, prescriptive analytics requires robust interpretability to ensure
trust and adoption by educators. Overly complex or opaque models risk

alienating instructors who must act upon the recommendations.

3.4 Causal Analytics

Causal analytics seeks to establish cause-and-effect relationships rather
than mere correlations. Randomized controlled trials (RCTs) are the gold
standard but are often impractical in live educational settings. As a result,
researchers employ quasi-experimental designs and causal inference techniques
such as propensity score matching, difference-in-differences, and instrumental
variables (Angrist & Pischke, 2014).

In educational engineering, causal methods are essential for evaluating
the true impact of interventions. For example, determining whether an adaptive
tutoring system genuinely improves learning outcomes requires isolating the
effect of the system from confounding variables such as prior knowledge or
motivation. Advances in machine learning have introduced methods for causal
discovery, which aim to infer causal structures directly from observational data
(Glymour et al., 2019).

Causal analytics holds particular promise for personalized learning
pathways, where the goal is to identify not just what correlates with success but
what interventions cause improvements for specific subgroups of learners. This
aligns with fairness-aware analytics, ensuring that recommendations do not
inadvertently privilege already-advantaged populations.

Integrative Approaches

While each method has unique strengths, the most powerful applications
in educational engineering arise from their integration. Descriptive analytics
captures system states, predictive anticipates risks, prescriptive optimizes
decisions, and causal confirms impact—together enabling iterative system
refinement. This synergy fosters data-informed innovation, allowing educators
to adapt strategies in real time. Ultimately, it supports a more personalized,

efficient, and impactful learning experience.
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For example, an early-warning system might begin with descriptive
dashboards highlighting low engagement, employ predictive models to flag at-
risk students, use prescriptive recommendations to suggest tutoring, and finally
apply causal analysis to assess whether the intervention reduced dropout rates.
The challenge for educational institutions is to design analytics ecosystems that
seamlessly integrate these methods into both technical infrastructure and
pedagogical practice. Faculty must be trained not only to interpret outputs but
also to participate in iterative cycles of testing and refinement.

Limitations and Future Directions

Despite their promise, current analytics methods face several limitations.
Predictive models often lack transparency, raising concerns about
interpretability —and  fairness.  Prescriptive systems may  overfit
recommendations to past behaviors, neglecting novel learning strategies.
Causal inference remains difficult in messy, real-world educational contexts.

Future research must address these limitations by advancing explainable
Al (XAI) methods, developing fairness-aware algorithms, and exploring
multimodal data integration (Luckin, 2023). The convergence of data mining,
Al, and causal inference holds the potential to create robust, equitable, and
actionable analytics pipelines that truly embody the ethos of educational
engineering.

4. APPLICATIONS IN EDUCATIONAL ENGINEERING

Big Data analytics provides the methodological foundation for
educational engineering to design, test, and optimize learning environments.
Applications span a wide range of contexts, from real-time learner support to
institutional decision-making. The following subsections highlight some of the
most impactful applications: early-warning systems, adaptive tutoring,
dashboards and open learner models, curriculum optimization, and immersive
technologies (VR/AR).
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4.1 Early-Warning Systems

One of the most widely implemented applications of learning analytics
is the development of early-warning systems (EWSs) designed to identify
students at risk of failure or dropout. By leveraging predictive models based on
LMS logs, attendance, demographics, and assessment results, EWSs allow
institutions to intervene before negative outcomes occur (Bafieres et al., 2023;
Cannistra et al., 2023).

At Purdue University, the Course Signals project demonstrated
significant improvements in retention by using predictive risk indicators
combined with traffic-light style alerts to instructors and students (Arnold &
Pistilli, 2012). Similarly, Georgia State University has implemented predictive
analytics at scale, monitoring over 30,000 students with over 800 risk factors.
The result has been a dramatic increase in graduation rates and a narrowing of
achievement gaps among underrepresented groups (Toffel et al., 2019; Renick,
2019).

Critics, however, caution that poorly designed EWSs can stigmatize
students or create “self-fulfilling prophecies” if interventions are not
accompanied by supportive resources (Slade & Prinsloo, 2013). Thus,
transparency, fairness, and integration with human advising are essential to
ensure that EWSs empower rather than disadvantage learners.

4.2 Adaptive Tutoring Systems

Adaptive tutoring represents a core application of prescriptive analytics
in educational engineering. These systems dynamically adjust instructional
content, pacing, and difficulty to match the learner’s current knowledge state.
Bayesian Knowledge Tracing (BKT) and Deep Knowledge Tracing (DKT)
models underpin many adaptive platforms, enabling individualized pathways
through problem sets and simulations (Su et al., 2023; Piech et al., 2015).

Examples include ASSISTments, an open online platform widely used in
mathematics that provides real-time feedback, adaptive problem sequencing,
and teacher dashboards for monitoring homework and classwork (Heffernan &
Heffernan, 2014).
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Another prominent system is ALEKS (Assessment and LEarning in
Knowledge Spaces), a commercial web-based tutoring environment that
applies Knowledge Space Theory to generate personalized learning trajectories,
ensuring that students master prerequisite concepts before moving on
(Khazanchi et al., 2023). Studies have shown that adaptive tutoring systems not
only improve mastery of concepts but also foster learner motivation by
providing appropriate levels of challenge (Koedinger et al., 2013).

In engineering education, adaptive virtual laboratories allow students to
engage with complex systems such as electrical circuits or fluid dynamics,
adjusting task complexity based on prior performance (Lampropoulos &
Evangelidis, 2025). These applications highlight how analytics-driven tutoring
can extend individualized instruction well beyond the constraints of traditional
classrooms.

4.3 Dashboards and Open Learner Models

Dashboards provide visual representations of learner progress,
engagement, and risk status, enabling instructors and students to make informed
decisions. Effective dashboards integrate descriptive and predictive analytics,
presenting both current performance and projected outcomes (Schwendimann
et al., 2017).

At the institutional level, dashboards help administrators monitor key
performance indicators such as course completion rates, equity gaps, and
program effectiveness. For learners, dashboards can promote self-regulated
learning by highlighting strengths, weaknesses, and suggested actions.
Research shows that dashboards with interactive features enhance
metacognition and persistence, particularly when aligned with explicit learning
goals (Jivet et al., 2017).

Open Learner Models (OLMs) take this a step further by allowing
students to inspect, question, and even negotiate the models that represent their
knowledge states. This transparency can increase trust in analytics systems and
foster collaborative learning (Bull & Kay, 2016). For example, in language
learning platforms, OLMs enable learners to track vocabulary mastery and

receive recommendations for targeted practice.
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However, design challenges remain. Poorly designed dashboards may
overwhelm users with data or inadvertently reinforce negative perceptions.
Human-centered design principles are thus critical to ensuring dashboards and
OLMs serve as supportive, rather than punitive, tools.

4.4 Curriculum and Instructional Design Optimization

Analytics also supports curriculum redesign and instructional
improvement. By aggregating and analyzing patterns across cohorts,
institutions can identify courses with high failure rates, content areas that
consistently challenge learners, or sequences that lead to stronger performance.
These insights inform decisions about curriculum sequencing, resource
allocation, and faculty development (Ifenthaler et al., 2019).

For example, mining data from STEM gateway courses can reveal that
students who struggle with foundational mathematics topics are more likely to
drop out of engineering programs. Targeted curriculum redesign—such as
embedding just-in-time math refreshers—can mitigate these barriers.

Moreover, analytics can evaluate the effectiveness of instructional
innovations. For instance, flipped classrooms or project-based learning models
can be assessed by comparing performance, engagement, and satisfaction
across cohorts. This iterative process embodies the educational engineering
ethos of using measurement as feedback for continuous improvement.

4.5 Immersive and Multimodal Learning Analytics (VR/AR)

The growth of immersive technologies has opened new frontiers for Big
Data analytics in education. Virtual reality (VR) and augmented reality (AR)
environments generate fine-grained telemetry data, including gaze patterns,
hand movements, and spatial navigation. Analyzing these data enables
researchers to understand cognitive load, attention, and collaboration in
complex learning tasks (Ochoa & Wise, 2021).

In medical education, VR simulations capture procedural performance
metrics such as precision and timing, providing feedback that rivals traditional

apprenticeship models.
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In engineering, AR overlays real-time sensor data onto physical
machinery, allowing students to practice troubleshooting with guided support.
Analytics from these environments can identify skill gaps, personalize practice
sessions, and enhance safety by simulating high-risk scenarios.

The challenge lies in integrating multimodal data from VR/AR with
traditional LMS and SIS datasets. Doing so requires advanced pipelines,
interoperability standards, and ethical frameworks to ensure privacy, given the
sensitive nature of biometric and affective data (Kizilcec & Lee, 2022).

4.6 Institutional and Policy-Level Applications

Beyond classroom interventions, analytics informs strategic decision-
making at institutional and policy levels. Universities employ Big Data to
optimize resource allocation, predict enrollment trends, and assess program
viability. National governments are to an increasing extent using analytics to
evaluate educational quality and equity, supporting data-informed
policymaking (Ifenthaler et al., 2019).

However, this raises questions about governance and accountability.
Policymakers must avoid over-reliance on quantitative metrics, which risk
reducing education to narrow indicators. Instead, analytics should complement,
not replace, holistic assessments of educational quality.

Synthesis

Applications of Big Data analytics in educational engineering
demonstrate the versatility of methods across micro-, meso-, and macro-levels
of education. From personalized tutoring to national policy, analytics serves as
both microscope and telescope—zooming in on individual learners while
offering system-wide perspectives. Yet the success of these applications hinges
on alignment with ethical principles, user-centered design, and continuous

evaluation.
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5. BUILDING BLOCKS: STANDARDS, STORES AND

SYSTEMS

The scalability and sustainability of Big Data analytics in educational
engineering depend on a robust set of technical building blocks. These include
interoperability standards, learning record stores (LRSs), and institutional
analytics systems that integrate data into actionable insights. Together, they
form the infrastructure enabling continuous improvement across learning

environments.

5.1 Interoperability Standards

Interoperability is critical for integrating heterogeneous educational data
from multiple platforms. Two prominent standards dominate the field:
Experience API (xAPI) and IMS Caliper Analytics (1EdTech, 2002; 1EdTech
Caliper Analytics). xAPI, also known as Tin Can API, captures learning
experiences as activity statements structured in an “actor—verb—object” format
(e.g., “Student A completed Quiz 2”). Its flexibility allows tracking of learning
beyond LMS boundaries, including offline and informal contexts such as
simulations, workplace training, and fieldwork (Sclater, 2015; Hu et al. 2019;
Dixon et al., 2025).

Caliper, in contrast, emphasizes standardization by defining metric
profiles for common educational events, such as assessments, sessions, or
media interactions. This enables benchmarking and cross-institutional
comparisons, making it particularly valuable for large consortia and
accreditation purposes (Moskal et al., 2023). The choice between xAPI and
Caliper often reflects institutional priorities: flexibility versus comparability.
More frequently, hybrid architectures support both, enabling maximum

coverage of formal and informal learning contexts.

5.2 Learning Record Stores (LRSs)

At the heart of modern analytics infrastructures are Learning Record
Stores, which collect and manage learning activity statements generated by
xAPI or Caliper. LRSs provide a central repository where data from LMSs,
mobile apps, VR environments, and third-party tools converge.
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A well-designed LRS supports not only data storage but also query
capabilities, access control, and integration with visualization or machine
learning systems (Aleven et al., 2017). For example, an institution might use an
LRS to aggregate participation data from a MOOC platform, assessment
outcomes from an online proctoring system, and biometric data from a VR
simulation—enabling multimodal analytics that were previously fragmented.
LRSs also play a critical role in data sovereignty and learner agency. By
allowing learners to control and port their data across platforms, LRSs align
with the growing emphasis on personal learning records and lifelong learning
pathways (Ochoa & Wise, 2021).

