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PREFACE 

This volume brings together contemporary research at the intersection of 

artificial intelligence, quantum computing, big data, and digital transformation. 

Each chapter addresses foundational and applied dimensions of these 

technologies, offering insights into their evolving roles in knowledge systems 

and societal infrastructure. 

The first set of chapters explores the development of modular and 

trustworthy foundation models, and the application of big data analytics in 

educational engineering. These contributions highlight the potential for 

scalable, domain-specialized AI and data-driven pedagogical innovation. 

Subsequent chapters examine the principles of quantum mechanics for 

quantum computing and assess digital transformation efforts in the Western 

Balkans. Together, the volume provides a multidisciplinary perspective on the 

challenges and opportunities shaping the future of intelligent systems. 
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FOUNDATION MODELS AS OPERATING SYSTEMS 

FOR KNOWLEDGE: TOWARD MODULAR, 
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1Karim DABBABI 

 

 

  

                                                             
1Research Laboratory of Analysis and Processing of Electrical and Energetic Systems,    Faculty 

of Sciences of Tunis,  Tunis El Manar University, Tunis, Tunisia, dabbabikarim@hotmail.com, 

ORCID ID: 0000-0002-2644-9776 

mailto:dabbabikarim@hotmail.com


2 

 

INTRODUCTION 

Artificial Intelligence (AI) has evolved rapidly over the past decades, 

from early rule-based expert systems to the current age of large, generalized 

models capable of handling a wide variety of tasks. Understanding this 

progression is essential to appreciate how foundation models now serve as a 

central paradigm, linking historical algorithmic approaches to current deep 

learning and beyond. 

 

Early AI and Rule-Based & Symbolic Systems 

The origins of AI trace back to symbolic reasoning and rule-based 

systems, where knowledge was encoded explicitly as logical rules, decision-

trees, or if-then statements. These systems performed well in narrowly defined 

domains (e.g., diagnostics, theorem proving) but struggled to generalize beyond 

their handcrafted rules. As datasets grew and computational resources 

expanded, limitations of symbolic systems became evident: they required 

enormous manual effort to encode domain knowledge and failed to adapt 

flexibly when confronted with novel or noisy input. 

 

Emergence of Statistical Machine Learning 

In response to the brittleness of symbolic systems, the AI field shifted 

toward statistical machine learning (ML). Instead of explicitly coded rules, 

statistical ML models derive patterns from data. Techniques such as logistic 

regression, decision trees, support vector machines, and ensemble methods 

became staples in tasks like classification, regression, and clustering. These 

models enabled AI systems to handle uncertainty and variability in data more 

naturally, but they still required feature engineering: human domain expertise 

to design appropriate inputs for the model. 

 

Deep Learning and Representation Learning 

Starting from around 2012, deep learning (DL) began to dominate as 

breakthroughs in neural network architectures (especially convolutional 

networks for vision, recurrent and then transformer-based architectures for 

language) yielded substantial performance gains.   



3 

 

Deep models can learn hierarchical representations automatically from 

raw data, reducing the need for manual feature engineering. Representation 

learning enabled systems to extract features at many levels (edges, textures, 

semantics) in vision, or syntax and semantics in language. Furthermore, 

architectures like Transformer have made it possible to capture long-range 

dependencies efficiently in language and multimodal data (text, images, audio) 

(Sarker, 2021). 

 

Transfer Learning, Pretraining, and the Roots of Foundation 

Models 

The trend toward pretraining and transfer learning laid the groundwork 

for foundation models. Pretrained models are first trained on large generic 

datasets (e.g., large corpora of text or images) and then fine-tuned or adapted 

for downstream tasks. Models like BERT, GPT-2/3, and vision transformers 

showed that knowledge learned in one domain or over generic data can be 

transferred with significant performance advantages to more specialized tasks 

(Zhou et al., 2023). This shift reduced computational cost, data annotation 

demands, and facilitated rapid development. 

 

Defining Foundation Models 

A foundation model is generally understood as a large model trained on 

broad, diverse data—often using self-supervised or unsupervised learning—

that can be adapted (fine-tuned or prompted) to many downstream tasks 

(Merritt, 2025; Stanford HAI, 2024). These models exhibit emergent 

behaviours, meaning that they often demonstrate capabilities (e.g., few-shot 

prompting, generalization across modalities) that were not directly 

programmed or anticipated (Merritt, 2025; Tobia et al., 2025). 

 

Why This Shift Matters 

This evolution from symbolic rules to ML to deep learning to foundation 

models is not just incremental improvement: it reflects a qualitative shift in how 

intelligence is embodied in computational systems. Foundation models allow 

for:  
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 Scalability: Training over massive datasets and large parameter spaces. 

 Generalization: Ability to adapt to new tasks with limited extra training 

or via prompting in context. 

 Modularity and reuse: Rather than building separate models per task, 

many downstream applications reuse a single pretrained backbone. 

 Multimodal capabilities: Many recent foundation models integrate text, 

vision, and other data modalities. 

However, with these advances come challenges: resource and compute 

cost, ethical issues (bias, fairness), interpretability, societal impact, and 

governance (Guo et al., 2025; Huang, 2025). 

 

1. FOUNDATION MODELS AS KNOWLEDGE 

OPERATING SYSTEMS 

This section develops the metaphor of foundation models as knowledge 

operating systems (K-OS): large, pretrained models (LLMs and multimodal 

equivalents) that function as an infrastructure layer—coordinating data access, 

modular components, tool use, and task execution—on which downstream, 

domain-specialized capabilities run. I argue that treating foundation models as 

K-OS helps explain (1) how they coordinate parametric and non-parametric 

knowledge, (2) how modular extensions (adapters, retrieval, tool interfaces) 

permit domain specialization, and (3) why this view clarifies key engineering 

and governance challenges (factual grounding, provenance, updateability, and 

safe tool orchestration). 

 

1.1 The K-OS Metaphor: Responsibilities and Components 

An operating system (OS) provides a consistent runtime, resource 

management, APIs, and isolation so higher-level programs can run without 

reimplementing core services. Foundation models play a similar role for 

knowledge tasks: 

• Runtime for reasoning and generation. Foundation models provide a 

general computation layer that maps inputs (prompts, contexts, 

multimodal signals) to outputs (text, code, actions) using learned internal 

representations.   
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They implement generic capabilities (language understanding, 

generation, multimodal alignment) that many applications reuse 

(Bommasani et al., 2022). 

• APIs and extension points. Prompting, fine-tuning, adapters, and 

external tool APIs act like system calls—application developers do not 

rewrite the core model but call or extend it for task-specific work (e.g., a 

medical summarizer calling a retrieval function). Research on adapters 

and PEFT (parameter-efficient fine-tuning) formalizes how small 

modules plug into a large backbone (Hu et al., 2023). 

• Non-parametric memory and dynamic data. Like a filesystem accessed 

by programs, external knowledge stores (vector DBs, corpora) provide 

up-to-date or proprietary knowledge. Retrieval-augmented generation 

(RAG) couples a retriever with a generator so the model can query and 

incorporate external documents at runtime, improving factuality and 

traceability (Lewis et al., 2020). 

• Tool orchestration and sandboxing. Recent work shows that models can 

learn to call external tools (calculators, search, APIs) and incorporate 

returned results into outputs; this is analogous to processes invoking 

system utilities. Toolformer and related frameworks demonstrate self-

supervised learning of tool use, improving practical competence on tasks 

small models alone struggle with (Schick et al., 2023). 

Framing foundation models as K-OS therefore highlights the need to 

design robust interfaces (retrieval, tool APIs, adapter registry), resource-aware 

deployment (latency, compute), and governance (access controls, auditable 

provenance). 

 

Modularity: Adapters, PEFT and Lightweight Specialization 

A core benefit of the K-OS view is that it encourages modular, low-cost 

specialization. Rather than training separate full models per task, developers 

attach modules that alter behavior or add capabilities: 

 Adapter modules and PEFT methods enable low-cost model adaptation 

by adding small parameter blocks while preserving the main model (Hu 

et al., 2023).  
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• Benefits for deployment. Modularization reduces duplication (one 

backbone, many adapters), enables quick updates to a module (e.g., fix a 

bias in a medical adapter), and supports selective distribution (edge vs. 

cloud). New PEFT variants continue to improve efficiency and 

performance in real tasks (Mangrulkar et al., 2025). 

 

Grounding and Dynamic Knowledge: RAG and Evolving 

Datastores 

A Knowledge-OS must be able to access accurate, current information. 

RAG and its derivatives serve this role: 

• RAG architectures combine a retriever (dense/sparse vector index) and a 

generator so the model conditions on retrieved passages during 

generation; this yields more factual outputs and provides a natural 

provenance trail for answers. RAG has become a standard building block 

for knowledge-intensive applications (Lewis et al., 2020). 

• Multi-step retrieval and chaining. Newer approaches move beyond single 

retrieval calls to chains of retrieval+reasoning (chain-of-retrieval) to 

handle complex, multi-hop queries and to refine retrieved evidence 

before generation (Shinn et al., 2023). 

 

Tool Use and Autonomous Orchestration 

Treating the foundation model as a K-OS foregrounds the possibility of 

autonomous orchestration: models not only answer prompts but decide whether 

to call tools, which tools to call, and how to integrate results: 

 Self-supervised tool learning. Toolformer shows models can learn when 

and how to call external APIs (search, calculator, translator) with 

minimal supervision, yielding better factuality and capability (Schick et 

al., 2023). 

 Tool frameworks and benchmarks. ToolLLM and related tool-use 

frameworks provide datasets and training recipes for tool integration, 

making tool orchestration a reproducible engineering pattern (Qin et al., 

2023). 
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Engineering and Governance Implications 

Viewing foundation models as K-OS raises practical concerns: 

 Provenance, auditing, and explainability. Systems must log retrievals, 

tool calls, and adapter usage to enable human verification and regulatory 

compliance. RAG architectures naturally support this logging by 

returning source passages (Lewis et al., 2020). 

 Security and access control. Tool APIs and knowledge stores must be 

sandboxed; unregulated tool access can leak sensitive data or cause 

unsafe actions (Weidinger et al., 2022). 

 Resource & environmental costs. Maintaining large backbones with 

many plugged modules and live retrieval services has compute and 

carbon implications; PEFT and modularization partially mitigate these 

costs (Dettmers et al., 2023). 

 

1.2 Empirical Evidence for the Knowledge Operating System 

Paradigm 

The comparison in Table 1 illustrates how the knowledge operating 

system (K-OS) metaphor is not only conceptual but also practically grounded 

in diverse research strands. Retrieval-augmented generation (Lewis et al., 2020) 

demonstrates how external, non-parametric knowledge bases can function as 

the “file system” of the K-OS, allowing large language models to dynamically 

access and integrate verified content. This principle has become central to 

enterprise deployments where factuality and source attribution are critical. 

Toolformer (Schick et al., 2023) and ToolLLM (Qin et al., 2023) extend 

this analogy by showcasing how models can autonomously call APIs, similar 

to how applications within an OS invoke system utilities. These works highlight 

the increasing importance of self-supervised tool learning and benchmarked 

tool orchestration as standard capabilities of foundation models. 

On the modularization side, Hu et al. (2023) and subsequent surveys on 

parameter-efficient fine-tuning (PEFT) (PEFT Survey, 2025) demonstrate the 

viability of adapter-based approaches, where small, specialized modules plug 

into a shared backbone. This aligns well with the notion of kernel modules in 

operating systems, where additional functionalities are attached without 

altering the core.   
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These modular approaches not only reduce the computational burden but 

also enable rapid customization for diverse tasks and domains. By treating 

foundation models as flexible platforms, researchers can efficiently integrate 

new capabilities without retraining the entire system. This paradigm shift 

fosters a more scalable and maintainable ecosystem for building intelligent 

applications. 

Their results also confirm that such modularity drastically reduces 

computational costs while preserving performance, making foundation models 

more accessible for domain-specific applications. 

Finally, Saxena et al. (2023) provide a unique perspective by training a 

foundation model on operating system traces themselves. Although this work 

lies outside the mainstream NLP/vision pipeline, it symbolically reinforces the 

K-OS metaphor by showing that even operating systems can be modelled as 

dynamic, data-rich environments. 

Taken together, the works in Table 1 illustrate that the K-OS view is more 

than a rhetorical device: it has empirical support across domains ranging from 

knowledge retrieval to modular tuning and autonomous tool use. This 

reinforces the argument that foundation models can indeed be regarded as an 

emerging operating system for knowledge. This perspective encourages 

rethinking foundation models not just as tools for specific tasks, but as general-

purpose platforms capable of orchestrating diverse knowledge-driven 

processes. As more modular and efficient adaptation techniques emerge, the 

accessibility and flexibility of these models will only increase. In this light, 

foundation models are poised to serve as the backbone for future intelligent 

systems across a wide range of domains. In addition to these advancements, 

another key advantage of the modular approach is the ability to test and update 

individual components independently. This flexibility accelerates experimental 

workflows for both researchers and developers, while also simplifying the 

isolation and resolution of errors. Moreover, the development of task-optimized 

submodules enhances overall system efficiency and enables the delivery of 

customized solutions tailored to diverse user needs. 
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Table 1. Comparative Overview of Recent Advances Supporting the Knowledge 

Operating System Paradigm 

Work (ref) Key features Models / 

Methods 

Key results / 

claim 

Representative 

applications 

Lewis et al., 

2020 (RAG). 

(arXiv) 

Combines 

parametric 

generator non-

parametric 

retriever 

DPR retriever + 

BART generator; 

end-to-end RAG 

SOTA on 

several open-

domain QA 

tasks 

Open-domain 

QA, enterprise 

doc QA, fact-

checking 

Schick et al., 

2023 

(Toolformer) 

Self-

supervised 

learning to call 

APIs/tools 

LM trained to 

decide API use 

and integrate 

responses 

Improved zero-

shot 

performance on 

tasks requiring 

calculation, 

lookup 

Question 

answering with 

search, 

calculators, 

translators 

Qin et al., 

2023 

(ToolLLM) 

Framework & 

dataset for tool 

use 

ToolBench 

dataset; 

instruction tuning 

for tool use 

Enables robust 

tool-use 

capabilities and 

evaluation 

Tool 

orchestration 

benchmarks; 

agentic systems 

Hu et al., 2023 

(Adapter 

family / LLM-

Adapters).  

Adapters / 

PEFT 

framework 

Adapter modules 

integrated into 

LLMs 

Competitive 

performance vs 

full fine-tuning 

with far fewer 

params 

Domain 

adaptation, 

multilingual 

transfer 

PEFT surveys 

(2025) 

Overview of 

PEFT methods 

LoRA,adapters, 

prompts,quantum-

inspired adapters 

PEFT reduces 

training costs 

while retaining 

performance 

Medical 

imaging tuning, 

specialized 

NLP tasks 

Saxena et al., 

2023 

(FoundationO) 

Proposes a 

domainspecific 

FM for OS 

traces 

Foundation model 

trained on OS 

traces 

Argues for FM 

utility in system 

analysis 

Systems 

research, 

anomaly 

detection in OS 

 

2. MODULARITY AND SPECIALIZATION 

Foundation models (FMs) are powerful because they provide general-

purpose representations learned from vast datasets, yet this generality alone is 

insufficient for highly specialized applications. Just as operating systems rely 

on modular components such as drivers and plugins to extend functionality, 

foundation models increasingly depend on modular adaptation techniques to 

align with domain-specific needs.   

https://arxiv.org/pdf/2005.11401?utm_source=chatgpt.com
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This section explores how modularity enables scalable specialization, 

reduces computational costs, and facilitates responsible deployment. 

 

Rationale for Modularity 

One of the most significant challenges in adapting FMs to specific 

domains is their enormous size and training cost. Fine-tuning entire models 

with billions of parameters for each application is prohibitively expensive and 

environmentally costly. Consequently, modular adaptation techniques—such as 

adapters, prompt tuning, and low-rank adaptation (LoRA)—allow smaller, 

specialized modules to be attached to a frozen backbone. These methods 

maintain most of the general knowledge encoded in the FM while injecting 

domain-specific expertise (Hu et al., 2023; Ding et al., 2024). 