5.3 Institutional Analytics Systems
Beyond technical standards and stores, educational engineering requires
institutional-level systems that turn raw data into usable intelligence. Examples
include:
* Learning analytics dashboards for instructors and administrators.
» Student success platforms integrating predictive models with advising
workflows.
* Curriculum analytics tools for identifying bottlenecks in program
progression.
These systems rely on pipelines that harmonize data from SIS, LMS,
LRS, and other platforms. Cloud-native architectures, offered by vendors such
as AWS and Microsoft Azure, provide elasticity and scalability, though they
also raise concerns about vendor dependency and compliance with local data
protection laws (Slade & Prinsloo, 2013). Institutional adoption is uneven.
Leading universities have built enterprise-scale analytics ecosystems, while
many smaller institutions face barriers related to cost, expertise, or
organizational readiness. Research highlights that technical infrastructure must
be paired with capacity building, including professional development for
faculty and support staff (Ifenthaler et al., 2019). Without targeted investment,
these gaps risk widening digital divides between institutions. Building
sustainable analytics capacity requires not just technology, but governance
frameworks and cross-functional collaboration.
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Moreover, alignment with ethical and regulatory standards is critical to
ensure responsible data use in educational settings.

Synthesis

Standards, stores, and systems are not merely technical components but
enablers of educational engineering. They determine whether analytics can
scale from isolated pilots to institution-wide impact. As the field matures,
emphasis must increasingly shift toward interoperability, sustainability, and
learner-centered design to ensure that infrastructure supports yet, does not
constrain the promise of Big Data in education.

6. ETHICS, PRIVACY AND FAIRNESS

As Big Data analytics become steadily embedded in educational practice,
ethical, legal, and fairness considerations emerge as central concerns. The
power to collect, analyze, and act on sensitive learner data must be balanced
with respect for privacy, transparency, and equity. Without careful governance,
analytics systems risk reinforcing existing inequalities, eroding trust, and
undermining the very educational outcomes they seek to improve.

6.1 Privacy and Consent

Educational data often include personally identifiable information (PII)
such as demographics, academic records, and behavioral traces. Protecting this
information is not only a moral obligation but also a legal requirement under
regulations such as the Family Educational Rights and Privacy Act (FERPA) in
the United States and the General Data Protection Regulation (GDPR) in
Europe.

Both frameworks emphasize learner rights: FERPA grants students
access to their records, while GDPR mandates explicit consent, data
minimization, and the right to be forgotten. In practice, however, ensuring
meaningful consent in digital learning environments is challenging. Learners
often accept opaque terms of service without fully understanding how their data
will be used (Slade & Prinsloo, 2013; Simm, 2025). Transparent

communication and opt-in mechanisms are therefore essential to building trust.
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6.2 Ethical Use of Analytics
Ethical concerns extend beyond privacy to the very purposes for which

B

data are used. Analytics systems must avoid “surveillance culture,” where
students feel constantly monitored, potentially leading to anxiety and
disengagement (Williamson, 2017). Instead, analytics should be framed as a
tool for empowerment, offering learners actionable feedback and resources for
self-improvement.

Institutions must also guard against function creep, where data collected
for one purpose (e.g., learning support) are repurposed for unrelated uses (e.g.,
disciplinary actions) without consent. Codes of practice, such as those
published by Jisc, for instance (Alayan, 2021), recommend limiting analytics

to clearly defined pedagogical or institutional objectives.

6.3 Algorithmic Bias and Fairness

Predictive and prescriptive analytics carry the risk of embedding biases
present in historical data. For example, models trained on past cohorts may
inadvertently disadvantage underrepresented groups, reinforcing systemic
inequities (Kizilcec & Lee, 2022). An early-warning system might consistently
flag students from certain socioeconomic backgrounds as ‘“high risk,” creating
stigmatization and reduced expectations.

Addressing fairness requires both technical and organizational strategies.
On the technical side, fairness-aware algorithms adjust model training to
mitigate disparate impacts, while explainable Al (XAI) methods improve
interpretability. On the organizational side, institutions should implement bias
audits and engage diverse stakeholders in the design and evaluation of analytics
systems (Holstein et al., 2019).

6.4 Accountability and Governance

Effective governance structures ensure accountability for how
educational data are collected, analyzed, and applied. Institutions should
establish  cross-functional ethics committees involving educators,
technologists, legal experts, and student representatives. These bodies can
oversee policy development, approve new analytics initiatives, and review

ethical dilemmas.
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Transparency is another cornerstone of governance. Providing learners
with data literacy education empowers them to understand and critique the
analytics systems that affect their educational journeys (Pangrazio & Selwyn,
2020). Transparency also includes offering accessible explanations of how
models work, what data they use, and how recommendations are generated.

6.5 Cultural Contexts and Global Considerations

Ethical norms vary across cultures. In some contexts, collectivist values
may prioritize institutional oversight of data, while in others, individual
autonomy is paramount. Multinational educational platforms must navigate
these differences, ensuring compliance with diverse regulatory frameworks
while respecting cultural expectations (Slade & Prinsloo, 2013).

Global disparities also shape ethical challenges. Institutions in low-
resource settings may lack the capacity to implement robust data protection
measures, raising equity concerns about who benefits from Big Data analytics.
Collaborative capacity-building and international guidelines can help reduce
such disparities.

Synthesis

Ethics, privacy, and fairness are not add-ons but integral to educational
engineering. They determine whether analytics initiatives will enhance trust
and equity or deepen surveillance and inequality. By embedding ethical
reflection into every stage of the analytics lifecycle, design, implementation,
and evaluation, institutions can ensure that Big Data serves as a force for

inclusion, empowerment, and continuous improvement.

7. IMPLEMENTATION BLUEPRINT

While the promise of Big Data analytics in educational engineering is
clear, successful implementation requires more than technical infrastructure. It
involves strategic planning, organizational alignment, and sustained
investment. An implementation blueprint offers institutions a roadmap for

translating analytics initiatives into meaningful educational impact.
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Strategic Alignment

The first step is ensuring alignment between analytics initiatives and
institutional goals. Analytics should not be pursued as an end in itself but as a
means to support priorities such as improving retention, enhancing equity, or
scaling personalized learning (Ifenthaler et al., 2019). Establishing a shared
vision among faculty, administrators, and IT staff is essential to prevent
fragmented or duplicative efforts.

Infrastructure and Data Management

Robust infrastructure underpins sustainable analytics. Institutions must
invest in interoperable data systems, integrating SIS, LMS, and LRS platforms
through standards such as xAPI or Caliper. Cloud-based architectures offer
scalability and resilience but must be evaluated against data sovereignty
requirements (Dziuban et al., 2018; Moskal et al., 2023). Equally important is
establishing clear data governance policies that define ownership, access rights,
and retention schedules.

Capacity Building and Professional Development

Analytics initiatives succeed only when educators and staff have the
skills to interpret and act on insights. Professional development programs
should train faculty in data literacy, dashboard interpretation, and evidence-
based instructional design (Pangrazio & Selwyn, 2020). Cross-disciplinary
teams, combining educators, data scientists, and instructional designers, can
bridge the gap between technical capabilities and pedagogical needs.

Change Management

Introducing analytics often disrupts established practices. Change
management strategies must address cultural resistance, emphasizing that
analytics enhance rather than replace professional judgment (Ochoa & Wise,
2021). Pilot projects can demonstrate value, building momentum for broader
adoption. Transparent communication about objectives, benefits, and

safeguards fosters trust among faculty and students.
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Continuous Evaluation

Implementation is not a one-time event but an ongoing process.
Institutions should establish mechanisms for continuous evaluation, including
impact assessments, bias audits, and learner feedback channels. Iterative
refinement ensures that analytics systems remain relevant, effective, and
ethically sound (Holstein et al., 2019).

Synthesis

A successful implementation blueprint integrates strategy, infrastructure,
capacity, and culture. By approaching analytics as a socio-technical innovation,
one that blends technology with human expertise and ethical governance,
institutions can transform Big Data from isolated experiments into sustainable

engines of educational improvement.

8. OPEN CHALLENGES AND RESEARCH DIRECTIONS

Although Big Data analytics has achieved notable successes in
educational contexts, several challenges remain unresolved. Addressing these
gaps is essential to realize the full potential of educational engineering.

Multimodal Data Integration

Educational environments progressively produce multimodal data
streams, including text, video, biometric signals, and virtual reality telemetry.
Integrating these heterogeneous sources into coherent models poses significant
technical and methodological challenges. Current pipelines struggle with
synchronizing time-stamped events across modalities or dealing with missing
and noisy data (Ochoa & Wise, 2021). Research is needed to develop
frameworks that harmonize multimodal inputs without oversimplifying the

complexity of learning processes.

Explainability and Transparency

As predictive and prescriptive models grow in sophistication, concerns
about interpretability intensify. Black-box models such as deep neural networks
may deliver accurate predictions but offer little insight into the underlying

decision-making process.
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This lack of transparency hinders trust and adoption by educators, who
require interpretable explanations to act on recommendations (Holstein et al.,
2019). Future research must focus on developing explainable Al (XAI) tailored
to educational contexts, balancing accuracy with interpretability.

Fairness and Equity

Algorithmic bias remains a pressing issue. Models trained on historical
data may reinforce existing inequities, disadvantaging learners from
underrepresented groups (Kizilcec & Lee, 2022). Although fairness-aware
algorithms are emerging, their effectiveness in real-world educational settings
is not yet well established. Research should explore methods for bias detection,
mitigation, and ongoing monitoring, alongside frameworks for participatory
design that involve students in shaping analytics systems (Pangrazio & Selwyn,
2020).

Causal Personalization

While predictive analytics can flag at-risk students, they rarely establish
causality. Determining which interventions work, for whom, and under what
conditions remains an open challenge. Advances in causal inference, such as
synthetic controls or causal discovery methods, offer promising avenues
(Glymour et al., 2019). The next frontier is causal personalization, which tailors
interventions not just to predicted risks but to causal mechanisms specific to
individual learners.

Generative AI and New Frontiers

The emergence of generative Al models, such as large language models
(LLMs), is reshaping the educational analytics landscape. These models can
generate feedback, simulate tutoring, and summarize learner data at scale. Yet,
their integration raises questions about accuracy, bias, and ethical use (Wen et
al., 2024). Research must investigate how generative Al can complement
traditional analytics while ensuring transparency and reliability (Nguyen et al.,
2023).
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Sustainability and Institutional Readiness

Many analytics initiatives fail to scale beyond pilot projects due to
resource constraints, cultural resistance, or lack of institutional strategy
(Muscanell, 2024; Qazi & Pachler, 2025). Future research should focus on
identifying conditions for sustainable adoption, including cost-effective
infrastructures, faculty development, and governance frameworks.
Comparative studies across institutions and regions could reveal best practices
for scaling analytics equitably (Manly, 2024; Reyes et al., 2025).

Global and Cultural Perspectives

Finally, educational analytics must grapple with global disparities.
Institutions in low- and middle-income countries often lack access to advanced
infrastructure, creating risks of a digital divide in analytics adoption
(Williamson, 2017). Cross-cultural studies are needed to explore how values,
norms, and regulations shape the ethical use of analytics worldwide.
International collaboration, open data initiatives, and capacity-building efforts
can help democratize access to educational engineering innovations.

Synthesis

Open challenges highlight that Big Data in education is not only a
technical frontier but also a socio-cultural and ethical one. Future research must
balance innovation with equity, transparency, and sustainability. By addressing
these challenges, educational engineering can evolve into a mature discipline
that delivers on its promise of continuous improvement for all learners.