Moreover, modularity supports incremental updates. For instance, a 

healthcare adapter can be updated with new medical knowledge without 

retraining the entire model, similar to updating a device driver in an operating 

system. This modular approach not only lowers cost but also enables agility in 

fast-evolving fields like law, medicine, and climate science (Zhang et al., 2024). 

 

Techniques for Modular Specialization 

Recent studies classify modular adaptation strategies into three broad 

categories: 

1. Adapter-based methods. Small bottleneck layers inserted into the 

transformer architecture capture new task knowledge efficiently. These 

approaches have proven effective in multilingual transfer and domain 

adaptation, reducing parameter updates by over 90% compared to full 

fine-tuning (Houlsby et al., 2020; Pfeiffer et al., 2021). 

2. Prompt-based tuning. By designing continuous or discrete prompts, 

models can be guided toward domain-relevant behavior without altering 

the main parameters. This method has shown promise in few-shot and 

zero-shot settings where labeled data is scarce (Liu et al., 2023). 

3. Low-rank adaptation (LoRA) and PEFT variants. LoRA decomposes 

parameter updates into low-rank matrices, drastically cutting 

computational overhead.   
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Recent surveys indicate LoRA and its extensions are among the most 

widely adopted parameter-efficient fine-tuning (PEFT) techniques for 

FMs (Dettmers et al., 2023; Mangrulkar et al., 2025). 

These approaches are not mutually exclusive: hybrid strategies 

increasingly combine prompting with adapters or LoRA to balance flexibility 

and efficiency. 

 

Benefits of Specialization 

Specialization through modularity provides several key benefits: 

• Domain alignment. Medical FMs trained with adapters have shown 

improvements in diagnostic tasks and biomedical literature 

summarization (Singhal et al., 2023). Legal-domain adapters similarly 

enhance contract analysis and case retrieval. 

• Resource efficiency. Modular methods significantly reduce the 

environmental footprint of FM deployment by lowering training energy 

consumption (Dettmers et al., 2023). 

• Security and compliance. Modular updates allow organizations to insert 

compliance filters or audit modules that enforce ethical constraints 

without altering the core FM (Bommasani et al., 2022). 

• Interoperability. Modular FMs can switch between domains (e.g., 

healthcare, finance) by loading relevant adapters, enabling a single 

backbone to serve multiple sectors. 

 

Challenges and Open Questions 

Despite the advantages, modular specialization raises several challenges: 

• Compatibility and standardization. Current adapter and PEFT 

frameworks lack universal standards, making it difficult to share modules 

across institutions (Zhang et al., 2024). 

• Catastrophic forgetting in shared backbones. When multiple domain 

modules interact, ensuring stability and preventing interference remains 

an open research area (Liu et al., 2023). 

• Governance of modular contributions. As more organizations develop 

and distribute adapters, ensuring quality control and preventing 

malicious modules becomes essential. 
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Toward Ecosystems of Specialized Modules 

The future may see ecosystems of adapters, prompts, and PEFT modules 

that function like app stores. Organizations could download certified modules 

to extend the capabilities of their foundation model backbone, much like 

installing extensions in modern software environments. Such ecosystems 

would democratize access to specialized AI, while governance mechanisms 

would ensure reliability and ethical safeguards. 

In this way, modularity and specialization reinforce the metaphor of 

foundation models as knowledge operating systems—a general-purpose kernel 

enhanced by a growing library of domain-specific modules. 

 

3. TRUST, ETHICS, AND GOVERNANCE OF 

FOUNDATION MODELS 

While foundation models (FMs) have emerged as transformative engines 

for knowledge representation and application, their widespread adoption raises 

profound ethical, societal, and governance challenges. Unlike task-specific 

models, FMs are deployed across diverse domains and user groups, magnifying 

the potential consequences of bias, misinformation, and misuse. Addressing 

these risks requires frameworks that integrate trustworthiness, transparency, 

accountability, and governance into both the design and deployment of such 

systems. 

 

The Trustworthiness Imperative 

Trust in FMs hinges on their ability to provide accurate, consistent, and 

interpretable outputs. However, phenomena such as hallucination—where 

models generate plausible but false information—undermine reliability in 

critical sectors like medicine and law (Ji et al., 2023). Recent studies emphasize 

the role of retrieval-augmented generation (RAG) and grounding strategies in 

reducing hallucinations, thereby improving factual consistency (Lewis et al., 

2020). Trustworthiness also depends on explainability: users need to understand 

not only what outputs are produced but why. Although FMs are often criticized 

as “black boxes,” new interpretability methods, such as probing and causal 

tracing, aim to make their internal decision-making more transparent (Kovaleva 

et al., 2024). 
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Bias, Fairness and Equity 

Because FMs are trained on vast web-scale datasets, they inherit and 

sometimes amplify societal biases. These biases may manifest in gendered 

stereotypes, racial disparities, or exclusion of underrepresented languages 

(Bender et al., 2021; Huang et al., 2025). Bias mitigation strategies include 

curating balanced datasets, fine-tuning with fairness objectives, and integrating 

human-in-the-loop auditing. However, no solution is comprehensive, and 

ethical risks remain, particularly in high-stakes areas such as recruitment or 

criminal justice (Weidinger et al., 2022). Thus, fairness in FMs is both a 

technical and socio-political challenge. 

 

Governance and Accountability 

The governance of FMs involves regulatory, organizational, and 

technical layers. On the regulatory side, frameworks such as the EU Artificial 

Intelligence Act (2024) propose classifying FMs as “high-risk” systems, 

mandating transparency and auditing. On the organizational level, institutions 

like Stanford’s Center for Research on Foundation Models (CRFM) and the 

Partnership on AI advocate for governance protocols around data provenance, 

documentation, and model usage guidelines (Bommasani et al., 2022). 

Technically, governance mechanisms include model cards, datasheets for 

datasets, and auditing pipelines to ensure accountability in deployment 

(Mitchell et al., 2021). 

Accountability also extends to responsibility attribution: when an FM 

causes harm, determining liability between model developers, fine-tuners, and 

end-users remains unresolved (Hacker et al., 2023). Clear governance 

frameworks are thus needed to prevent the diffusion of responsibility. 

 

Security and Misuse Concerns 

Foundation models can be weaponized to generate disinformation, 

deepfakes, or malicious code (Goldstein et al., 2023). Security risks also 

include adversarial attacks, data extraction, and prompt injection, where 

attackers manipulate inputs to extract sensitive knowledge from the model. 

Recent proposals suggest red teaming—systematic adversarial testing—as a 

governance best practice (Shelby et al., 2024).   
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Mitigation strategies also include watermarking outputs, restricting 

access through APIs, and embedding content moderation layers. 

 

Ethical Frameworks for Responsible Deployment 

To foster ethical FM ecosystems, several guiding frameworks have been 

proposed: 

 Transparency and documentation. Detailed records of training data, 

model architecture, and limitations build user trust (Mitchell et al., 2021). 

 Human oversight. Embedding human judgment in critical decision-

making loops mitigates the risk of automation bias (Floridi & Chiriatti, 

2020). 

 Value alignment. Ensuring that FMs respect cultural, legal, and 

organizational norms requires participatory approaches to system design 

(Huang et al., 2025). 

 Global equity. Addressing the dominance of English and Western-centric 

datasets is essential for inclusive AI development (Bender et al., 2021). 

 

Looking Ahead: Toward Ethical and Governable FMs 

The future of FMs depends on their ability to balance innovation with 

ethical safeguards. Building governable models means embedding ethical 

reasoning and compliance checks directly into the system’s architecture. 

Furthermore, cross-disciplinary collaboration—among technologists, ethicists, 

policymakers, and civil society—is essential for crafting governance regimes 

that are both practical and globally adaptable. 

In this light, governance is not a constraint on progress but rather a 

precondition for sustainable innovation. Without trust, transparency, and 

accountability, FMs risk eroding public confidence, which would ultimately 

undermine their transformative potential. 

 

4. APPLICATIONS ACROSS DOMAINS 

Foundation models (FMs) are increasingly integrated into diverse 

sectors, acting as “knowledge operating systems” that power innovation, 

accelerate discovery, and support decision-making.   
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Their modular adaptability, combined with retrieval and fine-tuning 

strategies, makes them suitable for domains as varied as healthcare, education, 

sustainability, industry, and robotics. This section highlights how FMs are being 

applied across domains, the benefits they bring, and the unique challenges they 

introduce. 

 

Healthcare and Biomedicine 

Healthcare has emerged as one of the most promising fields for FMs. 

Clinical large language models (LLMs), such as MedPaLM and PubMedBERT, 

demonstrate impressive capabilities in diagnosis support, biomedical literature 

summarization, and question answering (Singhal et al., 2023). Similarly, 

multimodal biomedical models integrate genomic, clinical, and imaging data to 

accelerate drug discovery and precision medicine (Guo et al., 2025). Despite 

these advances, ethical concerns remain, particularly regarding data privacy 

and biases in underrepresented populations. 

 

Education and Personalized Learning 

FMs are increasingly embedded in digital education platforms, where 

they enable personalized tutoring, adaptive assessment, and automated content 

generation. By leveraging prompt engineering and RAG, educational FMs 

deliver context-aware responses that align with learners’ needs (Kasneci et al., 

2023). They also enhance accessibility through multilingual translation and 

speech-to-text services for students with disabilities. However, reliance on 

automated feedback raises concerns about overdependence and the potential 

erosion of critical thinking skills (Zawacki-Richter, 2023). 

 

Sustainability and Climate Science 

Another area where FMs are proving valuable is sustainability research 

and climate modelling. Recent studies employ FMs for predictive analytics in 

energy optimization, environmental monitoring, and climate impact modelling 

(Rolnick et al., 2023). For instance, LLMs assist in synthesizing scientific 

literature on climate change, helping policymakers make evidence-based 

decisions. Yet challenges include ensuring model transparency and avoiding 

misinterpretation of uncertain climate data (Huang et al., 2025). 
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Industry and Robotics 

In industrial contexts, FMs are used to enhance predictive maintenance, 

supply chain optimization, and digital twin simulations (Cai et al., 2024). 

Robotics benefits from multimodal FMs that integrate vision, language, and 

sensor data, enabling robots to understand natural instructions and perform 

complex manipulation tasks (Brohan et al., 2023). This has wide applications 

in logistics, manufacturing, and disaster response. However, issues of safety, 

autonomy, and accountability remain pressing. 

 

4.1 Cross-Domain Challenges 

While the applications of foundation models (FMs) span diverse sectors, 

they are consistently shaped by a common set of challenges that hinder broader 

adoption and reliable deployment. As summarized in Table 2, these challenges 

manifest across healthcare, education, sustainability, and industry, revealing 

both domain-specific issues and cross-cutting constraints. 

First, generalization limits remain a major barrier. Although models such 

as MedPaLM or PubMedBERT achieve high performance in biomedical 

question answering, their accuracy is often biased toward well-represented 

populations, leading to underperformance in low-resource or non-Western 

contexts (Singhal et al., 2023; Guo et al., 2025). This highlights the tension 

between large-scale pretraining and the need for inclusivity in global 

applications. 

Second, ethical risks recur across all domains. In healthcare, privacy 

concerns are tied to sensitive patient data; in education, the risk of overreliance 

on AI tutors threatens critical thinking skills (Kasneci et al., 2023; Zawacki-

Richter, 2023). In sustainability research, the use of predictive models raises 

questions about transparency and accountability, especially when outputs guide 

high-stakes climate policies (Rolnick et al., 2023; Huang et al., 2025). 

Similarly, robotics applications raise issues of safety and liability when 

autonomous systems act without direct human oversight (Brohan et al., 2023; 

Cai et al., 2024). 

  



17 

 

Third, integration hurdles pose technical and regulatory challenges. Each 

domain has unique compliance requirements: for example, HIPAA in 

healthcare, GDPR in education technologies, and evolving environmental 

standards in sustainability. These hurdles complicate the smooth incorporation 

of FMs into operational pipelines, often requiring additional layers of auditing, 

domain-specific adapters, or explainability modules. 

Finally, the sustainability of compute presents a systemic challenge 

across domains. Training and deploying large-scale FMs consume vast amounts 

of energy, which is paradoxical in sectors like sustainability where ecological 

responsibility is paramount. Methods such as quantization and parameter-

efficient fine-tuning (Dettmers et al., 2023) partially mitigate this issue, but 

long-term solutions will require innovation in hardware efficiency and 

algorithmic optimization. 

In sum, Table 2 illustrates that while foundation models have enabled 

remarkable progress across domains, the persistence of generalization limits, 

ethical risks, integration hurdles, and sustainability concerns underscores the 

necessity of a balanced approach. Future research must address these issues not 

in isolation but through systemic frameworks that recognize the interconnected 

nature of modularity, trust, and specialization in real-world deployments. 

 

Synthesis 

Across these domains, FMs act as general-purpose kernels, augmented 

by domain-specific modules. This confirms the knowledge operating system 

paradigm, where models function as shared infrastructures that enable a wide 

spectrum of applications. Nevertheless, without careful governance, ethical 

oversight, and continued research into domain adaptation, their potential could 

be undermined by misuse, inequity, or inefficiency. To fully realize their 

benefits, interdisciplinary collaboration is essential, bringing together technical 

experts, domain specialists, and policy-makers. Establishing standardized 

evaluation frameworks can also help ensure responsible deployment across 

diverse contexts. Ultimately, long-term success will depend not just on 

technological innovation, but on aligning these systems with human values and 

societal goals. 
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Table 2. Foundation Model Applications Across Domains 

Domain Representative 

Models / 

Approaches 

Key Results Applications Key Challenges 

Healthcare MedPaLM, 
PubMedBERT, 
multimodal 
biomedical FMs 
(Singhal et 
al.,2023) 

High accuracy 
in medical 
Q&A, 
biomedical 
literature 
summarize 

Diagnosis 
support, drug 
discovery, 
precision 
medicine 

Data privacy, bias 
in 
underrepresented 
groups 

Education GPT-4 + RAG, 
adaptive tutoring 

systems (Kasneci 
et al., 2023; 
Zawacki-Richter, 
2023) 

Improved 
learner 

engagement, 
personalized 
content 
deliver 

Intelligent 
tutoring, 

accessibility 
tools 

Overreliance, 
erosion of critical 

thinking 

Sustainability LLMs for climate 
science (Rolnick 
et al., 2023; 
Huang et al., 

2025) 

Improved 
synthesis of 
climate 
literature 

Climate policy 
support, smart 
energy grids 

Transparency of 
predictions, 
uncertainty 
management 

Industry & 
Robotics 

Multimodal FMs, 
robotics 
transformers 
(Brohan et 
al.2023) 

Robots follow 
natural 
language 
instructions 

Digital twins, 
predictive 
maintenance, 
logistics 

Safety, autonomy, 
liability in 
automation 

 

5. FUTURE DIRECTIONS: TOWARD KNOWLEDGE-

CENTRIC AI 

Foundation models (FMs) represent a paradigm shift in artificial 

intelligence, yet their current forms are not the endpoint of innovation. As 

organizations, governments, and research communities increasingly adopt 

these models, the trajectory of AI research points toward more knowledge-

centric systems—models that are not only powerful generators but also 

trustworthy, adaptive, and aligned with human values. This section explores 

emerging trends shaping the next generation of AI. Among these trends are the 

integration of symbolic reasoning with deep learning and the development of 

models capable of continual learning. Such advances aim to overcome current 

limitations in generalization, transparency, and contextual understanding. 
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From General-Purpose Models to Knowledge-Centric 

Ecosystems 

Today’s FMs often operate as monolithic systems. The future is likely to 

involve ecosystems of specialized models and modules interacting 

collaboratively. Multi-agent architectures, where several FMs coordinate as 

agents with complementary expertise, are gaining traction for problem-solving, 

simulation, and scientific discovery (Park et al., 2023). In this vision, a central 

backbone coordinates multiple specialized agents, much like an operating 

system orchestrates processes. 

 

Integration with External Knowledge and Memory 

A defining limitation of current FMs is their reliance on static pretraining 

data. Future systems will need to incorporate dynamic, updatable memory 

mechanisms that combine parametric knowledge with external retrieval sources 

(Lewis et al., 2020). Advances in retrieval-augmented generation (RAG) and 

hybrid neuro-symbolic approaches suggest that FMs will increasingly behave 

like knowledge operating systems, accessing, updating, and verifying 

information in real time (Shinn et al., 2023). 

 

Edge Deployment and IoT Integration 

Most FMs currently operate in cloud environments, but the demand for 

low-latency, privacy-preserving AI is accelerating research into lightweight and 

distributed models. Future directions include federated fine-tuning, 

quantization methods, and PEFT approaches that make FMs suitable for edge 

devices and Internet of Things (IoT) ecosystems (Dettmers et al., 2023; 

Mangrulkar et al., 2025). This transition will democratize access, bringing AI-

powered decision-making closer to real-world environments such as smart 

homes, autonomous vehicles, and industrial monitoring systems. 

 

Toward Trustworthy and Governable AI 

The push toward knowledge-centric AI must also prioritize trust, 

governance, and ethics. Current governance frameworks remain fragmented, 

and without embedded safeguards, the risk of bias, disinformation, and harmful 

applications will persist (Bommasani et al., 2022; Hacker et al., 2023).   
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Future models may incorporate built-in auditing systems, interpretability 

layers, and policy-aware mechanisms that enforce compliance during inference 

rather than as external add-ons. This aligns with global regulatory initiatives, 

such as the EU AI Act (2024), which emphasize accountability and 

transparency. 

 

Human-AI Collaboration and Cognitive Augmentation 

Rather than replacing humans, knowledge-centric AI will increasingly 

serve as a cognitive augmentation tool. Research on collaborative intelligence 

suggests that pairing human domain experts with adaptive FMs leads to 

superior outcomes in fields like medicine, law, and climate science (Kasneci et 

al., 2023; Singhal et al., 2023). Future systems may move beyond chat-based 

interaction to multimodal, context-aware collaboration that understands intent, 

context, and emotion. 

 

Pathways Toward Specialized and General Intelligence 

The debate between artificial general intelligence (AGI) and domain-

specialized intelligence remains open. Some scholars argue that scaling FMs 

could eventually yield general reasoning abilities, while others believe modular, 

specialized intelligence is more practical and trustworthy (Huang et al., 2025). 

The future likely lies in a hybrid approach: scalable backbones supporting 

modular, domain-specific extensions that ensure both versatility and reliability. 

 

Open Challenges 

Despite exciting prospects, several open challenges remain: 

• Energy efficiency. Training FMs consumes enormous resources, raising 

sustainability concerns (Rolnick et al., 2023). 

• Evaluation metrics. Current benchmarks fail to capture trust, reasoning, 

or long-term reliability. 

• Global inclusivity. Most FMs remain Anglocentric, limiting accessibility 

for underrepresented languages and cultures (Bender et al., 2021). 

• Safety and autonomy. As FMs act more like autonomous agents, aligning 

their goals with human values becomes increasingly urgent (Weidinger 

et al., 2022). 
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CONCLUSION 

The rapid evolution of artificial intelligence has brought foundation 

models (FMs) to the forefront as general-purpose engines for reasoning, 

learning, and decision-making. This chapter has framed these models through 

the metaphor of an operating system for knowledge (K-OS), highlighting their 

role as infrastructure upon which specialized, modular, and trustworthy 

applications can be developed. Much like traditional operating systems abstract 

hardware complexities to enable diverse software ecosystems, FMs abstract the 

complexity of massive data and computation into reusable capabilities. 

The analysis has underscored three interdependent pillars that will define 

the sustainable growth of FMs. Modularity enables scalability by allowing 

lightweight adapters, parameter-efficient fine-tuning, and retrieval modules to 

extend general models without retraining their cores. Trust and governance 

remain essential to ensure that the power of FMs is not undermined by biases, 

hallucinations, or misuse. Effective auditing, transparent documentation, and 

ethical safeguards are critical in maintaining public confidence. Specialization 

ensures that FMs remain relevant to distinct domains such as healthcare, 

education, sustainability, and robotics, where tailored knowledge and 

compliance with sectoral norms are indispensable. 

Looking forward, the next decade of AI research will likely be 

characterized by a shift from monolithic FMs to knowledge-centric ecosystems. 

These ecosystems will integrate dynamic external memory, modular 

specialization, and multi-agent collaboration, creating systems that are 

adaptive, transparent, and context-aware. Advances in parameter-efficient fine-

tuning, retrieval-augmented generation, and trustworthy AI governance will 

converge to support applications that are both powerful and socially 

responsible. At the same time, global regulatory frameworks, sustainability 

imperatives, and inclusivity efforts will shape how these systems are designed 

and deployed. 

The vision is not of AI replacing human intelligence but rather 

augmenting human decision-making, functioning as a reliable and governable 

operating system for knowledge. If modularity, trust, and specialization can be 

successfully balanced, foundation models may evolve into a cornerstone of 

scientific discovery, education, and societal progress in the coming decade.  
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INTRODUCTION 

The rapid growth of digital learning technologies and platforms has 

generated vast streams of learner data, often referred to as “Big Data” in 

education. These data sources, ranging from learning management systems 

(LMSs), intelligent tutoring systems, and online assessments to discussion 

forums, programming environments, and immersive AR/VR simulations, 

provide rich insights into learner behaviors, competencies, and engagement 

patterns (Papamitsiou & Economides, 2014). In parallel, the proliferation of 

educational technologies has increased the demand for systematic approaches 

to analyzing and applying such data. Educational engineering, sometimes 

called learning engineering, addresses this challenge by combining scientific 

research on learning with data science methodologies and engineering 

practices. Its aim is to design, test, and iteratively refine learning environments 

through evidence-based feedback loops (Baker et al., 2022). 

Educational Data Mining (EDM) and Learning Analytics (LA) provide 

the foundational pillars upon which educational engineering builds (Koedinger 

et al., 2015; Papamitsiou & Economides, 2014). EDM focuses on developing 

new algorithms and modeling techniques to extract insights from educational 

datasets, while LA emphasizes translating those insights into actionable 

interventions, tools, and institutional strategies (Romero & Ventura, 2020; 

Lemay et al., 2021; Siemens & Long, 2011). Together, these fields have 

produced a growing body of methods ranging from predictive models for 

dropout detection to dashboards supporting learner self-regulation (Paulsen & 

Lindsay, 2024; Susnjak et al., 2022; Sun et al., 2023). 

What differentiates educational engineering is its pragmatic, design-

focused orientation. Measurement and data are not used solely for retrospective 

evaluation but are embedded into the very process of instructional design and 

delivery, allowing for rapid cycles of experimentation, analysis, and 

improvement. For instance, adaptive learning systems powered by knowledge 

tracing algorithms can adjust instructional content in real time, while early-

warning models enable timely interventions to support at-risk students (Karimi-

Haghighi et al., 2021; Rabelo & Zárate, 2025; Yu et al., 2021).   
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By systematically integrating standards, data pipelines, and ethical 

governance, educational engineering provides the scaffolding to transform Big 

Data from fragmented signals into actionable intelligence that advances both 

learning outcomes and institutional goals. 

 

1. DATA SOURCES AND INTEROPERABILITY 

The foundation of Big Data analytics in educational engineering lies in 

the identification, integration, and management of diverse data sources. Modern 

educational ecosystems generate data at unprecedented scale and velocity, 

reflecting learners’ cognitive, behavioral, and affective dimensions. These data 

can be broadly categorized into institutional, learner interaction, assessment, 

sensor-based, and social/behavioral streams. 

Institutional data include demographic information, enrollment records, 

course registrations, and prior academic history stored in student information 

systems (SIS). These datasets are essential for contextualizing learner 

performance and enabling longitudinal analyses of persistence, retention, and 

success across cohorts (Ifenthaler et al., 2019). When combined with finer-

grained activity logs, institutional data provide baseline indicators that guide 

predictive models. 

Learner interaction data represent one of the most abundant sources, 

generated through LMSs, e-learning platforms, and intelligent tutoring systems. 

Clickstream logs, time-on-task measures, forum posts, and resource access 

patterns enable detailed mapping of engagement and learning behaviors 

(Romero & Ventura, 2020). Massive Open Online Courses (MOOCs), for 

instance, produce terabytes of interaction data each semester, which can be 

mined to identify at-risk learners, optimize course sequencing, or personalize 

pathways (Kizilcec & Lee, 2022). 

Assessment data, ranging from traditional exam results to digital 

formative quizzes and open-ended assignments, are vital for evaluating 

mastery. Ever more, automated essay scoring, peer assessment platforms, and 

gamified quizzes add to this corpus, generating rich artifacts for both 

descriptive and predictive analysis (Rahimi & Shute, 2021). Assessment data 

also enable real-time feedback loops when coupled with adaptive testing 

systems. 
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Sensor and multimodal data are emerging as transformative sources. 

Eye-tracking, motion sensors, biometric devices, and virtual reality telemetry 

provide insight into cognitive load, affective states, and embodied interactions 

in simulated environments. In engineering education, for example, wearable 

sensors in laboratory experiments record student movement and physiological 

stress levels, enriching the understanding of hands-on skill acquisition (Ochoa 

& Wise, 2021). 

Social and behavioral data, derived from online discussion boards, social 

media platforms, and collaborative tools, shed light on peer interactions, 

discourse quality, and networked learning. Sentiment analysis of forum 

discussions has been applied to predict persistence in online programs, 

demonstrating the potential of natural language processing (NLP) in capturing 

affective dimensions of learning (Wen et al., 2014). 

While the availability of heterogeneous data sources creates 

opportunities, it also introduces interoperability challenges. Educational data 

are often siloed across proprietary platforms, each with distinct schemas and 

access restrictions. Vendor lock-in and inconsistent metadata standards impede 

the integration of learning data at scale. For example, aligning log data from an 

LMS with advising records stored in a separate SIS may require complex 

extract-transform-load (ETL) processes. 

To address these issues, interoperability frameworks such as the 

Experience API (xAPI) and IMS Caliper Analytics have gained prominence 

(1EdTech, 2002; 1EdTech Caliper Analytics). xAPI captures learning 

experiences in the form of activity statements (“actor–verb–object”), enabling 

flexible tracking of both online and offline learning events. Caliper, by contrast, 

emphasizes a standardized metric profile for higher education, facilitating 

comparative analytics across institutions (Sclater, 2015; Dixon et al., 2025). 

Both approaches rely on Learning Record Stores (LRSs) to collect, store, and 

exchange event data (Conformant LRSs, xAPI Adopters; xAPI.com Get an 

LRS). Institutional adoption of interoperability standards remains uneven, 

however.   
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While large universities and consortia may invest in enterprise-scale 

integration, smaller institutions often struggle with resource limitations, 

technical expertise, or concerns about data governance. This creates disparities 

in the ability to leverage Big Data analytics effectively. 

A related challenge is data sovereignty and privacy regulation, which 

influence where and how educational data can be stored and shared. European 

institutions, for instance, must comply with the General Data Protection 

Regulation (GDPR), which restricts the transfer of personal data outside the 

EU. Similar frameworks exist in other jurisdictions, complicating cross-border 

collaborations in multinational educational programs (Slade & Prinsloo, 2013). 

Despite these hurdles, progress is being made through initiatives 

promoting open educational data ecosystems. Projects such as OpenLAP and 

LearnSphere aim to provide open-source platforms and datasets for research, 

fostering replicability and innovation (Aleven et al., 2017). Moreover, cloud-

based architectures now enable the creation of scalable educational data lakes, 

where structured and unstructured data can be harmonized for advanced 

analytics. Ultimately, the richness of educational data sources, coupled with 

effective interoperability mechanisms, forms the backbone of educational 

engineering. Without robust data integration and standards, analytics efforts 

risk remaining fragmented and limited in impact. Ensuring interoperability is 

therefore not a technical afterthought but a strategic imperative, one that 

underpins the ability of institutions to harness Big Data for continuous 

improvement in teaching and learning. 

 

2. THE EDUCATIONAL DATA PIPELINE 

Transforming raw educational data into actionable insights requires a 

carefully designed data pipeline, comprising the processes of collection, 

storage, integration, analysis, and visualization. In educational engineering, the 

pipeline functions as the connective tissue that links disparate data sources to 

analytical models and decision-making tools. Its design must balance 

scalability, accuracy, security, and usability while accommodating the unique 

constraints of educational contexts.  
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2.1 Data Collection 

The first stage involves capturing learning events from multiple 

environments. These include LMS activity logs, SIS records, e-assessment 

systems, and third-party learning tools. More frequently, collection also 

encompasses real-time streams from sensors and immersive technologies. The 

adoption of interoperability standards such as xAPI enables activity capture 

beyond digital platforms, for instance, recording laboratory work or field-based 

learning experiences (Zapata-Rivera & Petrie, 2018). Robust collection 

practices must ensure timestamp accuracy, identity management, and metadata 

annotation to facilitate downstream integration. 

Once collected, data must be stored in a manner that supports scalability 

and secure access. Institutions have traditionally relied on relational databases 

and data warehouses, which are structured and optimized for querying 

historical records. However, the velocity and variety of educational data 

progressively necessitate data lakes and cloud-based architectures capable of 

ingesting structured, semi-structured, and unstructured data (Almotiry et al., 

2021). Integration often involves extract-transform-load (ETL) pipelines, in 

which raw data are cleaned, anonymized, and harmonized into consistent 

schemas. Modern approaches also use data virtualization and APIs to enable 

real-time interoperability without duplicating datasets. 

 

Data Processing and Analytics 

Educational data pipelines must support both batch processing and 

streaming analytics. Batch processing suits retrospective analyses, such as end-

of-semester performance reports or curriculum redesign studies. By contrast, 

streaming analytics are essential for real-time feedback applications, such as 

adaptive tutoring or early-warning alerts (Ifenthaler et al., 2019). Frameworks 

such as Apache Kafka and Spark Streaming are steadily adopted to process 

continuous event flows, enabling near-instantaneous detection of anomalies in 

learner behavior. An important element of this stage is data cleaning. Missing 

values, duplicate records, and noisy data can significantly distort analytics 

outputs.   
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Automated cleaning tools, combined with human oversight, are 

necessary to maintain data integrity. Additionally, feature engineering, the 

process of deriving meaningful variables from raw data, is central to building 

predictive and prescriptive models. For example, clickstream logs may be 

transformed into features representing session length, burstiness of activity, or 

collaborative contributions. 

 

Visualization and Dashboards 

The pipeline culminates in visualization layers that translate complex 

analytics into accessible insights for instructors, administrators, and learners. 

Dashboards can display key performance indicators, progression trajectories, 

and risk alerts. The design of these interfaces must consider principles of 

usability and cognitive load to avoid overwhelming users (Schwendimann et 

al., 2017). Instructors may require aggregate class-level patterns, while learners 

benefit from personalized feedback. Ever more, visualization tools incorporate 

interactive elements, allowing users to drill down into specific data segments 

or simulate “what-if” scenarios. 

 

Governance and Security 

A robust educational data pipeline must be underpinned by effective 

governance frameworks. These include access control policies, audit trails, and 

compliance with legal regulations such as GDPR and FERPA (U.S. Department 

of Education, n.d.). Data anonymization and pseudonymization techniques help 

safeguard learner privacy while enabling large-scale analytics. Moreover, 

ethical governance frameworks encourage transparency by providing students 

with insights into what data are collected and how they are used (Slade & 

Prinsloo, 2013). 

 

Scalability and Sustainability 

Finally, pipelines must be designed with long-term sustainability in 

mind. Pilot analytics projects often fail when scaled institution-wide due to 

cost, technical complexity, or resistance from stakeholders. Cloud-native 

infrastructures offer elasticity, allowing institutions to scale storage and 

computation as demand fluctuates.   
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Equally critical is capacity building, training educators and IT staff to 

interpret analytics outputs and embed them into pedagogical practice (Ochoa & 

Wise, 2021). All in all, the educational data pipeline is not a purely technical 

artifact but an enabler of continuous improvement. Its effectiveness depends on 

robust integration, ethical governance, and usability for diverse stakeholders. 