9. DISCUSSION

The preceding sections have illustrated the breadth and depth of Big Data
applications in educational engineering, spanning data sources, pipelines,
methods, and practical implementations. The discussion now turns to a
synthesis of these insights, examining their implications for pedagogy,
institutional strategy, and future research.
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From Fragmented Data to Actionable Intelligence

A recurring theme is the fragmentation of educational data across
platforms and modalities. Without interoperability standards and robust
pipelines, analytics efforts remain siloed, limiting their impact. The adoption of
xAPI, Caliper, and LRSs represents significant progress, but institutional
readiness varies widely (Alayan, 2021; Simm, 2025). The ability to harmonize
data is not merely a technical challenge but a precondition for evidence-based
decision-making. Institutions that succeed in integrating heterogeneous data
streams are better positioned to design adaptive curricula, deploy early-warning
systems, and monitor equity outcomes.

Balancing Innovation with Ethics

While the technical promise of Big Data is immense, ethical
considerations must remain central. Sections 7 and 9 highlighted risks related
to privacy, surveillance, and algorithmic bias (Slade & Prinsloo, 2013; Kizilcec
& Lee, 2022). The challenge lies in striking a balance between innovation and
learner protection. Analytics should empower students by providing feedback
and opportunities for growth, not by categorizing them into deficit narratives.
Embedding transparency, fairness audits, and student agency into the analytics
lifecycle is essential for sustaining trust.

The Human—Machine Partnership

Educational engineering emphasizes that analytics are not substitutes for
human judgment but complements. Faculty, advisors, and administrators
remain critical interpreters of data, contextualizing insights and applying them
to nuanced educational settings (Ochoa & Wise, 2021). For instance, an early-
warning flag may indicate risk, but advisors must decide whether the
underlying issue relates to academic difficulties, personal challenges, or
institutional barriers. Effective analytics systems therefore require both
technical sophistication and robust professional development to build data
literacy across stakeholders.
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Pedagogical Implications

At the classroom level, Big Data analytics facilitates more personalized,
adaptive, and engaging learning experiences. Adaptive tutoring, VR
simulations, and learner dashboards illustrate how data-driven systems can
foster self-regulated learning and mastery of complex skills. However, design
matters: poorly implemented dashboards may overwhelm learners, while
opaque recommendation systems may erode autonomy (Jivet et al., 2017).
Pedagogy informed by analytics must remain learner-centered, integrating
feedback mechanisms that support—not dictate—the learning process.

Institutional Strategy and Sustainability

At the institutional level, analytics offer tools for improving retention,
resource allocation, and equity. Case studies such as Georgia State University
demonstrate that when analytics are strategically aligned with advising and
support services, they can transform student success outcomes (Renick, 2019).
Yet sustainability remains a challenge. Many initiatives fail to scale due to cost,
complexity, or lack of organizational buy-in (Muscanell, 2024; Qazi & Pachler,
2025; Reyes et al., 2025). Institutions must approach analytics as long-term
capacity building, investing not only in infrastructure but also in governance,
ethics, and culture.

Future Trajectories

Looking ahead, several trajectories stand out. First, the rise of
multimodal and immersive analytics will push boundaries of what data can
reveal about learning processes (Ochoa & Wise, 2021). Second, advances in
causal inference and fairness-aware algorithms promise to make interventions
both more effective and equitable (Glymour et al., 2019; Holstein et al., 2019).
Third, the advent of generative Al introduces opportunities for automated
feedback and tutoring but also raises concerns about reliability and ethics (Wen
et al, 2024). Navigating these trajectories requires interdisciplinary
collaboration between educators, computer scientists, ethicists and

policymakers.
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Synthesis

The overarching lesson is that Big Data analytics in educational
engineering is as much about people and culture as it is about technology.
Success depends on creating socio-technical systems where pipelines, methods,
and applications are embedded within ethical, pedagogical, and organizational
frameworks. Analytics should be viewed not as static tools but as dynamic
infrastructures for continuous improvement, i.e. the very ethos of educational

engineering.

CONCLUSION

The discussion above has underscored both the potential and the
challenges of Big Data in educational engineering. Building on these insights,
analytics has moved from a promising concept to a practical force shaping the
landscape of modern education. Through the lens of educational engineering,
data is no longer treated as a byproduct of instruction but as a foundational
resource for continuous improvement. From early-warning systems and
adaptive tutoring to dashboards and immersive learning environments,
applications demonstrate how analytics can support learners, inform faculty,
and guide institutional strategy.

Yet the transformative potential of analytics depends on more than
technical sophistication. Success requires ethical governance, transparency, and
fairness to ensure that interventions empower rather than stigmatize students.
Interoperability standards, learning record stores, and institutional
infrastructures form the technical backbone, while professional development
and cultural change provide the human foundation.

Looking ahead, future research must tackle challenges of multimodal
integration, causal personalization, fairness-aware modeling, and the
responsible use of generative Al. Addressing these frontiers will require
interdisciplinary collaboration, global perspectives, and a steadfast
commitment to equity. Ultimately, Big Data analytics in educational
engineering is not merely a set of tools but a paradigm of design-based
improvement. Embedding feedback loops at every level, learner, classroom and
institution, enables analytics to realize more effective, inclusive, and

sustainable educational systems.
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INTRODUCTION

Quantum computing brings a new paradigm to computing science,
utilizing the basic principles of quantum mechanics to carry out computations
that are impossible for classical computers (Feynman, 1982). Whereas classical
bits are deterministic and pertain to only two values, quantum bits (qubits) can
be in superpositions, enabling a quantum computer to simultaneously encode
and process exponentially larger amounts of information. (Nielsen & Chuang,
2010). Quantum mechanics state vectors, linear operators, Hilbert space, and
unitary evolution is directly responsible for the functioning of quantum
computers (Preskill, 2018), thus it is not particularly feasible to engage in a
meaningful discussion of quantum computing without first developing an
adequate understanding of the fundamentals of quantum mechanics. There exist
several properties, which are unique to quantum mechanics, that provide
quantum systems with a computational advantage: superposition,
entanglement, quantum interference, and unitary evolution (Deutsch, 1985).
Superposition allows qubits to exist in multiple states at the same time,
entanglement describes correlations between qubits that allow for non-classical
processes of computing (Einstein, Podolsky, & Rosen, 1935), and interference
allows for constructive and destructive combination of quantum amplitudes that
can promote the correct results or suppress incorrect results (Feynman, 1982).

0)
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Classical Bit Qubit

Figure 1. Classical bit vs. Qubit representation
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In addition, quantum mechanics represents a set of distinctive constraints
upon physical realizations of measurement by virtue of its probabilistic nature
(Born, 1926), while observation collapses an observed qubit's superposition of
states. Coherent operations of qubits and their decay into incoherent states due
to decoherence and environmental noise impose a finite bound upon the
coherence times of qubits, resulting in the formal consideration of error
correction (Shor, 1995). These physical realizations are formalized
mathematically through the postulates of quantum mechanics that define the
types and order of permissible operations, measurements, and impact on the
evolution of two-mode quantum systems (Dirac, 1930; von Neumann, 1955).
Quantum computing signifies an exceptional break from classical computation,
as it is entirely based on quantum mechanics. Qubits carry the advantage of
exploiting superposition, which allows them to be in multiple states at the same
time, without the sharp distinction of classical bits that are either 0 or 1.
Furthermore, entanglement allows for correlations that have no analogy in
classical mechanics (Nielsen & Chuang, 2010). Together with unitary evolution
and interference, these phenomena are the strictly quantum mechanics
properties that are responsible for the computational power of various quantum
algorithms, for example, Shor’s factoring algorithm and Grover’s search
algorithm (Feynman, 1982; Grover, 1996; Shor, 1995). Finally, the actual
physical implementations of qubits, whether they are superconducting circuits,
trapped ions, or photonic systems, rely on the principles of quantum mechanics
to realize it, thus indicating that quantum computing is inseparable from the
physics underlying it. The remainder of this chapter will fully develop these
ideas, demonstrating how the postulates of quantum mechanics are the
foundation for quantum gates, circuits, and algorithms to provide researchers
with the fundamental knowledge necessary to advance quantum computing.
The main focus of this chapter is to provide a rigorous treatment of quantum
mechanics as it applies to quantum computing and will start with the postulates
of quantum mechanics, followed by the mathematical formalism of the
representations that aid in understanding qubits, quantum gates, and

computational operations.
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We hope that the information we present in this chapter will be a
foundational knowledge for researchers attempting to design quantum
algorithms, build quantum hardware, or explore the limits of quantum
computation (Arute et al., 2019).

1. POSTULATES OF QUANTUM MECHANICS

The framework of quantum mechanics is comprised of a set of axiomatic
postulates which describe the nature of quantum systems. These postulates form
the mathematical and conceptual basis of quantum computation (Dirac, 1930;
Nielsen & Chuang, 2010).

Postulate: 1-Quantum States

The state of a quantum system is represented by a vector |y)in a complex
Hilbert space H. For a single qubit, the computational basis is defined by two
orthonormal vectors (Nielsen & Chuang, 2010):

=) =0

A general qubit state can be expressed as a linear combination

(superposition) of these basis states:
Yy =al0)y+B11),a,BEC|al®>+l B I*?=1.

The squared magnitudes | @ |2and | 8 |*correspond to the probabilities
of measuring the qubit in the states | 0O)and | 1), respectively (Born, 1926).

For multi-qubit systems, the tensor product of individual Hilbert spaces
is used. For two qubits:

| Y)ap =1 P)a Q1 P)p,

allowing representation of entangled states such as the Bell state (Bell,

1964):
1

o) =

(1 00)+1 11)).
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Postulate: 2
Evolution of Quantum Systems (Unitary Evolution): A closed quantum
system evolves in time according to a unitary operator U:
() = Ut to) | Y(to)),
where UTU = UUT = I. In infinitesimal form, the evolution is governed
by the Schrodinger equation (Schrodinger, 1926):

. d _f
th— %) =H1¥p@®),

with H being the Hamiltonian operator of the system. The unitarity of

evolution preserves the total probability of all possible outcomes,
la >+l B 1°P=1

A principle that ensures quantum computations are reversible until
measurement occurs (Preskill, 2018).

Quantum gates, including Pauli gates, Hadamard, and CNOT, are
physical implementations of such unitary operations in computational hardware
(Nielsen & Chuang, 2010)

X A
) |1)
Figure 2. Bloch Sphere representation of a qubit

Postulate 3: Measurement
Measurement in quantum mechanics is described by a set of

measurement operators {M_m}acting on the state [y) (von Neumann, 1955).
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Upon measurement:
The probability of outcome m is:
pm) = (W | My My | )
The post-measurement state becomes:
Ly < M 1)
Vp(m)

This formalism defines the collapse of the wavefunction, which is central
to quantum computing: once measured, a qubit loses its superposition.
Observables are represented by Hermitian operators Owith eigenvalues
corresponding to possible measurement outcomes:

010 =0;10)
Measurement thus projects the state [y)onto one of the eigenstates of O.

Postulate 4: Composite Systems and Entanglement

For composite quantum systems, the overall state resides in the tensor
product of the component Hilbert spaces (Bell, 1964):

Hap = Hy Q Hp.

Some states of composite systems cannot be factorized into product
states of individual qubits; these are entangled states. Entanglement is a non-
classical resource enabling quantum algorithms and protocols such as quantum
teleportation, superdense coding, and Shor’s algorithm (Shor, 1995; Bennett et
al., 1993).

Entangled states exhibit correlations that violate Bell inequalities,
illustrating the non-locality inherent in quantum mechanics.

Postulate 5: Probability and Born Rule
The probability of measuring an outcome is given by the Born rule:
p@ =I(1P)I°
Mathematical Foundations
Quantum computing relies heavily on linear algebra and complex vector
spaces. Key mathematical constructs include:
e State vectors in C*n

e Unitary operators: UMt U=I
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e Hermitian operators for observables
e Tensor products for multi-qubit systems
o Commutation relations: e.g., [X,Z]=XZ-ZX#0
These tools allow precise modeling of qubit behavior, gate operations,
and multi-qubit interactions, forming the basis for circuit design and

algorithmic implementation.

2. QUANTUM STATES, SUPERPOSITION AND

ENTANGLEMENT

Quantum states are defined as vectors in Hilbert space, with multi-qubit
systems scaling even more steeply (Nielsen & Chuang, 2010). Superposition
gives qubits the ability to simultaneously encode more than one value.
Entanglement provides correlations that cannot be explained classically, and is
essential to speed up computation with algorithms (Einstein, Podolsky, &
Rosen, 1935; Bell, 1964; Horodecki, Horodecki, Horodecki, & Horodecki,
2009). Interference provides the ability to amplify the correct choices. Mixed
states and density matrix formalism pertains to decoherence and the behavior
of realistic quantum systems (Preskill, 2018). Quantum gates perform unitary
operations on qubits in order to compute, entangle, and run algorithms.

Quantum States and Representation

A quantum state contains all information about a quantum system. In
quantum computing, this is usually a qubit or a collection of qubits. Qubit states
are represented as vectors in a two-dimensional Hilbert space:

lYy=al0)+B 11, a,BeClal*>+I B I*=1

The vector components aand fare called probability amplitudes, where
| @ 12 and | S |? give the probability of measuring the qubit in states | 0) or |
1), respectively.

The Bloch sphere provides a geometric perspective for visualizing the
states of a qubit. Any pure single-qubit state can be expressed in spherical polar

coordinates as follows:

0 . 0
|1/))=cos§|0)+el¢’sin§| 1)0<60<m0< ¢ <2m.
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Here, 8and ¢ define the orientation of the state vector on the Bloch sphere. The
Bloch sphere offers a useful visual representation of single-qubit rotations,
gates (X, Y, Z, and Hadamard), and phase changes needed for algorithmic
operation. One of the most mysterious properties of quantum systems is
superposition: a quantum system can be in several different states at once. For
a qubit:

[p)=al0)+pB11)

This means that the qubit is not just a 0 or a 1, but a 0 and 1
simultaneously, at different relative amplitudes. Superposition allows a
quantum computer to follow multiple computational paths simultaneously,
allowing quantum algorithms to outperform any achievable speed of classical

algorithms.
The Hadamard gate (H) transforms basis states as:
[ 0)+] 1) | 0)—I 1)
H|0)=——H|1)=—F77——
A R

Applied to |0), the qubit enters an equal superposition:

1
| Y) =ﬁ(' 0)+] 1))

This property underlies many quantum algorithms, such as Deutsch-
Jozsa, Grover’s search, and Shor’s factoring algorithm (Grover, 1996; Shor,
1995; Deutsch, 1985).

Multi-Qubit Systems
For systems with n qubits, the Hilbert space grows exponentially: a
system of nqubits resides in a 2n-dimensional space. The general state of n

qubits is:
2n—-1 2n—-1
W)= ) a@liy ) lal=1
i=0 i=0

Where |i)represents computational basis states 100...0) to [11...1). The
exponential growth of the state space is the foundation of quantum
computational advantage, enabling simultaneous exploration of all possible
states.Example: Two-Qubit State
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[ Y) = agy | 00) + apq | 01) + a0 | 10) + 44 | 11)
The tensor product allows the construction of multi-qubit states:
| 0) ®I 1) =| 01)

Entanglement is a uniquely quantum phenomenon whereby the state of
one qubit cannot be characterized independently of the other qubit (Bell, 1964;
Horodecki et al., 2009). Entangled qubits show strong correlations, even in
situations where they are separated "physically" and thereby defy classical
intuition. Example: Bell State

1

V2

When the first qubit is measured, the state of the second qubit is also

| d*) = — (1 00)+] 11))

directly determined. Entanglement forms the foundation of quantum
teleportation, superdense coding, and many quantum algorithms (Bennett et al.,
1993; Nielsen & Chuang, 2010). Formal Description The two qubits A and B
are entangled if the joint state [y AB) cannot be factored as [y A)@ |y B):

For two qubits A and B, if the combined state | Y45 ) cannot be factorized
as | ¥,) QI Yg), the qubits are entangled:

| Yap) #| Ya) Ql Yp)

Entanglement Superposition
Of 2 Qubits Values

|11)

@’\
[ |110)

|00}

Figure 3. Diagram illustrating entanglement correlations between two qubits
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Representation of entanglement is shown in Figure. 3. Entanglement is
also a key enabler of quantum error correction and is a vital component of the
design of quantum circuits for proper scaling of the computational resources
with the number of qubits.

Quantum Interference: Quantum amplitude (the probabilities of
measuring any particular outcome) are complex numbers and add together.
Interference occurs when multiple paths lead to the same state

Qpotal = A1 + Az + -+
o Constructive interference amplifies probability amplitudes.
o Destructive interference cancels amplitudes.

Quantum algorithms use interference to maximize the probability of
correct outcomes. For instance, Grover’s algorithm iteratively amplifies the
amplitude of the correct solution while suppressing incorrect ones.

Density Matrix and Mixed States
In realistic quantum systems, decoherence and interaction with the
environment lead to mixed states, described by a density matrix p:

p = ZPL‘ i)W |

e Pure states: p"2=p, "T 1"(p"2)=1
o Mixed states: p™2#p, "T r"(p™2)<1
The density matrix formalism is crucial in quantum computation under
noise, quantum error correction, and open quantum system analysis.

Quantum Gates and State Transformations
Quantum states are manipulated using unitary operators called quantum
gates. Gates act as rotations on the Bloch sphere for single qubits or as

entangling operations for multi-qubit systems. Examples include:

» Pauli-X, Y, Z gates: bit-flip and phase operations
» Hadamard gate: creates superposition

* CNOT gate: entangles qubits

* Phase gates (S, T): add relative phase shifts
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Mathematical Action Example:
CNOT | 10) =| 11),CNOT | 11) =| 10)
These gates allow universal quantum computation, meaning any

quantum algorithm can be decomposed into a sequence of these fundamental
operations.

Mathematical Representation of Entangled States
Consider a two-qubit system in the general state:
[Y)=a00)+ L 101)+y|10)+ 6| 11)
The state is entangled if it cannot be factored:
) # (o 1 0) +a; 11)) ® (Bo | 0) + 1 1 1))

Example: The Bell states are maximally entangled:

| &) = %(I 00)+| 11)),1 ¥*) = \/—%(I 01)%] 10))

These states form a complete orthonormal basis for two-qubit systems

and will be commonly referenced in relation to quantum teleportation and error
correction.

Superposition in Multi-Qubit Systems

An equal superposition of all 2n computational basis states is commonly
taken as the initial state in quantum algorithms for n qubits:
2n-1

1
| ) =HE" | 0)®" = — | i)

Example for n = 3 qubits:

| ) =%(| 000)+| 001)+] 010)+| 011)+] 100)+| 101)+] 110) | 111))

This superposition serves as the foundation of quantum algorithms'

parallel computation property, as the quantum operation evaluates several
inputs at the same time.
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Entanglement Measures
To quantify entanglement, researchers use metrics such as:
1. Von Neumann entropy of the reduced density matrix:
S(pa) = —Tr(palogz pa)
where py = Trg(p4p). A non-zero entropy indicates entanglement.
2. Concurrence for two-qubit systems:
C(p) =max(0,A; — A, — A3 — 4,)
where A;are the square roots of eigenvalues of p(o, & 0,)p" (0, ®
gy )in descending order.
These metrics are essential in quantum algorithm design, quantum
cryptography, and hardware benchmarking.

Multi-Qubit Operations and Correlations

Entanglement usually created with a multi-qubit gate:

CNOT (Controlled-NOT) : will flip the target qubit if the control qubit is
[1).

CZ (Controlled-Z): will flip the phase on the target qubit conditioned on
the control. Swap gates will swap the states of any two qubits without
measurement.

An example is, after applying a Hadamard on the first qubit followed by
a CNOT gate:

HRI 1 cNoT 1
[ 00) - E(l 0O+l 1)®I0) - ﬁ(l 00)+] 11)) =| ®™)

This is the standard Bell state preparation protocol, which demonstrates

the role of superposition in entanglement.

Decoherence and Entangled Systems
Entangled states are very delicate when it comes to environmental noise.
Decoherence induces the degradation of entanglement, which can be described

using density matrices and Kraus operators:

p - Z KipKlT,z K'K =1
i i
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This formalism enables scientists to simulate realistic quantum systems
and develop error-correction protocols. Examples of Algorithms in practice are;
* Deutsch-Jozsa Algorithm - Using multi-qubit superposition to evaluate one
time, whether or not a function is constant or balanced shows the
exponentially better benefit of a superposition.
» Grover’s Algorithm - Starting with an equal superposition of all state,
amplifying the correct state by way of interference.
* Quantum Teleportation - Using entangled qubits and classical

communication to transmit an unknown quantum state.

3. QUANTUM GATES, CIRCUITS, MEASUREMENT,

DECOHERENCE AND NOISE

Multi-qubit gates (CNOT, CZ, SWAP) create entanglement and support
operations conditioned on other qubits. Quantum circuits consist of sequences
of gates acting on qubits, which run a computation and are then measured.
Measurement will probabilistically collapse superpositions. Decoherence and
noise add errors to the system, so quantum error correction is important
(Preskill, 2018). The interaction of these principles enables the execution of
quantum algorithms, which demonstrate the computational advantages of
quantum information.

The principles of quantum mechanics, including superposition,
entanglement, and interference, are exploited directly in quantum computing
operations (Nielsen & Chuang, 2010). Quantum computation utilizes the
manipulation of qubits through quantum gates and build these gates into
quantum circuits. The operations must maintain unitarity and being reversible
allows for coherent evolution of the quantum state. In this section we will take
a look at the detailed functioning of quantum gates, quantum circuits and
measurement in quantum mechanics, as well as the impact of decoherence and

noise on quantum computation.

Single Qubit Gates

Single-qubit gates operate unitary transformations on the individual
qubits. Single-qubit gates are 2 X 2 unitary matrices that operate on the the state
vector of the qubit.
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Pauli Gates
e Pauli-X (NOT gate): flips the qubit state: X | 0) =] 1), X | 1) =] 0)
(Nielsen & Chuang, 2010).
Matrix representation:
_(0 1
X= (1 ())

o Pauli-Y gate: combines bit-flip and phase-flip:
_ (0 —i
r= (i 0 )
ItactsasY | 0) =i |1),Y | 1) = —i | O)(Rieffel & Polak, 2011).
e Pauli-Z gate: flips the phase of | 1): Z | 0) =] 0),Z | 1) = —| 1).

Hadamard Gate
The Hadamard (H) gate creates equal superposition:
[ 0)+] 1) | 0)—I 1)
H|0)=———H|1l)=—F—
) 7z ) 7z

It rotates the qubit vector by m about the axis halfway between X and Z,
preparing qubits for interference-based computations (Nielsen & Chuang,

2010).