As educational institutions embrace more complex data sources and analytical 

methods, pipelines must evolve into flexible, interoperable infrastructures that 

bridge the gap between raw data and actionable intelligence. 

 

3. METHODS OF BIG DATA ANALYTICS 

Educational engineering relies on diverse analytical methods to 

transform raw data into insights that guide instructional design, learner support, 

and institutional policy. These methods can be broadly categorized into 

descriptive, predictive, prescriptive, and causal analytics. Each serves a distinct 

purpose within the feedback loops that underpin continuous improvement. 

 

3.1 Descriptive Analytics 

Descriptive analytics focuses on summarizing historical data to identify 

patterns, trends, and anomalies. In education, descriptive methods are 

commonly used in dashboards that visualize learner activity, engagement 

levels, or assessment outcomes (Schwendimann et al., 2017). For example, 

time-on-task analyses reveal how students allocate effort across different 

learning modules, while heatmaps of forum participation highlight 

collaborative dynamics. 

Common techniques include descriptive statistics, clustering, and 

association rule mining. Clustering algorithms, such as k-means, have been 

used to identify groups of learners with similar engagement profiles, enabling 

tailored interventions (Romero & Ventura, 2020). Association rules can 

uncover relationships between learning behaviors, for instance, the likelihood 

that students who frequently revisit lecture videos also perform well in 

quizzes.While descriptive analytics provide valuable situational awareness, 

their primary limitation is that they are retrospective, offering little guidance on 

future outcomes or actionable interventions. 
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3.2 Predictive Analytics 

Predictive analytics aims to forecast future outcomes based on historical 

and real-time data. In education, this often involves identifying students at risk 

of dropout or poor performance. Machine learning models such as logistic 

regression, decision trees, random forests, and neural networks are widely 

employed for this purpose (Khalil & Ebner, 2016). 

For instance, Purdue University’s Course Signals project used predictive 

models to generate early-warning alerts, significantly improving retention rates 

(Arnold & Pistilli, 2012). Similarly, Georgia State University deployed 

predictive analytics to monitor over 30,000 students, enabling advisors to 

intervene proactively and reduce equity gaps in graduation rates (Renick, 

2019). Recent advances have introduced deep learning models capable of 

handling multimodal data such as text, video, and sensor streams. Natural 

language processing (NLP) models, for example, can analyze forum 

discussions to predict disengagement or negative sentiment (Wen et al., 2014). 

Predictive models thus play a pivotal role in enabling just-in-time interventions 

that align with learners’ evolving needs. 

 

3.3 Prescriptive Analytics 

Prescriptive analytics goes beyond prediction by recommending specific 

actions to optimize outcomes. In educational contexts, prescriptive methods 

underpin adaptive learning systems that personalize instruction. For example, 

Bayesian knowledge tracing and deep knowledge tracing algorithms 

dynamically adjust the difficulty and sequencing of practice problems based on 

learners’ demonstrated mastery (Piech et al., 2015). 

Recommendation systems, another form of prescriptive analytics, 

suggest resources or learning activities tailored to individual preferences and 

performance. MOOCs frequently employ recommendation engines to guide 

learners toward supplemental readings, peer groups, or practice exercises 

(Kizilcec & Lee, 2022). 

Prescriptive approaches also support institutional decision-making. 

Simulation models can project the impact of curriculum redesigns on retention, 

allowing administrators to test alternative strategies virtually before 

implementation.   



35 

 

However, prescriptive analytics requires robust interpretability to ensure 

trust and adoption by educators. Overly complex or opaque models risk 

alienating instructors who must act upon the recommendations. 

 

3.4 Causal Analytics 

Causal analytics seeks to establish cause-and-effect relationships rather 

than mere correlations. Randomized controlled trials (RCTs) are the gold 

standard but are often impractical in live educational settings. As a result, 

researchers employ quasi-experimental designs and causal inference techniques 

such as propensity score matching, difference-in-differences, and instrumental 

variables (Angrist & Pischke, 2014). 

In educational engineering, causal methods are essential for evaluating 

the true impact of interventions. For example, determining whether an adaptive 

tutoring system genuinely improves learning outcomes requires isolating the 

effect of the system from confounding variables such as prior knowledge or 

motivation. Advances in machine learning have introduced methods for causal 

discovery, which aim to infer causal structures directly from observational data 

(Glymour et al., 2019). 

Causal analytics holds particular promise for personalized learning 

pathways, where the goal is to identify not just what correlates with success but 

what interventions cause improvements for specific subgroups of learners. This 

aligns with fairness-aware analytics, ensuring that recommendations do not 

inadvertently privilege already-advantaged populations. 

 

Integrative Approaches 

While each method has unique strengths, the most powerful applications 

in educational engineering arise from their integration. Descriptive analytics 

captures system states, predictive anticipates risks, prescriptive optimizes 

decisions, and causal confirms impact—together enabling iterative system 

refinement. This synergy fosters data-informed innovation, allowing educators 

to adapt strategies in real time. Ultimately, it supports a more personalized, 

efficient, and impactful learning experience.  
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For example, an early-warning system might begin with descriptive 

dashboards highlighting low engagement, employ predictive models to flag at-

risk students, use prescriptive recommendations to suggest tutoring, and finally 

apply causal analysis to assess whether the intervention reduced dropout rates. 

The challenge for educational institutions is to design analytics ecosystems that 

seamlessly integrate these methods into both technical infrastructure and 

pedagogical practice. Faculty must be trained not only to interpret outputs but 

also to participate in iterative cycles of testing and refinement. 

 

Limitations and Future Directions 

Despite their promise, current analytics methods face several limitations. 

Predictive models often lack transparency, raising concerns about 

interpretability and fairness. Prescriptive systems may overfit 

recommendations to past behaviors, neglecting novel learning strategies. 

Causal inference remains difficult in messy, real-world educational contexts. 

Future research must address these limitations by advancing explainable 

AI (XAI) methods, developing fairness-aware algorithms, and exploring 

multimodal data integration (Luckin, 2023). The convergence of data mining, 

AI, and causal inference holds the potential to create robust, equitable, and 

actionable analytics pipelines that truly embody the ethos of educational 

engineering. 

 

4.  APPLICATIONS IN EDUCATIONAL ENGINEERING 

Big Data analytics provides the methodological foundation for 

educational engineering to design, test, and optimize learning environments. 

Applications span a wide range of contexts, from real-time learner support to 

institutional decision-making. The following subsections highlight some of the 

most impactful applications: early-warning systems, adaptive tutoring, 

dashboards and open learner models, curriculum optimization, and immersive 

technologies (VR/AR). 
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4.1 Early-Warning Systems 

One of the most widely implemented applications of learning analytics 

is the development of early-warning systems (EWSs) designed to identify 

students at risk of failure or dropout. By leveraging predictive models based on 

LMS logs, attendance, demographics, and assessment results, EWSs allow 

institutions to intervene before negative outcomes occur (Bañeres et al., 2023; 

Cannistrà et al., 2023). 

At Purdue University, the Course Signals project demonstrated 

significant improvements in retention by using predictive risk indicators 

combined with traffic-light style alerts to instructors and students (Arnold & 

Pistilli, 2012). Similarly, Georgia State University has implemented predictive 

analytics at scale, monitoring over 30,000 students with over 800 risk factors. 

The result has been a dramatic increase in graduation rates and a narrowing of 

achievement gaps among underrepresented groups (Toffel et al., 2019; Renick, 

2019). 

Critics, however, caution that poorly designed EWSs can stigmatize 

students or create “self-fulfilling prophecies” if interventions are not 

accompanied by supportive resources (Slade & Prinsloo, 2013). Thus, 

transparency, fairness, and integration with human advising are essential to 

ensure that EWSs empower rather than disadvantage learners. 

 

4.2 Adaptive Tutoring Systems 

Adaptive tutoring represents a core application of prescriptive analytics 

in educational engineering. These systems dynamically adjust instructional 

content, pacing, and difficulty to match the learner’s current knowledge state. 

Bayesian Knowledge Tracing (BKT) and Deep Knowledge Tracing (DKT) 

models underpin many adaptive platforms, enabling individualized pathways 

through problem sets and simulations (Su et al., 2023; Piech et al., 2015). 

Examples include ASSISTments, an open online platform widely used in 

mathematics that provides real-time feedback, adaptive problem sequencing, 

and teacher dashboards for monitoring homework and classwork (Heffernan & 

Heffernan, 2014).   
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Another prominent system is ALEKS (Assessment and LEarning in 

Knowledge Spaces), a commercial web-based tutoring environment that 

applies Knowledge Space Theory to generate personalized learning trajectories, 

ensuring that students master prerequisite concepts before moving on 

(Khazanchi et al., 2023). Studies have shown that adaptive tutoring systems not 

only improve mastery of concepts but also foster learner motivation by 

providing appropriate levels of challenge (Koedinger et al., 2013). 

In engineering education, adaptive virtual laboratories allow students to 

engage with complex systems such as electrical circuits or fluid dynamics, 

adjusting task complexity based on prior performance (Lampropoulos & 

Evangelidis, 2025). These applications highlight how analytics-driven tutoring 

can extend individualized instruction well beyond the constraints of traditional 

classrooms. 

 

4.3 Dashboards and Open Learner Models 

Dashboards provide visual representations of learner progress, 

engagement, and risk status, enabling instructors and students to make informed 

decisions. Effective dashboards integrate descriptive and predictive analytics, 

presenting both current performance and projected outcomes (Schwendimann 

et al., 2017).  

At the institutional level, dashboards help administrators monitor key 

performance indicators such as course completion rates, equity gaps, and 

program effectiveness. For learners, dashboards can promote self-regulated 

learning by highlighting strengths, weaknesses, and suggested actions. 

Research shows that dashboards with interactive features enhance 

metacognition and persistence, particularly when aligned with explicit learning 

goals (Jivet et al., 2017). 

Open Learner Models (OLMs) take this a step further by allowing 

students to inspect, question, and even negotiate the models that represent their 

knowledge states. This transparency can increase trust in analytics systems and 

foster collaborative learning (Bull & Kay, 2016). For example, in language 

learning platforms, OLMs enable learners to track vocabulary mastery and 

receive recommendations for targeted practice. 
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However, design challenges remain. Poorly designed dashboards may 

overwhelm users with data or inadvertently reinforce negative perceptions. 

Human-centered design principles are thus critical to ensuring dashboards and 

OLMs serve as supportive, rather than punitive, tools. 

 

4.4 Curriculum and Instructional Design Optimization 

Analytics also supports curriculum redesign and instructional 

improvement. By aggregating and analyzing patterns across cohorts, 

institutions can identify courses with high failure rates, content areas that 

consistently challenge learners, or sequences that lead to stronger performance. 

These insights inform decisions about curriculum sequencing, resource 

allocation, and faculty development (Ifenthaler et al., 2019). 

For example, mining data from STEM gateway courses can reveal that 

students who struggle with foundational mathematics topics are more likely to 

drop out of engineering programs. Targeted curriculum redesign—such as 

embedding just-in-time math refreshers—can mitigate these barriers. 

Moreover, analytics can evaluate the effectiveness of instructional 

innovations. For instance, flipped classrooms or project-based learning models 

can be assessed by comparing performance, engagement, and satisfaction 

across cohorts. This iterative process embodies the educational engineering 

ethos of using measurement as feedback for continuous improvement. 

 

4.5 Immersive and Multimodal Learning Analytics (VR/AR) 

The growth of immersive technologies has opened new frontiers for Big 

Data analytics in education. Virtual reality (VR) and augmented reality (AR) 

environments generate fine-grained telemetry data, including gaze patterns, 

hand movements, and spatial navigation. Analyzing these data enables 

researchers to understand cognitive load, attention, and collaboration in 

complex learning tasks (Ochoa & Wise, 2021). 

In medical education, VR simulations capture procedural performance 

metrics such as precision and timing, providing feedback that rivals traditional 

apprenticeship models.   
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In engineering, AR overlays real-time sensor data onto physical 

machinery, allowing students to practice troubleshooting with guided support. 

Analytics from these environments can identify skill gaps, personalize practice 

sessions, and enhance safety by simulating high-risk scenarios. 

The challenge lies in integrating multimodal data from VR/AR with 

traditional LMS and SIS datasets. Doing so requires advanced pipelines, 

interoperability standards, and ethical frameworks to ensure privacy, given the 

sensitive nature of biometric and affective data (Kizilcec & Lee, 2022). 

 

4.6 Institutional and Policy-Level Applications 

Beyond classroom interventions, analytics informs strategic decision-

making at institutional and policy levels. Universities employ Big Data to 

optimize resource allocation, predict enrollment trends, and assess program 

viability. National governments are to an increasing extent using analytics to 

evaluate educational quality and equity, supporting data-informed 

policymaking (Ifenthaler et al., 2019). 

However, this raises questions about governance and accountability. 

Policymakers must avoid over-reliance on quantitative metrics, which risk 

reducing education to narrow indicators. Instead, analytics should complement, 

not replace, holistic assessments of educational quality. 

 

Synthesis 

Applications of Big Data analytics in educational engineering 

demonstrate the versatility of methods across micro-, meso-, and macro-levels 

of education. From personalized tutoring to national policy, analytics serves as 

both microscope and telescope—zooming in on individual learners while 

offering system-wide perspectives. Yet the success of these applications hinges 

on alignment with ethical principles, user-centered design, and continuous 

evaluation. 
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5. BUILDING BLOCKS: STANDARDS, STORES AND 

SYSTEMS 

The scalability and sustainability of Big Data analytics in educational 

engineering depend on a robust set of technical building blocks. These include 

interoperability standards, learning record stores (LRSs), and institutional 

analytics systems that integrate data into actionable insights. Together, they 

form the infrastructure enabling continuous improvement across learning 

environments. 

 

5.1 Interoperability Standards 

Interoperability is critical for integrating heterogeneous educational data 

from multiple platforms. Two prominent standards dominate the field: 

Experience API (xAPI) and IMS Caliper Analytics (1EdTech, 2002; 1EdTech 

Caliper Analytics). xAPI, also known as Tin Can API, captures learning 

experiences as activity statements structured in an “actor–verb–object” format 

(e.g., “Student A completed Quiz 2”). Its flexibility allows tracking of learning 

beyond LMS boundaries, including offline and informal contexts such as 

simulations, workplace training, and fieldwork (Sclater, 2015; Hu et al. 2019; 

Dixon et al., 2025). 

Caliper, in contrast, emphasizes standardization by defining metric 

profiles for common educational events, such as assessments, sessions, or 

media interactions. This enables benchmarking and cross-institutional 

comparisons, making it particularly valuable for large consortia and 

accreditation purposes (Moskal et al., 2023). The choice between xAPI and 

Caliper often reflects institutional priorities: flexibility versus comparability. 

More frequently, hybrid architectures support both, enabling maximum 

coverage of formal and informal learning contexts. 

 

5.2 Learning Record Stores (LRSs) 

At the heart of modern analytics infrastructures are Learning Record 

Stores, which collect and manage learning activity statements generated by 

xAPI or Caliper. LRSs provide a central repository where data from LMSs, 

mobile apps, VR environments, and third-party tools converge. 
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A well-designed LRS supports not only data storage but also query 

capabilities, access control, and integration with visualization or machine 

learning systems (Aleven et al., 2017). For example, an institution might use an 

LRS to aggregate participation data from a MOOC platform, assessment 

outcomes from an online proctoring system, and biometric data from a VR 

simulation—enabling multimodal analytics that were previously fragmented. 

LRSs also play a critical role in data sovereignty and learner agency. By 

allowing learners to control and port their data across platforms, LRSs align 

with the growing emphasis on personal learning records and lifelong learning 

pathways (Ochoa & Wise, 2021). 

 

5.3 Institutional Analytics Systems 

Beyond technical standards and stores, educational engineering requires 

institutional-level systems that turn raw data into usable intelligence. Examples 

include: 

• Learning analytics dashboards for instructors and administrators. 

• Student success platforms integrating predictive models with advising 

workflows. 

• Curriculum analytics tools for identifying bottlenecks in program 

progression. 