Phase Gates
* S Gate (/2 phase shift):

s=(p 1)

* T Gate (7/4 phase shift):

r=(y e

Phase gates control the relative phase between |0)and [1), crucial for

interference in quantum algorithms (Rieffel & Polak, 2011).
Multi-Qubit Quantum Gates

Multi-qubit gates generate entanglement and implement conditional

operations.
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Controlled-NOT (CNOT) Gate
CNOT flips the target qubit if the control qubit is |1):
CNOT | 00) =| 00),CNOT | 10) =| 11)
It is central to creating Bell states, generating entanglement, and building
universal quantum circuits (Horodecki et al., 2009).

Controlled-Z (CZ) Gate
CZ flips the phase of the target qubit when the control qubit is [1):
CZ |111) = —| 11),CZ | 00) =] 00)
This gate is often used in quantum error correction and cluster-state
generation (Rieffel & Polak, 2011).

SWAP Gate
SWAP exchanges the states of two qubits:
SWAP | 01) =] 10)
It is useful in quantum circuit optimization, especially in systems with
limited qubit connectivity (Nielsen & Chuang, 2010).

Quantum Circuits
Quantum circuits are sequences of gates applied to qubits, culminating
in measurement. They are usually represented as circuit diagrams, with time
flowing left to right:
e Single-qubit gates: applied to individual qubit wires
e Multi-qubit gates: connect multiple qubit wires
e Measurements: performed at the end to obtain classical outputs;
Example: Bell State Circuit
e Start with |00)
e Apply Hadamard to the first qubit

e Apply CNOT with the first qubit as control

100y "3 %(I 0)+1 1) ®1 0) 5" %

This produces a maximally entangled Bell state.

(1 00)+1 11))
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Quantum Measurement
Quantum measurement is probabilistic, collapsing superpositions into
basis states. Measurement is described by projective operators P_i=|i)(ilor
more generally POVMs (Positive Operator-Valued Measures).
e Probability of outcome i:

p(@) =@ | P 1)

e Post-measurement state:
Py
Ve@®)

Measurement introduces irreversibility and destroys superposition,

~

RUDES

making algorithm design sensitive to the timing of measurements (Preskill,
2018).

Decoherence and Quantum Noise
In practice, qubits interact with their environment, leading to
decoherence:

o TI relaxation: energy decay of a qubit (|1)—|0))
e T2 dephasing: loss of phase coherence between |0)and |1)
Decoherence can be modeled using density matrices and Kraus

p - z Kl-ij,z K'K =1
i i

Noise sources include thermal fluctuations, electromagnetic interference,

operators:

and control errors. Mitigation requires quantum error correction codes, e.g.,
Shor code and surface codes (Rieffel & Polak, 2011; Preskill, 2018).

Error Correction
Quantum error correction protects information against decoherence and
operational errors. Key principles:
* Encode a logical qubit in multiple physical qubits
» Detect and correct errors without directly measuring the quantum state

» Use syndrome measurements and unitary recovery operations
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Example: Three-Qubit Bit-Flip Code
Logical qubit:
| OL) =| OOO),' 1L) =| 111)

Example Quantum Algorithms in Circuits

* Grover's Algorithm: begins with an equal superposition state of all states
and utilizes the oracle and diffusion operators, while exploiting
interference to amplify the proper answer (Nielsen & Chuang, 2010).

» Shor's Algorithm: effectively factors large integers through quantum
Fourier transform, modular exponentiation, and measurement (Shor,
1994).

Both algorithms are implemented through sequences of unitary gates,

multipartite entangling operations in multiple qubits, and measurement steps.

4. ADVANCED QUANTUM ALGORITHMS,

APPLICATIONS AND FUTURE TRENDS

Advancing from concepts such as quantum states, superposition,
entanglement, quantum gates, and quantum circuits, Part 4 investigates
advanced quantum algorithms, theoretical underpinnings of these algorithms
and their applications, and future directions for quantum computing. These
topics take the principles of quantum mechanics and integrate them with
computational purposes. The writing illustrates how the mathematical

representation leads to specific designs in quantum algorithms (Nielsen &
Chuang, 2010).

Quantum Fourier Transform (QFT)
The Quantum Fourier Transform (QFT) serves as the quantum version
of the discrete Fourier transform (DFT) by efficiently representing a vector of

2n amplitudes in the frequency domain. For a state |x):
2"-1

1 2mixy
FT | x) = — e 2™ |
Q ) N )
y=0
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Key properties:

e [t is linear and unitary, meaning the quantum amplitudes are preserved.

e [t has an efficient implementation requiring O(n2) gate operations,
compared to the classical DFT’s O(2n) complexity.

o [t is the basis for Shor’s algorithm, The QFT is used to find periodicity
in functions based on modular arithmetic to factor large integers (Shor
1994).

QFT Implementation
e You first use a series of Hadamard gates to create superpositions of all
the inputs that will be transformed.
e You then apply controlled-phase gates to encode the relative phases into
the qubit registers.
o Finally, you reverse the qubit order at the end of the process to ensure the
output is in the computational basis.
The QFT illustrates the power of combining interference, and phase
manipulation to directly exploit the principles of quantum mechanics (Nielsen
& Chuang, 2010).

Grover’s Search Algorithm
Unstructured search problems are addressed by Grover's algorithm,
which provides a quadratic speedup for resolving such problems in comparison
to classical techniques. Assume we have N=2n possible items, and there is a
marked solution, w. Here is a summary of Grover's algorithm:
1. Initialize qubits in an equal superposition: | o) = H®™ | 0)®"
2. The oracle O is applied, which simply flips the sign of the marked state
[w).
3. A diffusion operator is applied, which reflects amplitudes through the
average amplitude.
4. Steps 2 and 3 are repeated O(\/N ) so that the probability of measuring

[w) is maximized. Then,

| i) = (DOY* | o)

76



DIGITAL INTELLIGENCE AND COMPUTER SYSTEMS

The superposition is used to search through all of the states at the same
time, while interference is applied to increase the amplitude of the marked state.
Finally, once it is measured, the probability of the state collapsing to the correct
solution is very high (Grover, 1996).

Shor’s Algorithm

Using quantum period finding, Shor's algorithm efficiently finds large
integer factorizations, a classically hard problem:

1. Choose a random a < Ncoprime with N
2. Use QFT to find the period rof f(x) = a*mod N
3. Compute factors using gcd(a™? + 1, N)

The quantum advantage is derived from the use of QFT as well as
entanglement between registers, which allows the period finding to be
accomplished exponentially faster (Shor 1994). Shor’s algorithm has
significant ramifications for cryptography, since it can defeat many standard
classical schemes such as RSA, and it is also an important intersection of
quantum mechanics, computation, and real-world security.

Quantum Simulation

One of the most exciting areas of application of quantum computing is
simulation of quantum systems, which classically will be exponentially
difficult: Simulate molecular structures, chemical reactions, and condensed
matter physics.

e Use Hamiltonian evolution to model quantum dynamics:

l() = e 1 (0))
Uses:
* Estimate reaction rates and energy levels within the field of chemistry

(Aspuru-Guzik et al., 2005)

* Examine quantum phase transitions and high-temperature
superconductivity.

Quantum computers utilize unitary evolution, entanglements, and
superposition to explicitly engage the theories of quantum mechanics, and
engage those theories in experimental computation.
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Quantum Cryptography

Quantum computing has fostered this development of quantum-safe
cryptography. Quantum Key Distribution(QKD) utilizes entangled qubits to
exchange secret keys with unconditional security, (Bennett & Brassard, 1984).
The process of measuring a qubit and superposition guarantees detection of
eavesdropping, as any measurement disturbs the quantum state. Protocols:
BB84, E91, and continuous-variable QKD all apply the postulates of quantum
mechanics, especially measurement disturbance and interactions exhibited by

entanglement.

Quantum Machine Learning (QML)
Quantum computing can speed up tasks in machine learning:
* Quantum data encoding: encode classical data in quantum amplitudes
(Lloyd et al, 2014).
* Quantum circuits can perform faster linear algebra tasks (matrix
multiplication, principal component analysis).
* Use variational quantum circuits to optimize parameters for
classification, clustering, or regression.
The theoretical advantage comes from using the dimension of the Hilbert
space and the entangled correlations for efficient representation of complex
data.

Practice of Hardware
Quantum hardware takes advantage of different physical systems in the
implementation of qubits: Superconducting qubits - they enable fast gates, short
coherence time (~100 ps), their implementations are used in devices developed
by IBM and Google (Preskill, 2018).
» Trapped ions - they have long coherence time (~seconds) and can
implement high-fidelity gates (Wineland et al., 1998).
» Photonic qubits - they can operate at room temperature and are ideal for
communication (O’Brien et al., 2009).
» Spin qubits in semiconductors - they can be scaled and integrate well

with classical electronics.
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Challenges

* Decoherence and noise will require error correction.

* The connectivity of qubits will limit the operation of multi-qubit gates.

* Scalibility - building n-number of thousands of high-fidelity qubits is an
important goal.

Future Directions

* Fault-tolerant quantum computing techniques will include surface codes,
braided topological qubits, and concatenated error correction schemes.

* Practical quantum advantages will be realized for computational tasks in
chemistry, optimization, and materials science.

* Quantum computing will be integrated with classical Al, leading to
hybrid quantum-classical systems.

» Standardization will develop through the adoption of common software
frameworks, such as Qiskit, Cirq, or Pennylane.

Much of the research community is focused on NISQ (Noisy
Intermediate-Scale Quantum) devices, working towards practical
computational advantage before fault-tolerant, full-scale quantum computers
are built.

5. CHALLENGES, OPEN RESEARCH PROBLEMS AND

FUTURE PERSPECTIVES

Building off the basics of quantum gates, circuits, and advanced
algorithms, here we evaluates the limitations, practical challenges, and research
challenges in quantum computing and applications. While quantum mechanics
supplies the theoretical underpinning, practical realization is limited by
hardware defects, decoherence, and complexity of algorithms. These
challenges are important for faculty, researchers, and advanced students

intending to engage in this field (Nielsen & Chuang, 2010).
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Key Challenges in Quantum Computing
Decoherence is the biggest hurdle to implementable quantum computing,
* T1 relaxation: qubit energy decay.
» T2 dephasing: a loss of phase information through interaction with the
environment,
* Noise comes from electromagnetics, imperfections in materials, and errors
in control.
* Mitigation involves error correction codes, and gates that are designed to
be robust against errors (Preskill, 2018).
The density matrix formalism allows modelling of mixed states under

p— Y KoKl KiK =1
i i

Constructing quantum computers at a large-scale is difficult for three

decoherence:

reasons:
* Limited connectivity among qubits,
* Challenges of maintaining coherence among thousands of qubits.
* The preparation of superconducting or trapped-ion qubits with high-
fidelity.
Hybrid approaches - like modular quantum computers - are being
investigated in the context of scalability (Rieffel & Polak, 2011).

Error Correction and Fault-Tolerance

* Quantum error correction requires redundancy: typically a single logical
qubit will need dozens or hundreds of physical qubits.

» Efforts to make fault-tolerant gates that allow for the continued
preservation of quantum information while being noisy are still a work
in progress.

* Surface codes, concatenated codes, and topological qubits are very
promising.
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Algorithmic Complexity

It remains difficult to design quantum algorithms which provide
meaningful speedup vs classical algorithms.

Not all problems will have useful quantum speedup characteristics, and
need careful complexity analysis.

Some hybrid quantum-classical algorithms, such as the variational
quantum eigensolver (VQE) for example, are practical as it pertains to
the NISQ era (Preskill, 2018).

Open Research Challenges

The objective is to create quantum algorithms robust to:

Gate faults

qubit loss

decoherence

Specific instances involve error mitigation strategies, adaptive circuits,

and quantum variational strategies (Temme et al., 2017).