These systems rely on pipelines that harmonize data from SIS, LMS, 

LRS, and other platforms. Cloud-native architectures, offered by vendors such 

as AWS and Microsoft Azure, provide elasticity and scalability, though they 

also raise concerns about vendor dependency and compliance with local data 

protection laws (Slade & Prinsloo, 2013). Institutional adoption is uneven. 

Leading universities have built enterprise-scale analytics ecosystems, while 

many smaller institutions face barriers related to cost, expertise, or 

organizational readiness. Research highlights that technical infrastructure must 

be paired with capacity building, including professional development for 

faculty and support staff (Ifenthaler et al., 2019). Without targeted investment, 

these gaps risk widening digital divides between institutions. Building 

sustainable analytics capacity requires not just technology, but governance 

frameworks and cross-functional collaboration.   
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Moreover, alignment with ethical and regulatory standards is critical to 

ensure responsible data use in educational settings. 

 

Synthesis 

Standards, stores, and systems are not merely technical components but 

enablers of educational engineering. They determine whether analytics can 

scale from isolated pilots to institution-wide impact. As the field matures, 

emphasis must increasingly shift toward interoperability, sustainability, and 

learner-centered design to ensure that infrastructure supports yet, does not 

constrain the promise of Big Data in education. 

 

6.  ETHICS, PRIVACY AND FAIRNESS 

As Big Data analytics become steadily embedded in educational practice, 

ethical, legal, and fairness considerations emerge as central concerns. The 

power to collect, analyze, and act on sensitive learner data must be balanced 

with respect for privacy, transparency, and equity. Without careful governance, 

analytics systems risk reinforcing existing inequalities, eroding trust, and 

undermining the very educational outcomes they seek to improve. 

 

6.1 Privacy and Consent 

Educational data often include personally identifiable information (PII) 

such as demographics, academic records, and behavioral traces. Protecting this 

information is not only a moral obligation but also a legal requirement under 

regulations such as the Family Educational Rights and Privacy Act (FERPA) in 

the United States and the General Data Protection Regulation (GDPR) in 

Europe. 

Both frameworks emphasize learner rights: FERPA grants students 

access to their records, while GDPR mandates explicit consent, data 

minimization, and the right to be forgotten. In practice, however, ensuring 

meaningful consent in digital learning environments is challenging. Learners 

often accept opaque terms of service without fully understanding how their data 

will be used (Slade & Prinsloo, 2013; Simm, 2025). Transparent 

communication and opt-in mechanisms are therefore essential to building trust.  
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6.2 Ethical Use of Analytics 

Ethical concerns extend beyond privacy to the very purposes for which 

data are used. Analytics systems must avoid “surveillance culture,” where 

students feel constantly monitored, potentially leading to anxiety and 

disengagement (Williamson, 2017). Instead, analytics should be framed as a 

tool for empowerment, offering learners actionable feedback and resources for 

self-improvement. 

Institutions must also guard against function creep, where data collected 

for one purpose (e.g., learning support) are repurposed for unrelated uses (e.g., 

disciplinary actions) without consent. Codes of practice, such as those 

published by Jisc, for instance (Alayan, 2021), recommend limiting analytics 

to clearly defined pedagogical or institutional objectives. 

 

6.3 Algorithmic Bias and Fairness 

Predictive and prescriptive analytics carry the risk of embedding biases 

present in historical data. For example, models trained on past cohorts may 

inadvertently disadvantage underrepresented groups, reinforcing systemic 

inequities (Kizilcec & Lee, 2022). An early-warning system might consistently 

flag students from certain socioeconomic backgrounds as “high risk,” creating 

stigmatization and reduced expectations. 

Addressing fairness requires both technical and organizational strategies. 

On the technical side, fairness-aware algorithms adjust model training to 

mitigate disparate impacts, while explainable AI (XAI) methods improve 

interpretability. On the organizational side, institutions should implement bias 

audits and engage diverse stakeholders in the design and evaluation of analytics 

systems (Holstein et al., 2019). 

 

6.4 Accountability and Governance 

Effective governance structures ensure accountability for how 

educational data are collected, analyzed, and applied. Institutions should 

establish cross-functional ethics committees involving educators, 

technologists, legal experts, and student representatives. These bodies can 

oversee policy development, approve new analytics initiatives, and review 

ethical dilemmas. 
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Transparency is another cornerstone of governance. Providing learners 

with data literacy education empowers them to understand and critique the 

analytics systems that affect their educational journeys (Pangrazio & Selwyn, 

2020). Transparency also includes offering accessible explanations of how 

models work, what data they use, and how recommendations are generated. 

 

6.5 Cultural Contexts and Global Considerations 

Ethical norms vary across cultures. In some contexts, collectivist values 

may prioritize institutional oversight of data, while in others, individual 

autonomy is paramount. Multinational educational platforms must navigate 

these differences, ensuring compliance with diverse regulatory frameworks 

while respecting cultural expectations (Slade & Prinsloo, 2013). 

Global disparities also shape ethical challenges. Institutions in low-

resource settings may lack the capacity to implement robust data protection 

measures, raising equity concerns about who benefits from Big Data analytics. 

Collaborative capacity-building and international guidelines can help reduce 

such disparities. 

 

Synthesis 

Ethics, privacy, and fairness are not add-ons but integral to educational 

engineering. They determine whether analytics initiatives will enhance trust 

and equity or deepen surveillance and inequality. By embedding ethical 

reflection into every stage of the analytics lifecycle, design, implementation, 

and evaluation, institutions can ensure that Big Data serves as a force for 

inclusion, empowerment, and continuous improvement. 

 

7.  IMPLEMENTATION BLUEPRINT 

While the promise of Big Data analytics in educational engineering is 

clear, successful implementation requires more than technical infrastructure. It 

involves strategic planning, organizational alignment, and sustained 

investment. An implementation blueprint offers institutions a roadmap for 

translating analytics initiatives into meaningful educational impact.  
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Strategic Alignment 

The first step is ensuring alignment between analytics initiatives and 

institutional goals. Analytics should not be pursued as an end in itself but as a 

means to support priorities such as improving retention, enhancing equity, or 

scaling personalized learning (Ifenthaler et al., 2019). Establishing a shared 

vision among faculty, administrators, and IT staff is essential to prevent 

fragmented or duplicative efforts. 

 

Infrastructure and Data Management 

Robust infrastructure underpins sustainable analytics. Institutions must 

invest in interoperable data systems, integrating SIS, LMS, and LRS platforms 

through standards such as xAPI or Caliper. Cloud-based architectures offer 

scalability and resilience but must be evaluated against data sovereignty 

requirements (Dziuban et al., 2018; Moskal et al., 2023). Equally important is 

establishing clear data governance policies that define ownership, access rights, 

and retention schedules.  

 

Capacity Building and Professional Development 

Analytics initiatives succeed only when educators and staff have the 

skills to interpret and act on insights. Professional development programs 

should train faculty in data literacy, dashboard interpretation, and evidence-

based instructional design (Pangrazio & Selwyn, 2020). Cross-disciplinary 

teams, combining educators, data scientists, and instructional designers, can 

bridge the gap between technical capabilities and pedagogical needs. 

 

Change Management 

Introducing analytics often disrupts established practices. Change 

management strategies must address cultural resistance, emphasizing that 

analytics enhance rather than replace professional judgment (Ochoa & Wise, 

2021). Pilot projects can demonstrate value, building momentum for broader 

adoption. Transparent communication about objectives, benefits, and 

safeguards fosters trust among faculty and students.  
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Continuous Evaluation 

Implementation is not a one-time event but an ongoing process. 

Institutions should establish mechanisms for continuous evaluation, including 

impact assessments, bias audits, and learner feedback channels. Iterative 

refinement ensures that analytics systems remain relevant, effective, and 

ethically sound (Holstein et al., 2019). 

 

Synthesis 

A successful implementation blueprint integrates strategy, infrastructure, 

capacity, and culture. By approaching analytics as a socio-technical innovation, 

one that blends technology with human expertise and ethical governance, 

institutions can transform Big Data from isolated experiments into sustainable 

engines of educational improvement. 

 

8.  OPEN CHALLENGES AND RESEARCH DIRECTIONS 

Although Big Data analytics has achieved notable successes in 

educational contexts, several challenges remain unresolved. Addressing these 

gaps is essential to realize the full potential of educational engineering. 

 

Multimodal Data Integration 

Educational environments progressively produce multimodal data 

streams, including text, video, biometric signals, and virtual reality telemetry. 

Integrating these heterogeneous sources into coherent models poses significant 

technical and methodological challenges. Current pipelines struggle with 

synchronizing time-stamped events across modalities or dealing with missing 

and noisy data (Ochoa & Wise, 2021). Research is needed to develop 

frameworks that harmonize multimodal inputs without oversimplifying the 

complexity of learning processes. 

 

Explainability and Transparency 

As predictive and prescriptive models grow in sophistication, concerns 

about interpretability intensify. Black-box models such as deep neural networks 

may deliver accurate predictions but offer little insight into the underlying 

decision-making process.   
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This lack of transparency hinders trust and adoption by educators, who 

require interpretable explanations to act on recommendations (Holstein et al., 

2019). Future research must focus on developing explainable AI (XAI) tailored 

to educational contexts, balancing accuracy with interpretability. 

 

Fairness and Equity 

Algorithmic bias remains a pressing issue. Models trained on historical 

data may reinforce existing inequities, disadvantaging learners from 

underrepresented groups (Kizilcec & Lee, 2022). Although fairness-aware 

algorithms are emerging, their effectiveness in real-world educational settings 

is not yet well established. Research should explore methods for bias detection, 

mitigation, and ongoing monitoring, alongside frameworks for participatory 

design that involve students in shaping analytics systems (Pangrazio & Selwyn, 

2020). 

 

Causal Personalization 

While predictive analytics can flag at-risk students, they rarely establish 

causality. Determining which interventions work, for whom, and under what 

conditions remains an open challenge. Advances in causal inference, such as 

synthetic controls or causal discovery methods, offer promising avenues 

(Glymour et al., 2019). The next frontier is causal personalization, which tailors 

interventions not just to predicted risks but to causal mechanisms specific to 

individual learners. 

 

Generative AI and New Frontiers 

The emergence of generative AI models, such as large language models 

(LLMs), is reshaping the educational analytics landscape. These models can 

generate feedback, simulate tutoring, and summarize learner data at scale. Yet, 

their integration raises questions about accuracy, bias, and ethical use (Wen et 

al., 2024). Research must investigate how generative AI can complement 

traditional analytics while ensuring transparency and reliability (Nguyen et al., 

2023).  
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Sustainability and Institutional Readiness 

Many analytics initiatives fail to scale beyond pilot projects due to 

resource constraints, cultural resistance, or lack of institutional strategy 

(Muscanell, 2024; Qazi & Pachler, 2025). Future research should focus on 

identifying conditions for sustainable adoption, including cost-effective 

infrastructures, faculty development, and governance frameworks. 

Comparative studies across institutions and regions could reveal best practices 

for scaling analytics equitably (Manly, 2024; Reyes et al., 2025). 

 

Global and Cultural Perspectives 

Finally, educational analytics must grapple with global disparities. 

Institutions in low- and middle-income countries often lack access to advanced 

infrastructure, creating risks of a digital divide in analytics adoption 

(Williamson, 2017). Cross-cultural studies are needed to explore how values, 

norms, and regulations shape the ethical use of analytics worldwide. 

International collaboration, open data initiatives, and capacity-building efforts 

can help democratize access to educational engineering innovations. 

 

Synthesis 

Open challenges highlight that Big Data in education is not only a 

technical frontier but also a socio-cultural and ethical one. Future research must 

balance innovation with equity, transparency, and sustainability. By addressing 

these challenges, educational engineering can evolve into a mature discipline 

that delivers on its promise of continuous improvement for all learners. 

 

9. DISCUSSION 

The preceding sections have illustrated the breadth and depth of Big Data 

applications in educational engineering, spanning data sources, pipelines, 

methods, and practical implementations. The discussion now turns to a 

synthesis of these insights, examining their implications for pedagogy, 

institutional strategy, and future research. 
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From Fragmented Data to Actionable Intelligence 

A recurring theme is the fragmentation of educational data across 

platforms and modalities. Without interoperability standards and robust 

pipelines, analytics efforts remain siloed, limiting their impact. The adoption of 

xAPI, Caliper, and LRSs represents significant progress, but institutional 

readiness varies widely (Alayan, 2021; Simm, 2025). The ability to harmonize 

data is not merely a technical challenge but a precondition for evidence-based 

decision-making. Institutions that succeed in integrating heterogeneous data 

streams are better positioned to design adaptive curricula, deploy early-warning 

systems, and monitor equity outcomes. 

 

Balancing Innovation with Ethics 

While the technical promise of Big Data is immense, ethical 

considerations must remain central. Sections 7 and 9 highlighted risks related 

to privacy, surveillance, and algorithmic bias (Slade & Prinsloo, 2013; Kizilcec 

& Lee, 2022). The challenge lies in striking a balance between innovation and 

learner protection. Analytics should empower students by providing feedback 

and opportunities for growth, not by categorizing them into deficit narratives. 

Embedding transparency, fairness audits, and student agency into the analytics 

lifecycle is essential for sustaining trust. 

 

The Human–Machine Partnership 

Educational engineering emphasizes that analytics are not substitutes for 

human judgment but complements. Faculty, advisors, and administrators 

remain critical interpreters of data, contextualizing insights and applying them 

to nuanced educational settings (Ochoa & Wise, 2021). For instance, an early-

warning flag may indicate risk, but advisors must decide whether the 

underlying issue relates to academic difficulties, personal challenges, or 

institutional barriers. Effective analytics systems therefore require both 

technical sophistication and robust professional development to build data 

literacy across stakeholders. 
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Pedagogical Implications 

At the classroom level, Big Data analytics facilitates more personalized, 

adaptive, and engaging learning experiences. Adaptive tutoring, VR 

simulations, and learner dashboards illustrate how data-driven systems can 

foster self-regulated learning and mastery of complex skills. However, design 

matters: poorly implemented dashboards may overwhelm learners, while 

opaque recommendation systems may erode autonomy (Jivet et al., 2017). 

Pedagogy informed by analytics must remain learner-centered, integrating 

feedback mechanisms that support—not dictate—the learning process. 

 

Institutional Strategy and Sustainability 

At the institutional level, analytics offer tools for improving retention, 

resource allocation, and equity. Case studies such as Georgia State University 

demonstrate that when analytics are strategically aligned with advising and 

support services, they can transform student success outcomes (Renick, 2019). 

Yet sustainability remains a challenge. Many initiatives fail to scale due to cost, 

complexity, or lack of organizational buy-in (Muscanell, 2024; Qazi & Pachler, 

2025; Reyes et al., 2025). Institutions must approach analytics as long-term 

capacity building, investing not only in infrastructure but also in governance, 

ethics, and culture. 

 

Future Trajectories 

Looking ahead, several trajectories stand out. First, the rise of 

multimodal and immersive analytics will push boundaries of what data can 

reveal about learning processes (Ochoa & Wise, 2021). Second, advances in 

causal inference and fairness-aware algorithms promise to make interventions 

both more effective and equitable (Glymour et al., 2019; Holstein et al., 2019). 

Third, the advent of generative AI introduces opportunities for automated 

feedback and tutoring but also raises concerns about reliability and ethics (Wen 

et al., 2024). Navigating these trajectories requires interdisciplinary 

collaboration between educators, computer scientists, ethicists and 

policymakers.  
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Synthesis 

The overarching lesson is that Big Data analytics in educational 

engineering is as much about people and culture as it is about technology. 

Success depends on creating socio-technical systems where pipelines, methods, 

and applications are embedded within ethical, pedagogical, and organizational 

frameworks. Analytics should be viewed not as static tools but as dynamic 

infrastructures for continuous improvement, i.e. the very ethos of educational 

engineering. 

 

CONCLUSION 

The discussion above has underscored both the potential and the 

challenges of Big Data in educational engineering. Building on these insights, 

analytics has moved from a promising concept to a practical force shaping the 

landscape of modern education. Through the lens of educational engineering, 

data is no longer treated as a byproduct of instruction but as a foundational 

resource for continuous improvement. From early-warning systems and 

adaptive tutoring to dashboards and immersive learning environments, 

applications demonstrate how analytics can support learners, inform faculty, 

and guide institutional strategy. 

Yet the transformative potential of analytics depends on more than 

technical sophistication. Success requires ethical governance, transparency, and 

fairness to ensure that interventions empower rather than stigmatize students. 

Interoperability standards, learning record stores, and institutional 

infrastructures form the technical backbone, while professional development 

and cultural change provide the human foundation. 

Looking ahead, future research must tackle challenges of multimodal 

integration, causal personalization, fairness-aware modeling, and the 

responsible use of generative AI. Addressing these frontiers will require 

interdisciplinary collaboration, global perspectives, and a steadfast 

commitment to equity. Ultimately, Big Data analytics in educational 

engineering is not merely a set of tools but a paradigm of design-based 

improvement. Embedding feedback loops at every level, learner, classroom and 

institution, enables analytics to realize more effective, inclusive, and 

sustainable educational systems. 
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INTRODUCTION 

Quantum computing brings a new paradigm to computing science, 

utilizing the basic principles of quantum mechanics to carry out computations 

that are impossible for classical computers (Feynman, 1982). Whereas classical 

bits are deterministic and pertain to only two values, quantum bits (qubits) can 

be in superpositions, enabling a quantum computer to simultaneously encode 

and process exponentially larger amounts of information. (Nielsen & Chuang, 

2010). Quantum mechanics state vectors, linear operators, Hilbert space, and 

unitary evolution is directly responsible for the functioning of quantum 

computers (Preskill, 2018), thus it is not particularly feasible to engage in a 

meaningful discussion of quantum computing without first developing an 

adequate understanding of the fundamentals of quantum mechanics. There exist 

several properties, which are unique to quantum mechanics, that provide 

quantum systems with a computational advantage: superposition, 

entanglement, quantum interference, and unitary evolution (Deutsch, 1985). 

Superposition allows qubits to exist in multiple states at the same time, 

entanglement describes correlations between qubits that allow for non-classical 

processes of computing (Einstein, Podolsky, & Rosen, 1935), and interference 

allows for constructive and destructive combination of quantum amplitudes that 

can promote the correct results or suppress incorrect results (Feynman, 1982). 

 

 
Figure 1. Classical bit vs. Qubit representation 
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In addition, quantum mechanics represents a set of distinctive constraints 

upon physical realizations of measurement by virtue of its probabilistic nature 

(Born, 1926), while observation collapses an observed qubit's superposition of 

states. Coherent operations of qubits and their decay into incoherent states due 

to decoherence and environmental noise impose a finite bound upon the 

coherence times of qubits, resulting in the formal consideration of error 

correction (Shor, 1995). These physical realizations are formalized 

mathematically through the postulates of quantum mechanics that define the 

types and order of permissible operations, measurements, and impact on the 

evolution of two-mode quantum systems (Dirac, 1930; von Neumann, 1955). 

Quantum computing signifies an exceptional break from classical computation, 

as it is entirely based on quantum mechanics. Qubits carry the advantage of 

exploiting superposition, which allows them to be in multiple states at the same 

time, without the sharp distinction of classical bits that are either 0 or 1. 

Furthermore, entanglement allows for correlations that have no analogy in 

classical mechanics (Nielsen & Chuang, 2010). Together with unitary evolution 

and interference, these phenomena are the strictly quantum mechanics 

properties that are responsible for the computational power of various quantum 

algorithms, for example, Shor’s factoring algorithm and Grover’s search 

algorithm (Feynman, 1982; Grover, 1996; Shor, 1995). Finally, the actual 

physical implementations of qubits, whether they are superconducting circuits, 

trapped ions, or photonic systems, rely on the principles of quantum mechanics 

to realize it, thus indicating that quantum computing is inseparable from the 

physics underlying it. The remainder of this chapter will fully develop these 

ideas, demonstrating how the postulates of quantum mechanics are the 

foundation for quantum gates, circuits, and algorithms to provide researchers 

with the fundamental knowledge necessary to advance quantum computing. 

The main focus of this chapter is to provide a rigorous treatment of quantum 

mechanics as it applies to quantum computing and will start with the postulates 

of quantum mechanics, followed by the mathematical formalism of the 

representations that aid in understanding qubits, quantum gates, and 

computational operations.   
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We hope that the information we present in this chapter will be a 

foundational knowledge for researchers attempting to design quantum 

algorithms, build quantum hardware, or explore the limits of quantum 

computation (Arute et al., 2019). 

 

1. POSTULATES OF QUANTUM MECHANICS 

The framework of quantum mechanics is comprised of a set of axiomatic 

postulates which describe the nature of quantum systems. These postulates form 

the mathematical and conceptual basis of quantum computation (Dirac, 1930; 

Nielsen & Chuang, 2010). 

 

Postulate:1-Quantum States 

The state of a quantum system is represented by a vector ∣ψ⟩in a complex 

Hilbert space H. For a single qubit, the computational basis is defined by two 

orthonormal vectors (Nielsen & Chuang, 2010): 

|0⟩ = (
1
0

) , |1⟩ = (
0
1

) 

A general qubit state can be expressed as a linear combination 

(superposition) of these basis states: 

∣ 𝜓⟩ = 𝛼 ∣ 0⟩ + 𝛽 ∣ 1⟩, 𝛼, 𝛽 ∈ ℂ, ∣ 𝛼 ∣2 +∣ 𝛽 ∣2= 1. 

The squared magnitudes ∣ 𝛼 ∣2and ∣ 𝛽 ∣2correspond to the probabilities 

of measuring the qubit in the states ∣ 0⟩and ∣ 1⟩, respectively (Born, 1926). 

For multi-qubit systems, the tensor product of individual Hilbert spaces 

is used. For two qubits: 

∣ 𝜓⟩𝐴𝐵 =∣ 𝜓⟩𝐴 ⊗∣ 𝜓⟩𝐵, 

allowing representation of entangled states such as the Bell state (Bell, 

1964): 

∣ Φ+⟩ =
1

√2
(∣ 00⟩+∣ 11⟩). 
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Postulate: 2 

Evolution of Quantum Systems (Unitary Evolution): A closed quantum 

system evolves in time according to a unitary operator  𝑈: 

∣ 𝜓(𝑡)⟩ = 𝑈(𝑡, 𝑡0) ∣ 𝜓(𝑡0)⟩, 

where 𝑈†𝑈 = 𝑈𝑈† = 𝐼. In infinitesimal form, the evolution is governed 

by the Schrödinger equation (Schrödinger, 1926): 

𝑖ℏ
𝑑

𝑑𝑡
∣ 𝜓(𝑡)⟩ = 𝐻̂ ∣ 𝜓(𝑡)⟩, 

with 𝐻̂ being the Hamiltonian operator of the system. The unitarity of 

evolution preserves the total probability of all possible outcomes, 

∣ 𝛼 ∣2 +∣ 𝛽 ∣2= 1 

A principle that ensures quantum computations are reversible until 

measurement occurs (Preskill, 2018). 

Quantum gates, including Pauli gates, Hadamard, and CNOT, are 

physical implementations of such unitary operations in computational hardware 

(Nielsen & Chuang, 2010) 

 

 
Figure 2. Bloch Sphere representation of a qubit 

 

Postulate 3: Measurement 

Measurement in quantum mechanics is described by a set of 

measurement operators {M_m}acting on the state ∣ψ⟩ (von Neumann, 1955).   
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Upon measurement: 

The probability of outcome m is: 

𝑝(𝑚) = ⟨𝜓 ∣ 𝑀𝑚
† 𝑀𝑚 ∣ 𝜓⟩ 

The post-measurement state becomes: 

∣ 𝜓′⟩ =
𝑀𝑚 ∣ 𝜓⟩

√𝑝(𝑚)
. 

This formalism defines the collapse of the wavefunction, which is central 

to quantum computing: once measured, a qubit loses its superposition. 

Observables are represented by Hermitian operators 𝑂with eigenvalues 

corresponding to possible measurement outcomes: 

𝑂̂ ∣ 𝑜𝑖⟩ = 𝑜𝑖 ∣ 𝑜𝑖⟩ 

Measurement thus projects the state ∣𝜓⟩onto one of the eigenstates of 𝑂. 

 

Postulate 4: Composite Systems and Entanglement 

For composite quantum systems, the overall state resides in the tensor 

product of the component Hilbert spaces (Bell, 1964): 

ℋ𝐴𝐵 = ℋ𝐴 ⊗ ℋ𝐵 . 

Some states of composite systems cannot be factorized into product 

states of individual qubits; these are entangled states. Entanglement is a non-

classical resource enabling quantum algorithms and protocols such as quantum 

teleportation, superdense coding, and Shor’s algorithm (Shor, 1995; Bennett et 

al., 1993). 

Entangled states exhibit correlations that violate Bell inequalities, 

illustrating the non-locality inherent in quantum mechanics. 

 

Postulate 5: Probability and Born Rule 

The probability of measuring an outcome is given by the Born rule: 

𝑝(𝑖) =∣ ⟨𝑖 ∣ 𝜓⟩ ∣2 

Mathematical Foundations 

Quantum computing relies heavily on linear algebra and complex vector 

spaces. Key mathematical constructs include: 

 State vectors in C^n 

 Unitary operators: U^† U=I 



65 

 

 Hermitian operators for observables 

 Tensor products for multi-qubit systems 

 Commutation relations: e.g., [X,Z]=XZ-ZX≠0 

These tools allow precise modeling of qubit behavior, gate operations, 

and multi-qubit interactions, forming the basis for circuit design and 

algorithmic implementation. 

 

2. QUANTUM STATES, SUPERPOSITION AND 

ENTANGLEMENT 

Quantum states are defined as vectors in Hilbert space, with multi-qubit 

systems scaling even more steeply (Nielsen & Chuang, 2010). Superposition 

gives qubits the ability to simultaneously encode more than one value. 

Entanglement provides correlations that cannot be explained classically, and is 

essential to speed up computation with algorithms (Einstein, Podolsky, & 

Rosen, 1935; Bell, 1964; Horodecki, Horodecki, Horodecki, & Horodecki, 

2009). Interference provides the ability to amplify the correct choices. Mixed 

states and density matrix formalism pertains to decoherence and the behavior 

of realistic quantum systems (Preskill, 2018). Quantum gates perform unitary 

operations on qubits in order to compute, entangle, and run algorithms. 

 

Quantum States and Representation 

A quantum state contains all information about a quantum system. In 

quantum computing, this is usually a qubit or a collection of qubits. Qubit states 

are represented as vectors in a two-dimensional Hilbert space: 

∣ 𝜓⟩ = 𝛼 ∣ 0⟩ + 𝛽 ∣ 1⟩, 𝛼, 𝛽 ∈ ℂ, ∣ 𝛼 ∣2 +∣ 𝛽 ∣2= 1. 

The vector components 𝛼and 𝛽are called probability amplitudes, where 

∣ 𝛼 ∣2 and ∣ 𝛽 ∣2 give the probability of measuring the qubit in states ∣ 0⟩ or ∣

1⟩, respectively. 

The Bloch sphere provides a geometric perspective for visualizing the 

states of a qubit. Any pure single-qubit state can be expressed in spherical polar 

coordinates as follows: 

∣ 𝜓⟩ = cos 
𝜃

2
∣ 0⟩ + 𝑒𝑖𝜙sin 

𝜃

2
∣ 1⟩,0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜙 < 2𝜋. 
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Here, 𝜃and 𝜙define the orientation of the state vector on the Bloch sphere. The 

Bloch sphere offers a useful visual representation of single-qubit rotations, 

gates (X, Y, Z, and Hadamard), and phase changes needed for algorithmic 

operation. One of the most mysterious properties of quantum systems is 

superposition: a quantum system can be in several different states at once. For 

a qubit: 

∣ 𝜓⟩ = 𝛼 ∣ 0⟩ + 𝛽 ∣ 1⟩ 

This means that the qubit is not just a 0 or a 1, but a 0 and 1 

simultaneously, at different relative amplitudes. Superposition allows a 

quantum computer to follow multiple computational paths simultaneously, 

allowing quantum algorithms to outperform any achievable speed of classical 

algorithms. 

The Hadamard gate (H) transforms basis states as: 

𝐻 ∣ 0⟩ =
∣ 0⟩+∣ 1⟩

√2
, 𝐻 ∣ 1⟩ =

∣ 0⟩−∣ 1⟩

√2
. 

Applied to ∣0⟩, the qubit enters an equal superposition: 

∣ 𝜓⟩ =
1

√2
(∣ 0⟩+∣ 1⟩) 

This property underlies many quantum algorithms, such as Deutsch-

Jozsa, Grover’s search, and Shor’s factoring algorithm (Grover, 1996; Shor, 

1995; Deutsch, 1985). 

 

Multi-Qubit Systems 

For systems with 𝑛 qubits, the Hilbert space grows exponentially: a 

system of 𝑛qubits resides in a 2𝑛-dimensional space. The general state of 𝑛 

qubits is: 

∣ 𝜓⟩ = ∑ 𝛼𝑖

2𝑛−1

𝑖=0

∣ 𝑖⟩, ∑ ∣ 𝛼𝑖 ∣2

2𝑛−1

𝑖=0

= 1 

 

Where ∣𝑖⟩represents computational basis states ∣00…0⟩ to ∣11…1⟩. The 

exponential growth of the state space is the foundation of quantum 

computational advantage, enabling simultaneous exploration of all possible 

states.Example: Two-Qubit State 
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∣ 𝜓⟩ = 𝛼00 ∣ 00⟩ + 𝛼01 ∣ 01⟩ + 𝛼10 ∣ 10⟩ + 𝛼11 ∣ 11⟩ 

The tensor product allows the construction of multi-qubit states: 

∣ 0⟩ ⊗∣ 1⟩ =∣ 01⟩ 

Entanglement is a uniquely quantum phenomenon whereby the state of 

one qubit cannot be characterized independently of the other qubit (Bell, 1964; 

Horodecki et al., 2009). Entangled qubits show strong correlations, even in 

situations where they are separated "physically" and thereby defy classical 

intuition. Example: Bell State 

∣ Φ+⟩ =
1

√2
(∣ 00⟩+∣ 11⟩) 

When the first qubit is measured, the state of the second qubit is also 

directly determined. Entanglement forms the foundation of quantum 

teleportation, superdense coding, and many quantum algorithms (Bennett et al., 

1993; Nielsen & Chuang, 2010). Formal Description The two qubits A and B 

are entangled if the joint state ∣ψ_AB⟩ cannot be factored as ∣ψ_A⟩⊗∣ψ_B⟩: 

For two qubits A and B, if the combined state ∣ 𝜓𝐴𝐵⟩ cannot be factorized 

as ∣ 𝜓𝐴⟩ ⊗∣ 𝜓𝐵⟩, the qubits are entangled: 

∣ 𝜓𝐴𝐵⟩ ≠∣ 𝜓𝐴⟩ ⊗∣ 𝜓𝐵⟩ 

 

 
Figure 3. Diagram illustrating entanglement correlations between two qubits   
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Representation of entanglement is shown in Figure. 3. Entanglement is 

also a key enabler of quantum error correction and is a vital component of the 

design of quantum circuits for proper scaling of the computational resources 

with the number of qubits.  

Quantum Interference: Quantum amplitude (the probabilities of 

measuring any particular outcome) are complex numbers and add together. 

Interference occurs when multiple paths lead to the same state 

𝛼total = 𝛼1 + 𝛼2 + ⋯ 

 Constructive interference amplifies probability amplitudes. 

 Destructive interference cancels amplitudes. 

Quantum algorithms use interference to maximize the probability of 

correct outcomes. For instance, Grover’s algorithm iteratively amplifies the 

amplitude of the correct solution while suppressing incorrect ones. 

 

Density Matrix and Mixed States 

In realistic quantum systems, decoherence and interaction with the 

environment lead to mixed states, described by a density matrix ρ: 

𝜌 = ∑ 𝑝𝑖

𝑖

∣ 𝜓𝑖⟩⟨𝜓𝑖 ∣ 

 Pure states: ρ^2=ρ, "T r"(ρ^2)=1 

 Mixed states: ρ^2≠ρ, "T r"(ρ^2)<1 

The density matrix formalism is crucial in quantum computation under 

noise, quantum error correction, and open quantum system analysis. 