Investigating new materials and development methods to extend qubit
coherence times.

Developing new qubit types, including topological qubits, neutral atoms,
and photonic cluster states.

Conceiving new control electronics, integrating cryostat technology, and
improving robustness (Wineland et al., 1998; O'Brien et al., 2009).

Quantum Network and Communication

Developing entanglement distribution methods over long distances
Implementing quantum repeaters to enable scalable quantum networks
Developing distributed quantum computation methods, bridging
quantum computation with quantum communication (Bennett &
Brassard, 1984).
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Quantum Machine Learning

Understanding which machine learning problems genuinely exhibit
quantum speed-up,

Developing compact quantum data encoding schemes

Developing hybrid quantum-classical optimization methods (Lloyd et
al., 2014).

Quantum Simulation

Simulating strongly correlated systems in physics or chemistry
Demonstrable Hamiltonian complexity and a scaling multi-body
simulation

Bridging simultaneous simulation with experimental verification in

quantum chemistry or material science (Aspuru-Guzik et al., 2005).

6. INTEGRATION WITH QUANTUM MECHANICS
PRINCIPLES

All applicable challenges and research questions arise from a foundation

in quantum mechanics:

Superposition permits parallel computation but is sensitive to
decoherence and other experimentalist challenges.

Entanglement allows for speedup with algorithms and crytography but is
fragile.

Unitary evolution ensures reversibility, but requires precise control.
Measurement postulates delimit deterministic outcomes and make it
impossible to replicate quantum states directly through observation
(Nielsen & Chuang, 2010; Rieffel & Polak, 2011).

A deeper understanding of quantum mechanics contributes to:

Gate design.

Error mitigation techniques.

Algorithm design and security.

Hardware improvements.
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CONCLUSION

Quantum computing embodies a revolutionary paradigm that directly
employs the principles of quantum mechanics - superposition, entanglement,
and unitary evolution - to solve problems that lie beyond classical computation.
This chapter has tracked the path from the fundamentals of qubits and quantum
gates, to advanced algorithms, quantum circuits, and applications in the real
world, providing an overview of how theoretical insights are translated to
practical computational advantages. While there has been much advancement,
many important challenges remain. Current devices are limited by decoherence,
noise, and scalability, whilst fault-tolerant quantum computer systems, while
an important milestone yet to be achieved in its full realization. The NISQ age
also provides a unique opportunity to explore practical algorithms and hybrid
quantum-classical systems, as well as demos within near-term applications in
simulation, cryptography, and machine learning, to initiate the landscape for
broader quantum advantage. In the future, research can be anticipated to
develop in multiple directions. Error-resilient algorithms, new technologies of
qubits, and scalable architectures are imperative to break past current
limitations. Meanwhile, new quantum networks, including the development of
the quantum internet, will enable efficient ways to securely, process, and
distribute quantum information by using a remote cloud-based quantum
computing service. If the promise of quantum computing is to achieve real-
world quantum processing, then there is an enormous potential for converging
quantum computing with other fields, such as artificial intelligence, materials
science, and chemistry, with expectation of innovative developments for all,
while inspiring creative re-evaluation of new research using quantized
computation that was not able to be imagined before. In summary, quantum
computing is an embodiment of the practical application of quantum mechanics
and represents a frontier in scientific research. Continuing to investigate theory,
algorithm development, hardware, and cross-disciplinary applications will
drive the evolution of quantum computing as a field and lead to amazing
possibilities for discovery, technology, and societal impact.
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INTRODUCTION

Digital transformation means changing the business from traditional into
e-environment in the digital age. It is the process of usage the digital technology
for developing new business processes, culture and costumer experiences to
achieve the contemporary market requirements [2], and instead simple
throwing technology in the process without clear vision on the outcomes of the
organization wants to achieve and the challenges they have [3]. With the
pressure of globalization to business (Kraus et all 2021), the digital
transformation (DT) is changing entire industries, while organizations are
struggling to keep up with these changes (Konopik et all 2022). Beside DT of
businesses and organizations, the sectors’ DT is a more complex system in
terms of engineering, which involves promotion and application of technology
innovation, management optimization, organizational change, data mining, use,
etc. in the entire sector (Li et all 2021).

Information systems are digital systems that enable collecting, storing,
managing, sharing, editing, archiving and updating digital data. Information
system field is playing important role in whole sectors, in which IT affects
organizational and social life (Mikalef et all 2022). Automatization of data
processing by using various algorithms that enable solving environmental,
social and technical issues, became main driver of automate decision making
with the opportunities that give Artificial Intelligence (AI) technology. Al
technologies shifts the locus of action, choice, control, and power away
from the exclusive domain of humans, re capable of performing various
human feats, such as perception, sensing and recognizing emotions,
conversation, and even creativity, as well as offer many positive benefits to
organizations that creates significant unintended (or intended) consequences
(Benbya et all 2021).

Within the Enlargement and Integration (EI) programme of the European
Commission, the Joint Research Center have organized event entitled “Digital
Transformation, Data and Artificial Intelligence in the Western Balkan
Countries”, with main objectives:

e Update participants on the EU's policy on digital transformation, data
and artificial Intelligence.
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e Discuss about main factors that can help or hinder the introduction of the
digital transformation in WB countries.
o Present the state-of-play, opportunities, trends and likely impacts of

Digital transformation, Data and Al in Wester Balkans

o Discuss on the added value of the adoption of the digital technologies
and Al including drivers, enablers, barriers, risks and related mitigates in

Western Balkans.

e Discuss on regional differences in the attitudes towards digital

technologies and AI [1].

The scope of the workshop was to investigate how digital technologies,
data and Al influence changes in our societies. Data and digital transformation
are feeding Al. The ambition is for Europe to become the world-leading region
for developing and deploying cutting edge, ethical and secure Al, as well as to
promote a human-centric approach in the global context. It is also important for
the Western Balkans region to adopt and benefit from these emerging
technologies. Organizers of the workshop gathered them together a variety of
stakeholders, representing the public sector, civil society, academia and
business, in order to (I) exchange good practices, (II) establish partnerships,
and (III) ultimately learn from each other. Particular emphasis were putted on
the technological enablers of digital transformation, digital data, AL, and
innovative services and applications combining the above [1].

Based on outlined current state of available open sources and performed
research on presented themes in workshop, this study aims to fill gaps of global
and regional trends by identifying and exploring necessary steps toward digital
transformation of organizations and Al usage in Western Balkan (WB)
countries. Thereby, this article can contribute to several themes. First, it aims to
map the current situation regarding digital transformation and the use of Al in
Western Balkan (WB) countries. Second, it highlights the importance of digital
transformation and Al usage by organizations in the digital age. Third, it
provides enriched knowledge to decision-makers and managers on
organizational development, particularly in changing workflows and creating
entirely new business models. Fourth, it seeks to initiate improvements in
organizational capabilities for digital transformation and Al usage by

encouraging governmental support.
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Finally, it promotes European priorities as emphasized in the Berlin
Declaration on Digital Society and Value-Based Digital Government (2020)
and the European Green Deal (2019).

1. DIGITAL TRANSFORMATION AND USAGE OF AI IN

THE WESTERN BALKAN COUNTRIES

(Broz et al., 2020) pointed out that Western Balkan countries, like most
other regions in the world, are experiencing a digital transformation measured
by the use of fixed-telephones, mobile-cellular telephones, computers and
internet. While fixed-telephone subscriptions are dropping, the use of mobile-
cellular telephones, computers and internet have increased over time. However,
when compared with other European and CIS countries, the Western Balkan
countries are still lagging behind in the use of digital technologies. CIS
countries exchanged fixed-telephones with mobile-cellular telephones, while
Europe is leading with the possession of computers and the access to and use
of the internet. Even though Western Balkan countries are lagging behind, there
are significant differences among each economy. The report entitled as
Monitoring the Digital Economy and Electronic Communications Services in
the Western Balkans and Turkey (CEU. CNECT. et al., 2019) presented number
of indicators related to digital transformation, showing that in term pf
connectivity to the internet Albania is lagging behind EU — 28 in all indicators
presented, while Serbia and Kosovo* are closest to the EU-28 and for 4 out of
9 indicators are expressing results better than EU Average.

In general, 4G coverage is better than fixed broadband coverage for all
countries except Kosovo with fixed broadband coverage of 100%. All countries
except Montenegro expressed better take-up of the mobile broadband than fixed
broadband. The percentage in internet users in EU28 is 81%, while WB
countries are close to the RU standard, wih 72% in Albania, 90% in Bosnia and
Herzegovina, 71% in Montenegro, 78& in North Macedonia, 73% in Serbia
and 87% in Kosovo*. There is a lack of advanced digital skills in comparison
with basic digital skills statistics. Western Balkans economies are generally
well behind EU28 Member States in advanced digital skills — Serbia is closest
to the EU averages.
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Performance related to the communications dimension is very good, with
all economies at levels above or very close to the EU average. Western Balkan
economies score on average higher than the EU28 average for the use of
internet for video calls and social networks. The average for use of internet for
banking in EU-28 is 61%, the WB countries are far behind with best value in
Serbia with 20%. Similarly for shopping, while 68% of internet users in EU do
use it for shopping, most of the WB countries are below 20%, except North
Macedonia with 32%. The business technology integration is the area where
Western Balkans economies are performing best in comparison with EU28
Member States. 82 per cent of data points provided are above EU28 average
levels or within ten per cent. The two Western Balkans economies providing
data for all indicators (Montenegro and Serbia) are performing within ten per
cent or above the EU28 level.

However, the data presented above was published in 2019 and probably
changed due to the COVID-19 pandemic thar affected the Western Balkan
countries. Western Balkan governments responses were similar to these in the
rest of the world.

Figure 1. Map of Western Balkan Countries
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1.1 Albania

The data on digital transformation previously cited presented that the
fixed and mobile broadband internet access is below the average of the EU-28
countries. Moreover, compared to the other WB countries Albania is lagging
behind some countries, particularly in fixed broadband coverage and take-up.
However, indicators for some of the WB countries are sometimes higher than
EU 28-average, that should be considered in full understanding of the
comparison among WB countries. Nevertheless, the mobile broadband
coverage is within the 10% of the EU-28 average, but mobile broadband take-
up is still lagging behind EU average. The level of internet use is withing 10-
20% variation form EU 28 average. As the in the case of the most of the WB
countries, internet is used mainly for news, communication and social
networking and less for banking and shopping.

The digital transformation reported in research papers is ongoing process
that already took place in education (Migo and Zagellari, 2020), (Haskaj, 2013),
(Petro and Lologi, 2021), e-government (Elezaj et al., 2018), pharmacy shops
(Demaj, 2021) sharing economy in tourism and agriculture (Hysa and Kruja,
2022), business (Curraj, 2021)

The literature search gave number of cases of implementations of the
machine learning and artificial intelligence on Albania. Tataj and Kola (2021),
published the case study of implementation of the Al in creation of the
educational policies that will enable employment security for next period. Data
presented in the paper show what are the most chosen departments in Albanian
universities. Moreover, the new educational policies have been undertaken in
Albania to orient students in choosing university fields that promise a secure
job in the future and even more made it possible to open many vocational
schools in Albania that have high job potential in the future.

During the workshop one case for using the Al as a tool for improvement
of the urban living was presented. However, number of other cases and
implementations were determined by literature search on use of ML and Ai.
The some cases determined addressed use of Al in creation of educational
policies (Tataj and Kola, 2021), forecasting total fertility rate by using the
Artificial Neural Network (Mucaj and Sinaj, 2015), (Nyoni et al., 2021). Using
the big data in e-government (Elezaj et al., 2018) etc.
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Moreover the Al implementation case in energy sector in Albania is
represented by implementation of the Fuzzi Logic Metod (Konica, 2016). The
implementation cases of Al were determined in water sector for forecasting the
precipitation and water inflow (Gjika et al., 2019), market value of the
apartments (Ballilaj and Myftiu, 2015), use of database marketing as a tool for
knowledge management for Albanian firms (Ramaj and Bazini, 2013) and
others.