 

Quantum Gates and State Transformations 

Quantum states are manipulated using unitary operators called quantum 

gates. Gates act as rotations on the Bloch sphere for single qubits or as 

entangling operations for multi-qubit systems. Examples include: 

 

• Pauli-X, Y, Z gates: bit-flip and phase operations 

• Hadamard gate: creates superposition 

• CNOT gate: entangles qubits 

• Phase gates (S, T): add relative phase shifts 
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Mathematical Action Example: 

CNOT  ∣ 10⟩ =∣ 11⟩,CNOT  ∣ 11⟩ =∣ 10⟩ 

These gates allow universal quantum computation, meaning any 

quantum algorithm can be decomposed into a sequence of these fundamental 

operations. 

 

Mathematical Representation of Entangled States 

Consider a two-qubit system in the general state: 

∣ 𝜓⟩ = 𝛼 ∣ 00⟩ + 𝛽 ∣ 01⟩ + 𝛾 ∣ 10⟩ + 𝛿 ∣ 11⟩ 

The state is entangled if it cannot be factored: 

∣ 𝜓⟩ ≠ (𝛼0 ∣ 0⟩ + 𝛼1 ∣ 1⟩) ⊗ (𝛽0 ∣ 0⟩ + 𝛽1 ∣ 1⟩) 

Example: The Bell states are maximally entangled: 

∣ Φ±⟩ =
1

√2
(∣ 00⟩±∣ 11⟩), ∣ Ψ±⟩ =

1

√2
(∣ 01⟩±∣ 10⟩) 

These states form a complete orthonormal basis for two-qubit systems 

and will be commonly referenced in relation to quantum teleportation and error 

correction.  

 

Superposition in Multi-Qubit Systems 

An equal superposition of all 2n computational basis states is commonly 

taken as the initial state in quantum algorithms for n qubits: 

∣ 𝜓⟩ = 𝐻⊗𝑛 ∣ 0⟩⊗𝑛 =
1

√2𝑛
∑

2𝑛−1

𝑖=0

∣ 𝑖⟩ 

Example for 𝑛 = 3 qubits: 

∣ 𝜓⟩ =
1

2√2
(∣ 000⟩+∣ 001⟩+∣ 010⟩+∣ 011⟩+∣ 100⟩+∣ 101⟩+∣ 110⟩ ∣ 111⟩) 

This superposition serves as the foundation of quantum algorithms' 

parallel computation property, as the quantum operation evaluates several 

inputs at the same time.  
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Entanglement Measures 

To quantify entanglement, researchers use metrics such as: 

1. Von Neumann entropy of the reduced density matrix: 

𝑆(𝜌𝐴) = −Tr(𝜌𝐴𝑙𝑜𝑔 2 𝜌𝐴) 

where 𝜌𝐴 = Tr𝐵(𝜌𝐴𝐵). A non-zero entropy indicates entanglement. 

2. Concurrence for two-qubit systems: 

𝐶(𝜌) = max(0, 𝜆1 − 𝜆2 − 𝜆3 − 𝜆4) 

where 𝜆𝑖are the square roots of eigenvalues of 𝜌(𝜎𝑦 ⊗ 𝜎𝑦)𝜌∗(𝜎𝑦 ⊗

𝜎𝑦)in descending order. 

These metrics are essential in quantum algorithm design, quantum 

cryptography, and hardware benchmarking. 

 

Multi-Qubit Operations and Correlations 

Entanglement usually created with a multi-qubit gate:  

CNOT (Controlled-NOT) : will flip the target qubit if the control qubit is 

∣1⟩.  

CZ (Controlled-Z): will flip the phase on the target qubit conditioned on 

the control. Swap gates will swap the states of any two qubits without 

measurement.  

An example is, after applying a Hadamard on the first qubit followed by 

a CNOT gate: 

∣ 00⟩ →
𝐻⊗𝐼 1

√2
(∣ 0⟩+∣ 1⟩) ⊗∣ 0⟩ →

CNOT 1

√2
(∣ 00⟩+∣ 11⟩) =∣ Φ+⟩ 

This is the standard Bell state preparation protocol, which demonstrates 

the role of superposition in entanglement.  

 

Decoherence and Entangled Systems 

Entangled states are very delicate when it comes to environmental noise. 

Decoherence induces the degradation of entanglement, which can be described 

using density matrices and Kraus operators: 

 

𝜌 → ∑ 𝐾𝑖𝜌𝐾𝑖
†

𝑖

, ∑ 𝐾𝑖
†𝐾𝑖

𝑖

= 𝐼 
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This formalism enables scientists to simulate realistic quantum systems 

and develop error-correction protocols. Examples of Algorithms in practice are; 

• Deutsch-Jozsa Algorithm - Using multi-qubit superposition to evaluate one 

time, whether or not a function is constant or balanced shows the 

exponentially better benefit of a superposition.  

• Grover’s Algorithm - Starting with an equal superposition of all state, 

amplifying the correct state by way of interference.  

• Quantum Teleportation - Using entangled qubits and classical 

communication to transmit an unknown quantum state. 

 

3. QUANTUM GATES, CIRCUITS, MEASUREMENT, 

DECOHERENCE AND NOISE 

Multi-qubit gates (CNOT, CZ, SWAP) create entanglement and support 

operations conditioned on other qubits. Quantum circuits consist of sequences 

of gates acting on qubits, which run a computation and are then measured. 

Measurement will probabilistically collapse superpositions. Decoherence and 

noise add errors to the system, so quantum error correction is important 

(Preskill, 2018). The interaction of these principles enables the execution of 

quantum algorithms, which demonstrate the computational advantages of 

quantum information. 

The principles of quantum mechanics, including superposition, 

entanglement, and interference, are exploited directly in quantum computing 

operations (Nielsen & Chuang, 2010). Quantum computation utilizes the 

manipulation of qubits through quantum gates and build these gates into 

quantum circuits. The operations must maintain unitarity and being reversible 

allows for coherent evolution of the quantum state. In this section we will take 

a look at the detailed functioning of quantum gates, quantum circuits and 

measurement in quantum mechanics, as well as the impact of decoherence and 

noise on quantum computation. 

 

Single Qubit Gates 

Single-qubit gates operate unitary transformations on the individual 

qubits. Single-qubit gates are 2 × 2 unitary matrices that operate on the the state 

vector of the qubit.  
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Pauli Gates 

 Pauli-X (NOT gate): flips the qubit state: 𝑋 ∣ 0⟩ =∣ 1⟩, 𝑋 ∣ 1⟩ =∣ 0⟩ 

(Nielsen & Chuang, 2010). 

Matrix representation: 

𝑋 = (
0 1
1 0

) 

 Pauli-Y gate: combines bit-flip and phase-flip: 

𝑌 = (
0 −𝑖
𝑖 0

) 

It acts as 𝑌 ∣ 0⟩ = 𝑖 ∣ 1⟩, 𝑌 ∣ 1⟩ = −𝑖 ∣ 0⟩(Rieffel & Polak, 2011). 

 Pauli-Z gate: flips the phase of ∣ 1⟩: 𝑍 ∣ 0⟩ =∣ 0⟩, 𝑍 ∣ 1⟩ = −∣ 1⟩. 

 

Hadamard Gate 

The Hadamard (H) gate creates equal superposition: 

𝐻 ∣ 0⟩ =
∣ 0⟩+∣ 1⟩

√2
, 𝐻 ∣ 1⟩ =

∣ 0⟩−∣ 1⟩

√2
 

It rotates the qubit vector by π about the axis halfway between X and Z, 

preparing qubits for interference-based computations (Nielsen & Chuang, 

2010). 

 

Phase Gates 

• S Gate (π/2 phase shift): 

𝑆 = (
0 1
0 𝑖

) 

 

• T Gate (π/4 phase shift): 

𝑇 = (
1 0
0 𝑒𝑖𝜋/4) 

Phase gates control the relative phase between ∣0⟩and ∣1⟩, crucial for 

interference in quantum algorithms (Rieffel & Polak, 2011). 

 

Multi-Qubit Quantum Gates 

Multi-qubit gates generate entanglement and implement conditional 

operations. 
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Controlled-NOT (CNOT) Gate 

CNOT flips the target qubit if the control qubit is ∣1⟩: 

CNOT ∣ 00⟩ =∣ 00⟩,CNOT ∣ 10⟩ =∣ 11⟩ 

It is central to creating Bell states, generating entanglement, and building 

universal quantum circuits (Horodecki et al., 2009). 

 

Controlled-Z (CZ) Gate 

CZ flips the phase of the target qubit when the control qubit is ∣1⟩: 

𝐶𝑍 ∣ 11⟩ = −∣ 11⟩, 𝐶𝑍 ∣ 00⟩ =∣ 00⟩ 

This gate is often used in quantum error correction and cluster-state 

generation (Rieffel & Polak, 2011). 

 

SWAP Gate 

SWAP exchanges the states of two qubits: 

𝑆𝑊𝐴𝑃 ∣ 01⟩ =∣ 10⟩ 

It is useful in quantum circuit optimization, especially in systems with 

limited qubit connectivity (Nielsen & Chuang, 2010). 

 

Quantum Circuits 

Quantum circuits are sequences of gates applied to qubits, culminating 

in measurement. They are usually represented as circuit diagrams, with time 

flowing left to right: 

 Single-qubit gates: applied to individual qubit wires 

 Multi-qubit gates: connect multiple qubit wires 

 Measurements: performed at the end to obtain classical outputs; 

Example: Bell State Circuit 

 Start with ∣00⟩ 

 Apply Hadamard to the first qubit 

 Apply CNOT with the first qubit as control 

∣ 00⟩ →
𝐻⊗𝐼 1

√2
(∣ 0⟩+∣ 1⟩) ⊗∣ 0⟩ →

𝐶𝑁𝑂𝑇 1

√2
(∣ 00⟩+∣ 11⟩) 

This produces a maximally entangled Bell state. 
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Quantum Measurement 

Quantum measurement is probabilistic, collapsing superpositions into 

basis states. Measurement is described by projective operators P_i=∣i⟩⟨i∣or 

more generally POVMs (Positive Operator-Valued Measures). 

 Probability of outcome i: 

𝑝(𝑖) = ⟨𝜓 ∣ 𝑃𝑖 ∣ 𝜓⟩ 

 

 Post-measurement state: 

∣ 𝜓′⟩ =
𝑃𝑖 ∣ 𝜓⟩

√𝑝(𝑖)
 

Measurement introduces irreversibility and destroys superposition, 

making algorithm design sensitive to the timing of measurements (Preskill, 

2018). 

 

Decoherence and Quantum Noise 

In practice, qubits interact with their environment, leading to 

decoherence: 

 T1 relaxation: energy decay of a qubit (∣1⟩→∣0⟩) 

 T2 dephasing: loss of phase coherence between ∣0⟩and ∣1⟩ 

Decoherence can be modeled using density matrices and Kraus 

operators: 

𝜌 → ∑ 𝐾𝑖𝜌𝐾𝑖
†

𝑖

, ∑ 𝐾𝑖
†𝐾𝑖 = 𝐼

𝑖

 

Noise sources include thermal fluctuations, electromagnetic interference, 

and control errors. Mitigation requires quantum error correction codes, e.g., 

Shor code and surface codes (Rieffel & Polak, 2011; Preskill, 2018). 

 

Error Correction 

Quantum error correction protects information against decoherence and 

operational errors. Key principles: 

• Encode a logical qubit in multiple physical qubits 

• Detect and correct errors without directly measuring the quantum state 

• Use syndrome measurements and unitary recovery operations  



75 

 

Example: Three-Qubit Bit-Flip Code 

Logical qubit: 

∣ 0L⟩ =∣ 000⟩, ∣ 1L⟩ =∣ 111⟩ 

 

Example Quantum Algorithms in Circuits 

• Grover's Algorithm: begins with an equal superposition state of all states 

and utilizes the oracle and diffusion operators, while exploiting 

interference to amplify the proper answer (Nielsen & Chuang, 2010).  

• Shor's Algorithm: effectively factors large integers through quantum 

Fourier transform, modular exponentiation, and measurement (Shor, 

1994).  

Both algorithms are implemented through sequences of unitary gates, 

multipartite entangling operations in multiple qubits, and measurement steps.  

 

4. ADVANCED QUANTUM ALGORITHMS, 

APPLICATIONS AND FUTURE TRENDS 

Advancing from concepts such as quantum states, superposition, 

entanglement, quantum gates, and quantum circuits, Part 4 investigates 

advanced quantum algorithms, theoretical underpinnings of these algorithms 

and their applications, and future directions for quantum computing. These 

topics take the principles of quantum mechanics and integrate them with 

computational purposes. The writing illustrates how the mathematical 

representation leads to specific designs in quantum algorithms (Nielsen & 

Chuang, 2010). 

 

Quantum Fourier Transform (QFT) 

The Quantum Fourier Transform (QFT) serves as the quantum version 

of the discrete Fourier transform (DFT) by efficiently representing a vector of 

2n amplitudes in the frequency domain. For a state ∣x⟩: 

𝑄𝐹𝑇 ∣ 𝑥⟩ =
1

√2𝑛
∑ 𝑒

2𝜋𝑖𝑥𝑦
2𝑛 ∣ 𝑦⟩

2𝑛−1

𝑦=0
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Key properties: 

 It is linear and unitary, meaning the quantum amplitudes are preserved. 

 It has an efficient implementation requiring O(n2) gate operations, 

compared to the classical DFT’s O(2n) complexity.  

 It is the basis for Shor’s algorithm, The QFT is used to find periodicity 

in functions based on modular arithmetic to factor large integers (Shor 

1994). 

 

QFT Implementation 

 You first use a series of Hadamard gates to create superpositions of all 

the inputs that will be transformed.  

 You then apply controlled-phase gates to encode the relative phases into 

the qubit registers.  

 Finally, you reverse the qubit order at the end of the process to ensure the 

output is in the computational basis.  

The QFT illustrates the power of combining interference, and phase 

manipulation to directly exploit the principles of quantum mechanics (Nielsen 

& Chuang, 2010). 

 

Grover’s Search Algorithm 

Unstructured search problems are addressed by Grover's algorithm, 

which provides a quadratic speedup for resolving such problems in comparison 

to classical techniques. Assume we have N=2n possible items, and there is a 

marked solution, w. Here is a summary of Grover's algorithm: 

1. Initialize qubits in an equal superposition: ∣ 𝜓0⟩ = 𝐻⊗𝑛 ∣ 0⟩⊗𝑛 

2. The oracle O is applied, which simply flips the sign of the marked state 

∣w⟩. 

3. A diffusion operator is applied, which reflects amplitudes through the 

average amplitude. 

4. Steps 2 and 3 are repeated 𝑂(√𝑁) so that the probability of measuring 

∣w⟩ is maximized. Then, 

∣ 𝜓𝑘⟩ = (𝐷𝑂)𝑘 ∣ 𝜓0⟩  
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The superposition is used to search through all of the states at the same 

time, while interference is applied to increase the amplitude of the marked state. 

Finally, once it is measured, the probability of the state collapsing to the correct 

solution is very high (Grover, 1996). 

 

Shor’s Algorithm 

Using quantum period finding, Shor's algorithm efficiently finds large 

integer factorizations, a classically hard problem:  

1. Choose a random 𝑎 < 𝑁coprime with 𝑁 

2. Use QFT to find the period 𝑟of 𝑓(𝑥) = 𝑎𝑥mod  𝑁 

3. Compute factors using gcd (𝑎𝑟/2 ± 1, 𝑁) 

The quantum advantage is derived from the use of QFT as well as 

entanglement between registers, which allows the period finding to be 

accomplished exponentially faster (Shor 1994). Shor’s algorithm has 

significant ramifications for cryptography, since it can defeat many standard 

classical schemes such as RSA, and it is also an important intersection of 

quantum mechanics, computation, and real-world security. 

 

Quantum Simulation 

One of the most exciting areas of application of quantum computing is 

simulation of quantum systems, which classically will be exponentially 

difficult: Simulate molecular structures, chemical reactions, and condensed 

matter physics. 