1.2 Bosnia and Hercegovina

Data on the connectivity including the broadband internet access for are
not sufficiently covered in the Monitoring the digital economy and electronic
communications services in the Report on Western Balkans and Turkey: 2019
follow up study(CEU. CNECT. et al., 2019) Only one indicator presented show
below average fixed broadband take-up of only 18% while EU28 average is
76%. However same report presented higher level of internet users in Bosnia
and Hercegovina (BiH) compared to EU28 average (90% in BiH and 81 in
EU28). This cleadrly indicate that most of the users of Internet in BiH are using
mobile internet and probably using telephone accessing the internet.

The paper presented during the workshop addressed the process of data
integration and interoperability of public land administration services in
Federation of Bosnia and Herzegovina, as instrument for providing better and
easily accessible services to the end users of the public land administration.
However, number of other cases of digitalization in Bosnia and Herzegovina
are available online. The e-government in Bosnia and Herzegovina is
developing and important issue id citizens will adopt it. The work of
(Osmanbegovi¢ and Lugavi¢, 2018) presented some problems in adaption of
the e-government services influenced by several factors that have the most
significant influence on e-government adoption by citizens’ in Bosnia and
Herzegovina as: performance expectancy, effort expectancy and social
influence. The digital transformation of the higher education started before
COVID-19 pandemic and analyse in 2021 show that end-users satisfaction is
between 3 and 4 on scale 1 to 5, that is sign that additional efforts in
improvement are required (Mabi¢ and Prani¢evi¢, 2021). The case of
digitalization of agriculture is presented by (Vico et al., 2021).
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However, although BiH has a relative correct strategic framework for the
digital transformation of agriculture in the public sector, as well as relevant
legislative, it should be amended in the next planning period in accordance with
EU aquis. The analyses of the economic effects of the digital transformation in
Bosnia and Herzegovina are presented in the book Economics of Digital
Transformation (Drezgi¢ et al., 2019).

The researchers in BiH analyzed the level of digital literacy in the
country as main prerequisite for digital transformation. Their finding is that
highest level of digital literacy is find among persons with completed second
cycle of university studies, master, followed by bachelors and putting PhD
holders at third place. (Habibija and Meki¢, 2021). Authors emphasize highest
than ever importance of digital literacy and recommend to strengthen the
educational system in Bosnia and Herzegovina and do improvement of study
programs at all cycles of study since all of them contribute to digital literacy of
respondents.

The application of ML and Ai in Bosnia and Herzegovina was not
presented during the workshop, therefore some cases from literature review are
presented. The Ai is applied as educational tool to support e-learning
(Se¢kanovi¢ et al., 2020). Moreover, the Al implementation for development
of the intelligent manufacturing systems driven by Al in Industry 4.0 was
determined (Banjanovi¢-Mehmedovi¢ and Mehmedovié, 2020).

1.3 Kosovo

According the(CEU. CNECT. et al., 2019) The digitalization of Kosovo
is quite impressive in term of fixed and mobile broadband coverage (100% and
89% respectively). Compared with EU-28 Kosovo is ahead in fixed broadband
coverage and slightly behind in mobile broadband coverage. However, like
most of the Western Balkan countries fixed broadband take up is behind the EU
28 average (only 18% in Kosovo and 76% for EU-28). However, the mobile
broadband take-up is impressive 92 (per 100 population) and higher than EU-
28 value of 90. Therefore, mobile broadband is preferred by Kosovo citizens
and most of them use mobile internet.

In term of digital skills, about 87% are internet users and only 7% of the
individuals do not use internet (EU-28: 81% and 13% respectively.
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However, only 1% are ICT specialists that is far behind compared to the
EU-28 average of 4%. Citizens mainly use internet for video calls (85%) and
for social networking (64%). Banking is used only by 1% and shopping by 3%
that is by far lowest value in Western Balkans and far away from EU-29 values
of 61% and 68% respectively.

The challenge of digital transformation in Kosovo is presented by
(Limani et al., 2018¢) and show some lagging compared to western economies.
Authors concluded that enterprises should be more vigilant concerning the
speed and the acceleration of digitalisation requirements and developments.
Increasing demand for digitalisation involves high level attention from all
levels of organisations structure. Strategic planning level, leadership, teams and
individuals need high level awareness concerned with the challenges of
adopting new digital technologies. The digital transformation in pre university
education due to COVID-19 schools’ closure is described as one of the biggest
challenges of the last two decades, forcing the country to mobilize quickly and
transform the teaching and learning process from regular to virtual/online
classes (Beka, 2021). Same author reported that including all stakeholders,
governmental bodies, schools, principals, teachers, parents, and pupils make
this transformation easier and faster than previous attempts declared in strategic
documents but hardly realized. The higher education also successfully
transformed their activities in digital format (Hoti et al., 2022), (Limani et al.,
2019), (Limani et al., 2018a).

Moreover the digital transformation process was reported for banking
services (Sadiku, 2019), brand promotion and brand positioning in Kosovo’s
enterprises (Istrefi-Jahja and Zeqiri, 2021), performances of the small and
medium enterprises (Limani et al., 2018b), efects on the growing business
(Shehu et al., 2022) etc.

The work presented during the workshop addressed implementation of
Al in development and implementation of speech-to-text technology in
Albanian language. However more implementation cases are available on-line.
The paper on automatic lung cancer detection using artificial Intelligence
(Bardh and Karahoda, 2019) was based on using the convolutional neural
network architectures for classifying images of patients with cancer, and

presented Al implementation in medicine.
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Moreover, some authors discussed on implementation of Al and ML in,
energy sector (Nagy and Hajrizi, 2018) , telecommunications (Fazliu et al.,
2020), smart vending machines (Istrefi and Zdravevski, 2020), data based
evaluation of the efficiency of dairy farms (Shkodra et al., 2020).

1.4 Montenegro

The Montenegro was not presented during the workshop; therefore, all
findings are result of the literature search. The digitalization, presented by data
on the connectivity including the broadband internet access (fixed and mobile)
and other indicators presented by (CEU. CNECT. et al., 2019) show that fixed
broadband coverage is 90%, that is below EU-28 average, but take up is 81%,
that is the highest value in all WB countries, and higher than EU-28 average of
91%, The mobile (4G) broadband coverage is also higher than EU-28 average
(97% in Montenegro and 91% in EU28). The fast broadband take-up is 52%,
that is higher than EU-28 average and the highest among WB countries. The
ultrafast broadband coverage with 61% is higher than EU-28 average, bit take-
up is just 5% that is significantly lower than EU-28 average of 15%. However,
same report presented lower level of internet users in Montenegro (71%)
compared to EU28 average (81%). Moreover, the report presented very high
percentage of individuals not using internet (23%) that is significantly higher
than EU-28 average of 13%. However, percentage of individuals with at least
basic digital skills is presented as 50% that is quite close to the EU-28 average
of 57%. The percent of the users of e-government services is only 9%and main
use of internet are: social networks (84%), video calls (83%) and news (72%).

The digital transformation in Montenegro can be seen in number of
sectors. However, the report of the European Bank for Reconstruction and
Development (EBRD) entitled as Assessing Montenegro’s digital maturity
from February 2022 state that “Montenegro was found to have a “basic” level
of digital maturity in seven dimensions, meaning organisations entered into
sporadic e-government activities as part of reactive processes, with no clear
strategy or coordination in five areas. These included financing digitalisations,
level of digital skill and access to services. The right conditions had been
created for digitalisation, but fell short when it came to implementation.
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These included political will and support, the legal framework, digital
infrastructure and interoperability, digital identity/signature and security. The
literature search show several documents on digital transformation in the
country. The discussion on digital transformation and what measures should be
implemented to achieve positive effect in bussines environment, education and
other sectors is presented by (Mi¢unovi¢ and Sric¢a, 2021). At the University of
Montenegro, teaching staff put a significant effort into converting their face-to-
face lectures into a digital format and have demonstrated a great level of
flexibility. To assure digitalization process on the long run, the University is
tending to organize trainings for teaching staff in order to further enhance their
skills and know-how. Additionally, University will provide further investments
in the technical infrastructure supporting digitalization of education and student
services in order to establish blended learning approach in its teaching &
learning process. (Nikolic, 2020). The research on the impact of digital
transformation and digital marketing on the brand promotion has shown that
social networks are the form of digital marketing that companies use most often.
This is especially evident in companies that use digital marketing for more than
5 or more than 10 years. The most common ways to measure the effects of
digital marketing are Google Analytics, followed by the Social Network User
Engagement Rate and the Degree of Interaction (Melovi¢ et al., 2020).
However, the digitalization in some aspects of truism are evident as
digitalization of Maritime museum of Kotor. Moreover, the literature search
show examples on the airline transport digitalization of the Montenegro
airlines (Podzharaya and Sochenkova, 2019) and implementation of loT and
blockchain technologies in Wine Supply Chain (Cakic et al., 2021), amalyse of
the Al implementation and limitations in Telenor in Montenegro (Kascelan,
2011) etc.

1.5 North Macedonia

The digitalization, presented by data on the connectivity including the
broadband internet access (fixed and mobile) and other indicators presented by
(CEU. CNECT, 2019) show that broadband coverage is quite high (fixed 98%,
mobile 100%) that is above EU-28 average (97% fixed and 91% mobile).
However, the take-up is below EU-28 average.
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The report presented lower level of internet users in North Macedonia
(78%) compared to EU28 average (81%) and higher percentage of persons not
using internet (18% in North Macedonia, 13% EU-28 average. Similarly, to the
other Western Balkan countries, internet is predominantly used for social
networks (82%) and video calls (76%) that is higher than EU-28 average. About
65% of the users use internet for news that is slightly lower than EU-28 average
of 73%. Only 12% of the users use internet for banking (61% EU-28 average),
Finally 32% use internet for shopping that is by far highest value in the Western
Balkan countries, however much less than EU-28 average of 68%. Also, North
Macedonia recorded highest score among the WB countries for the citizens
using e-government (21%), but this value is still much lower than EU28 average
of 59%.

The authors from North Macedonia delivered 20 presentations during the
workshop. The first group of presentations addressed the digitalization and
digital transformation process in number of sectors such education including
the higher education, bat also the primary education by implementing the
geospatial technology for studying the natural and social subjects in primary
schools in North Macedonia. Some paper from this group addresses the digital
transformation in public administration, banking sector, participatory urban
planning, crisis management system and national population register and digital
identity. These papers gave good overview of the digital transformation and
achievement. Moreover, the number of governmental services is already
transformed to digital. In this group is also the presentation discussed on
collaboration platform as a driver of the digital transformation in GIS and
geospatial data sector and analyses two already completed projects two
implemented national level projects that developed collaborative platform and
support practical digital transformation process: National spatial data
infrastructure (NSDI) geoportal and LiDAR distribution portal. Moreover, two
paper is discussing digital transformation of the geospatial data and
development of the digital landslide susceptibility map of North Macedonia and
second one address creation of the national cadasters of degraded areas in
Serbia and North Macedonia.
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Finally, two papers from this group addressed digital transformation by
implementing the machine learning for early season crop yield forecasting and
use of remote sensing in google earth Engine for assessing the effects of rapid
urbanization on land surface temperature. Second group of papers deals with
theoretical background Applications of Deep Learning Based Semantic
Segmentation of Images, Horizontally scalable lambda architecture for
processing and analyzing multivariate time-series data, Programming Logic in
Artificial Intelligence: a metamorphosis of M-mode to I-mode, or discuss on
state with the most exciting disruptive technologies for accounting researchers
and professionals at the global level (big data, data analytics, cloud, artificial
intelligence and blockchain).

Finally, the last group is composed of three papers that addressed
companies and products developed using the digital services, artificial
intelligence and machine learning. One of the product is based on Ai for direct
and personalized marketing of the products in real time during the shopping.
Second one developed the facial mask that can analyses facial movements and
use Al to associate data collected from the sensors in emotional status. The third
one is explaining the Al-powered image recognition software that detects
fashion items in images and enables fashion retailers to delight shoppers by
saving their time and effort in search for the desired products.

Even though the presentations delivered gave quite good idea on state in
digitalization and implementation of the digital transformation and
implementation of ML and Ai in the country, the quick search of the research
publication gave some additional highlights. Several sectors not mentioned in
the presentations delivered at the workshop also achieved some advancement
in digital transformation as: construction sector (Stojanovska-Georgievska et
al., 2022), digital economy (Tosheva, 2020), consumer behavior (Mirchevska
et al., 2021), digitalization of the small and medium enterprises (Risteski et al.,
2019), telecom sector (Baleski, 2019), municipalities (Janevski et al., 2020),
helath sector (Miseva et al., 2020) and others.

In use of artificial intelligence and machine learning also gain some new
sectors using literature review: environmental modeling and monitoring (Sajn
et al., 2021), energetic sector (Popovski et al., 2020), (Kostov et al., 2020),
tourism (Erceg et al., 2020), Insurance and others. (Denkova, 2019).
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1.6 Serbia

The connectivity including the broadband internet access (fixed and
mobile) and other indicators related to the digital skills of the citizens, citizens
internet use, digital public service use and others are presented by (CEU.
CNECT,2019) to explain capacities for digital transformation and digital
economy. The connectivity dimension show that fixed broadband coverage in
Serbia is 72%, that is below EU-28 average of 97%. The take-up of the fixed
broadband is 62%. The mobile (4G) broadband coverage is higher than EU-28
average (96% in Serbia and 91% in EU28) and take-up is 83%, close to the EU-
28 average of 90%. The fast broadband take-up is 44%, that is higher than EU-
28 average. The ultrafast broadband coverage with 67% is higher than EU-28
average and the highest among WB countries. However the ultrafast broadband
take-up is still very low at the level of 2% that is significantly lower than EU-
28 average of 15%. When discussing on the digital skills, the same report
presented lower level of internet users in Serbia, (73%) compared to EU28
average (81%). Moreover, the report presented by far highest percentage of
individuals not using internet of 24% that is highest vale among Western Balkan
countries and significantly higher than EU-28 average of 13%. However,
percentage of individuals with at least basic digital skills is presented as 66%
that is higher than EU-28 average of 57%, and the highest score in the WB
countries.

Serbian citizens use internet for news (78%), video calls 67% and social
networks (70%) at higher level than EU-28 average. The use of internet for
music, video and games (73%), is close to the EU-28 average, and highest level
compared to other WB countries. However, internet use for banking (20% and
shopping 16% is much lower than EU28 average of 61% and 68% respectively.

During the workshop 4 presentations were delivered addressing the
situation in Serbia. Two of them addressed the geospatial information, one
about establishment of national cadasters of degraded areas and second one
about geospatial data as a core instrument to transform the country. Geospatial
data is considered as a key element to map and monitor the resources of an
entire nation, allowing for the quantitative documentation of policy
implementations on the ground.

99



DIGITAL INTELLIGENCE AND COMPUTER SYSTEMS

The Republic of Serbia is supported by the FAO, World Banka and other
development partners to improve the use of available geospatial data and
technology and to strengthen government capacity to make best use of available
data and technology. Republic Geodetic Authority (RGA) is a national Spatial
Data Infrastructure (SDI) coordinator and the INSPIRE National Contact Point.
The RGA is a special governmental organization, which performs state survey,
maintenance of real estate cadasters and management of geospatial data at the
national level. The RGA plays an important role in making the geospatial
information available, to support the government and municipal authorities as
well as the general public and businesses. One presentation was addressing the
challenges of Digital Government Transformation, as a tool for improving the
public sector services and reducing existing administrative burden that can lead
to increased savings in money and time for public administration, businesses,
and citizens. Although, there is significant support and interest from many
stakeholders (EC, UNDP, World Bank; Chamber of Commerce and Industry of
Serbia, NGO’s as NALED) to enable digital transformation, Serbia still faces
challenges with successful development of e-services. Interoperability is one of
the key challenges and it is acknowledged as the first action and goal to achieve
in “Program for e-government development of Serbia”. The fourth presentation
presented the results from the project CASPER on use of Al to filter the content
displayed to the user and the content sent by the user via the Internet. The
experimental use of pilot software confirmed that Al can be successfully used
to protect vulnerable categories of users from inappropriate content and
malicious activities on the Internet

The literature search gave the biggest number of papers published in the
last 5 years addressing digital transformation, artificial intelligence and
machine learning. It was somehow expected, Serbia is the biggest country
among the WB countries, with strongest economy and highly ranked
Universities on global ranking lists. The digital transformation, aside from the
developments in e-government presented during the workshop, is also
advancing in many other sectors. Notable areas include education (Kabiljo et
al., 2020; Piti¢ et al., 2018), banking (Milojevi¢ and Redzepagi¢, 2020), eco-
innovations and sustainable technologies (Puki¢ et al., 2022), and business
performance (Kahrovi¢ and Avdovi¢, 2021).

100



DIGITAL INTELLIGENCE AND COMPUTER SYSTEMS

Additionally, sectors such as insurance (PusSara, 2020), crime and law
(Ivanovi¢ and Pavlovi¢, 2018), and environmental modelling (Malinovi¢-
Mili¢evi¢ et al., 2021; Mitrovic¢ et al., 2019) are also experiencing significant
digital transformation. Other fields like medicine (Ristivojevi¢ et al., 2022),
agriculture (Vujovi¢ et al., 2020), and many more continue to adopt digital
technologies and Al-driven solutions.

Moreover, there is quite good legal and organizational setup on Al related
issues, starting with Strategy for development of artificial intelligence in the
Republic of Serbia: 2020-25; The Institute for Artificial Intelligence Research
and Development of Serbia located at Science and Technology Park in Novi
Sad, that has been established by the Government of Serbia based on the
initiative from the national Al strategy; Serbian Artificial Intelligence Society,
SAIS, that promotes Al research and development of applications in the
Artificial Intelligence industry. Members are Serbian Al companies,
researchers, decision-makers, entrepreneurs, organizations, professionals and
students active in, or interested in the area of Artificial Intelligence.

2. RESULTS AND DISCUSSION

The convergence of Digital Transformation, Data, and Al has made a
profound transformation of our economy and society. Digital Transformation,
Data, and Artificial Intelligence are pillars of modern society and together with
the European Green Deal are the flagship priorities of the EU. Many
applications from these technologies have started entering our daily lives, from
image recognition, machine translation and autonomous systems that are
increasingly deployed on the web, commerce, industry, and government.

EU’s ambition is to become the world-leading region for developing and
deploying cutting edge, ethical and secure Al and Data services as well as to
promote a human-centric approach in the global context. Western Balkan (WB)
countries, as EU candidate and accession countries, should adopt, benefit, and
collaborate in these emerging initiatives with their partners from the EU.

Temporary limitations of number of services and other aspects of

everyday life fostered quick response and shifted many of the services online.
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Number of different sectors affected (education, food supply chain,
health system, banking, governmental services, socializing, news...) started
their digital transformation by offering number of different digital tools to fill
the gap. Number of online services gained in speed and volume to an
unprecedented extent during the period. (Bieber, 2020), named this process as
“digital leap” that occurred against the backdrop of a region that has been
lagging behind the EU average in most digital indicators, from household
access to digital infrastructure and the use of the most common online services.
Same author pointed out that at the same time, there have been regional efforts,
including several digital summits in the region since 2018 and a joint Digital
Agenda for the Western Balkans drafted by the European Union and the six
Western Balkan economies. As such, the region has been preparing for
enhancing digital infrastructure and its use.

Moreover, (Bieber, 2020) conclude that, across the region, there has been
a marked increase in using the internet to access key services, particularly for
education, entertainment, social contact and information, whereas increases in
teleworking, online shopping and e-government have been modest. The scale
of obstacles faced by citizens across the region vary, but a majority faced at
least one obstacle in using online services. Overall, citizens have been satisfied
with online services and, with the exception of education, a majority of those
who used them would like to continue doing so at the same or higher levels in
the future. This provides a strong foundation for locking in the digital gains
made during the pandemic and translating them into a sustainable digital
transformation of the Western Balkans.

During the workshop number of ML and Al use cases were presented.
Starting from use cases in languages (translation, speech to text...), Images
processing, urban living, crop yield forecasting, monitoring, control and
analytical functions of the marketing mix subject to the supply records of
companies in the Fast Moving Consumer Goods (FMCG) and the service
sector, measuring the facial physiological responses, facial muscle activations,
and motions from the user to recognize emotions, protection of the vulnerable
Internet users at Human-Computer Interaction level and others. However, the
literature review gave number of other sectors, particularly for optimizations in

energy sector, in renewable energy.
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The workshop gave information that ML and Al in Western Balkan
countries already moved from the research groups to the implementation in the
real live within various sectors, as agriculture, urban living, internet use,
marketing, languages etc.

CONCLUSIONS

Digital transformation and the green deal are clearly European priorities.
It is emphasized through the Berlin declaration on Digital Society and Value
based Digital Government in 2020 and in the European Green Deal in 2019.
Many resources are and will be available in next years to support achievement
of these ambitious goals.

It is also truth that both goals bring many challenges and opportunities.
EC and EU Member States are already doing a lot in this direction. However,
examples and good practices and use cases for digital transformation, machine
learning, deep learning and implementation of artificial intelligence in various
sectors from emerging startup companies to the governmental level presented
in second chapter of this paper, clearly show that Western Balkans are not
lagging behind.

Digital Transformation together with Artificial Intelligence application
are already visible in many areas such as: government and public administration
including public services, agriculture, geospatial sector, urban planning,
education, banking sector, crisis management etc. It is also evident that more
and more startups appear in private sector.

DT and Al could be and should be important factors to boost economic
recovery and resilience in the future. The Digital transformation can bring
number of benefits for Western Balkan countries and their citizens, while
transforming of the governmental and/or local administration services into
digital services is important direction determined on this research.

Number of researchers and research groups are active in the field of
digital transformation, machine learning and artificial intelligence. Some quite
interesting research activities in various fields of science are presented,
therefore these advanced techniques find implementation in much wider

surrounding than informatics itself.
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The movement from open data to free data is still very big problem,
therefore data accessibility remains the problem in all Western Balkan
countries. However not all countries are on same level of development and
implementation of the digital transformation, machine learning and artificial
intelligence. The promotion of regional cooperation and establishment of the
international institutes that will be centers for promoting the excellence in this
field and will operate regionally is one of the solutions improving the level of
development in all countries

The Berlin process should consider the existing potentials in digital
transformation, machine learning and implementation of the artifactual
intelligence in various fields and support ongoing process on country level, and
hopefully number of further initiatives on regional level. Geospatial
information and location data are more and more part of activities of many
sectors. Therefore, intensification of cooperation, communication and
coordination and further work on geospatial information is required to make
spatial data available for all interested parties. United Nations Global
Geospatial Information Management (UN GGIM) can be good platform for
this.
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