 Use Hamiltonian evolution to model quantum dynamics: 

 

∣ 𝜓(𝑡)⟩ = 𝑒−𝑖𝐻̂𝑡 ∣ 𝜓(0)⟩ 

Uses:  

• Estimate reaction rates and energy levels within the field of chemistry 

(Aspuru-Guzik et al., 2005)  

• Examine quantum phase transitions and high-temperature 

superconductivity. 

Quantum computers utilize unitary evolution, entanglements, and 

superposition to explicitly engage the theories of quantum mechanics, and 

engage those theories in experimental computation. 
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Quantum Cryptography  

Quantum computing has fostered this development of quantum-safe 

cryptography. Quantum Key Distribution(QKD) utilizes entangled qubits to 

exchange secret keys with unconditional security, (Bennett & Brassard, 1984). 

The process of measuring a qubit and superposition guarantees detection of 

eavesdropping, as any measurement disturbs the quantum state. Protocols: 

BB84, E91, and continuous-variable QKD all apply the postulates of quantum 

mechanics, especially measurement disturbance and interactions exhibited by 

entanglement.  

 

Quantum Machine Learning (QML) 

Quantum computing can speed up tasks in machine learning: 

• Quantum data encoding: encode classical data in quantum amplitudes 

(Lloyd et al, 2014). 

• Quantum circuits can perform faster linear algebra tasks (matrix 

multiplication, principal component analysis). 

• Use variational quantum circuits to optimize parameters for 

classification, clustering, or regression. 

The theoretical advantage comes from using the dimension of the Hilbert 

space and the entangled correlations for efficient representation of complex 

data.  

 

 Practice of Hardware 

Quantum hardware takes advantage of different physical systems in the 

implementation of qubits: Superconducting qubits - they enable fast gates, short 

coherence time (~100 µs), their implementations are used in devices developed 

by IBM and Google (Preskill, 2018). 

• Trapped ions - they have long coherence time (~seconds) and can 

implement high-fidelity gates (Wineland et al., 1998). 

• Photonic qubits - they can operate at room temperature and are ideal for 

communication (O’Brien et al., 2009). 

• Spin qubits in semiconductors - they can be scaled and integrate well 

with classical electronics. 
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Challenges 

• Decoherence and noise will require error correction. 

• The connectivity of qubits will limit the operation of multi-qubit gates. 

• Scalibility - building n-number of thousands of high-fidelity qubits is an 

important goal. 

 

Future Directions 

• Fault-tolerant quantum computing techniques will include surface codes, 

braided topological qubits, and concatenated error correction schemes.  

• Practical quantum advantages will be realized for computational tasks in 

chemistry, optimization, and materials science.  

• Quantum computing will be integrated with classical AI, leading to 

hybrid quantum-classical systems.  

• Standardization will develop through the adoption of common software 

frameworks, such as Qiskit, Cirq, or Pennylane.  

Much of the research community is focused on NISQ (Noisy 

Intermediate-Scale Quantum) devices, working towards practical 

computational advantage before fault-tolerant, full-scale quantum computers 

are built. 

 

5. CHALLENGES, OPEN RESEARCH PROBLEMS AND 

FUTURE PERSPECTIVES 

Building off the basics of quantum gates, circuits, and advanced 

algorithms, here we evaluates the limitations, practical challenges, and research 

challenges in quantum computing and applications. While quantum mechanics 

supplies the theoretical underpinning, practical realization is limited by 

hardware defects, decoherence, and complexity of algorithms. These 

challenges are important for faculty, researchers, and advanced students 

intending to engage in this field (Nielsen & Chuang, 2010). 
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Key Challenges in Quantum Computing 

Decoherence is the biggest hurdle to implementable quantum computing.  

• T1 relaxation: qubit energy decay. 

• T2 dephasing: a loss of phase information through interaction with the 

environment. 

• Noise comes from electromagnetics, imperfections in materials, and errors 

in control. 

• Mitigation involves error correction codes, and gates that are designed to 

be robust against errors (Preskill, 2018). 

 The density matrix formalism allows modelling of mixed states under 

decoherence: 

𝜌 → ∑ 𝐾𝑖𝜌𝐾𝑖
†

𝑖

, ∑ 𝐾𝑖
†𝐾𝑖 = 𝐼

𝑖

 

Constructing quantum computers at a large-scale is difficult for three 

reasons:  

• Limited connectivity among qubits,  

• Challenges of maintaining coherence among thousands of qubits. 

• The preparation of superconducting or trapped-ion qubits with high-

fidelity.  

Hybrid approaches - like modular quantum computers - are being 

investigated in the context of scalability (Rieffel & Polak, 2011). 

 

Error Correction and Fault-Tolerance 

• Quantum error correction requires redundancy: typically a single logical 

qubit will need dozens or hundreds of physical qubits. 

• Efforts to make fault-tolerant gates that allow for the continued 

preservation of quantum information while being noisy are still a work 

in progress. 

• Surface codes, concatenated codes, and topological qubits are very 

promising. 
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Algorithmic Complexity 

• It remains difficult to design quantum algorithms which provide 

meaningful speedup vs classical algorithms. 

• Not all problems will have useful quantum speedup characteristics, and 

need careful complexity analysis. 

• Some hybrid quantum-classical algorithms, such as the variational 

quantum eigensolver (VQE) for example, are practical as it pertains to 

the NISQ era (Preskill, 2018). 

 

Open Research Challenges 

The objective is to create quantum algorithms robust to: 

• Gate faults 

• qubit loss 

• decoherence  

Specific instances involve error mitigation strategies, adaptive circuits, 

and quantum variational strategies (Temme et al., 2017). 

• Investigating new materials and development methods to extend qubit 

coherence times. 

• Developing new qubit types, including topological qubits, neutral atoms, 

and photonic cluster states. 

• Conceiving new control electronics, integrating cryostat technology, and 

improving robustness (Wineland et al., 1998; O'Brien et al., 2009). 

 

Quantum Network and Communication 

• Developing entanglement distribution methods over long distances 

• Implementing quantum repeaters to enable scalable quantum networks 

• Developing distributed quantum computation methods, bridging 

quantum computation with quantum communication (Bennett & 

Brassard, 1984). 
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Quantum Machine Learning 

• Understanding which machine learning problems genuinely exhibit 

quantum speed-up, 

• Developing compact quantum data encoding schemes 

• Developing hybrid quantum-classical optimization methods (Lloyd et 

al., 2014). 

 

Quantum Simulation 

• Simulating strongly correlated systems in physics or chemistry 

• Demonstrable Hamiltonian complexity and a scaling multi-body 

simulation 

• Bridging simultaneous simulation with experimental verification in 

quantum chemistry or material science (Aspuru-Guzik et al., 2005). 

 

6. INTEGRATION WITH QUANTUM MECHANICS 

PRINCIPLES 

All applicable challenges and research questions arise from a foundation 

in quantum mechanics: 

• Superposition permits parallel computation but is sensitive to 

decoherence and other experimentalist challenges. 

• Entanglement allows for speedup with algorithms and crytography but is 

fragile. 

• Unitary evolution ensures reversibility, but requires precise control. 

• Measurement postulates delimit deterministic outcomes and make it 

impossible to replicate quantum states directly through observation 

(Nielsen & Chuang, 2010; Rieffel & Polak, 2011). 

A deeper understanding of quantum mechanics contributes to: 

• Gate design. 

• Error mitigation techniques. 

• Algorithm design and security. 

• Hardware improvements. 
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CONCLUSION 

Quantum computing embodies a revolutionary paradigm that directly 

employs the principles of quantum mechanics - superposition, entanglement, 

and unitary evolution - to solve problems that lie beyond classical computation. 

This chapter has tracked the path from the fundamentals of qubits and quantum 

gates, to advanced algorithms, quantum circuits, and applications in the real 

world, providing an overview of how theoretical insights are translated to 

practical computational advantages. While there has been much advancement, 

many important challenges remain. Current devices are limited by decoherence, 

noise, and scalability, whilst fault-tolerant quantum computer systems, while 

an important milestone yet to be achieved in its full realization. The NISQ age 

also provides a unique opportunity to explore practical algorithms and hybrid 

quantum-classical systems, as well as demos within near-term applications in 

simulation, cryptography, and machine learning, to initiate the landscape for 

broader quantum advantage. In the future, research can be anticipated to 

develop in multiple directions. Error-resilient algorithms, new technologies of 

qubits, and scalable architectures are imperative to break past current 

limitations. Meanwhile, new quantum networks, including the development of 

the quantum internet, will enable efficient ways to securely, process, and 

distribute quantum information by using a remote cloud-based quantum 

computing service. If the promise of quantum computing is to achieve real-

world quantum processing, then there is an enormous potential for converging 

quantum computing with other fields, such as artificial intelligence, materials 

science, and chemistry, with expectation of innovative developments for all, 

while inspiring creative re-evaluation of new research using quantized 

computation that was not able to be imagined before. In summary, quantum 

computing is an embodiment of the practical application of quantum mechanics 

and represents a frontier in scientific research. Continuing to investigate theory, 

algorithm development, hardware, and cross-disciplinary applications will 

drive the evolution of quantum computing as a field and lead to amazing 

possibilities for discovery, technology, and societal impact.  
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INTRODUCTION  

Digital transformation means changing the business from traditional into 

e-environment in the digital age. It is the process of usage the digital technology 

for developing new business processes, culture and costumer experiences to 

achieve the contemporary market requirements [2], and instead simple 

throwing technology in the process without clear vision on the outcomes of the 

organization wants to achieve and the challenges they have [3]. With the 

pressure of globalization to business (Kraus et all 2021), the digital 

transformation (DT) is changing entire industries, while organizations are 

struggling to keep up with these changes (Konopik et all 2022). Beside DT of 

businesses and organizations, the sectors’ DT is a more complex system in 

terms of engineering, which involves promotion and application of technology 

innovation, management optimization, organizational change, data mining, use, 

etc. in the entire sector (Li et all 2021).  

Information systems are digital systems that enable collecting, storing, 

managing, sharing, editing, archiving and updating digital data. Information 

system field is playing important role in whole sectors, in which IT affects 

organizational and social life (Mikalef et all 2022). Automatization of data 

processing by using various algorithms that enable solving environmental, 

social and technical issues, became main driver of automate decision making 

with the opportunities that give Artificial Intelligence (AI) technology. AI 

technologies shifts the locus of  action,  choice,  control,  and  power  away  

from  the exclusive domain of humans, re  capable  of  performing various  

human  feats,  such  as  perception,  sensing  and recognizing emotions, 

conversation, and even creativity, as well as offer many positive benefits to 

organizations that creates significant unintended (or intended) consequences 

(Benbya et all 2021).  

Within the Enlargement and Integration (EI) programme of the European 

Commission, the Joint Research Center have organized event entitled “Digital 

Transformation, Data and Artificial Intelligence in the Western Balkan 

Countries”, with main objectives:  

 Update participants on the EU's policy on digital transformation, data 

and artificial Intelligence.  
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 Discuss about main factors that can help or hinder the introduction of the 

digital transformation in WB countries.  

 Present the state-of-play, opportunities, trends and likely impacts of 

Digital transformation, Data and AI in Wester Balkans 

 Discuss on the added value of the adoption of the digital technologies 

and AI including drivers, enablers, barriers, risks and related mitigates in 

Western Balkans. 

 Discuss on regional differences in the attitudes towards digital 

technologies and AI [1].  

The scope of the workshop was to investigate how digital technologies, 

data and AI influence changes in our societies. Data and digital transformation 

are feeding AI. The ambition is for Europe to become the world-leading region 

for developing and deploying cutting edge, ethical and secure AI, as well as to 

promote a human-centric approach in the global context. It is also important for 

the Western Balkans region to adopt and benefit from these emerging 

technologies. Organizers of the workshop gathered them together a variety of 

stakeholders, representing the public sector, civil society, academia and 

business, in order to (I) exchange good practices, (II) establish partnerships, 

and (III) ultimately learn from each other. Particular emphasis were putted on 

the technological enablers of digital transformation, digital data, AI, and 

innovative services and applications combining the above [1].  

Based on outlined current state of available open sources and performed 

research on presented themes in workshop, this study aims to fill gaps of global 

and regional trends by identifying and exploring necessary steps toward digital 

transformation of organizations and AI usage in Western Balkan (WB) 

countries. Thereby, this article can contribute to several themes. First, it aims to 

map the current situation regarding digital transformation and the use of AI in 

Western Balkan (WB) countries. Second, it highlights the importance of digital 

transformation and AI usage by organizations in the digital age. Third, it 

provides enriched knowledge to decision-makers and managers on 

organizational development, particularly in changing workflows and creating 

entirely new business models. Fourth, it seeks to initiate improvements in 

organizational capabilities for digital transformation and AI usage by 

encouraging governmental support.   
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Finally, it promotes European priorities as emphasized in the Berlin 

Declaration on Digital Society and Value-Based Digital Government (2020) 

and the European Green Deal (2019). 

 

1. DIGITAL TRANSFORMATION AND USAGE OF AI IN 

THE WESTERN BALKAN COUNTRIES 

(Broz et al., 2020) pointed out that Western Balkan countries, like most 

other regions in the world, are experiencing a digital transformation measured 

by the use of fixed-telephones, mobile-cellular telephones, computers and 

internet. While fixed-telephone subscriptions are dropping, the use of mobile-

cellular telephones, computers and internet have increased over time. However, 

when compared with other European and CIS countries, the Western Balkan 

countries are still lagging behind in the use of digital technologies. CIS 

countries exchanged fixed-telephones with mobile-cellular telephones, while 

Europe is leading with the possession of computers and the access to and use 

of the internet. Even though Western Balkan countries are lagging behind, there 

are significant differences among each economy. The report entitled as 

Monitoring the Digital Economy and Electronic Communications Services in 

the Western Balkans and Turkey (CEU. CNECT. et al., 2019) presented number 

of indicators related to digital transformation, showing that in term pf 

connectivity to the internet Albania is lagging behind EU – 28 in all indicators 

presented, while Serbia and Kosovo* are closest to the EU-28 and for 4 out of 

9 indicators are expressing results better than EU Average.  

 In general, 4G coverage is better than fixed broadband coverage for all 

countries except Kosovo with fixed broadband coverage of 100%. All countries 

except Montenegro expressed better take-up of the mobile broadband than fixed 

broadband. The percentage in internet users in EU28 is 81%, while WB 

countries are close to the RU standard, wih 72% in Albania, 90% in Bosnia and 

Herzegovina, 71% in Montenegro, 78& in North Macedonia, 73% in Serbia 

and 87% in Kosovo*.  There is a lack of advanced digital skills in comparison 

with basic digital skills statistics. Western Balkans economies are generally 

well behind EU28 Member States in advanced digital skills – Serbia is closest 

to the EU averages.   
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Performance related to the communications dimension is very good, with 

all economies at levels above or very close to the EU average. Western Balkan 

economies score on average higher than the EU28 average for the use of 

internet for video calls and social networks. The average for use of internet for 

banking in EU-28 is 61%, the WB countries are far behind with best value in 

Serbia with 20%. Similarly for shopping, while 68% of internet users in EU do 

use it for shopping, most of the WB countries are below 20%, except North 

Macedonia with 32%. The business technology integration is the area where 

Western Balkans economies are performing best in comparison with EU28 

Member States. 82 per cent of data points provided are above EU28 average 

levels or within ten per cent. The two Western Balkans economies providing 

data for all indicators (Montenegro and Serbia) are performing within ten per 

cent or above the EU28 level.  

However, the data presented above was published in 2019 and probably 

changed due to the COVID-19 pandemic thar affected the Western Balkan 

countries. Western Balkan governments responses were similar to these in the 

rest of the world. 

 

 
Figure 1. Map of Western Balkan Countries  
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1.1 Albania 

The data on digital transformation previously cited presented that the 

fixed and mobile broadband internet access is below the average of the EU-28 

countries. Moreover, compared to the other WB countries Albania is lagging 

behind some countries, particularly in fixed broadband coverage and take-up. 

However, indicators for some of the WB countries are sometimes higher than 

EU 28-average, that should be considered in full understanding of the 

comparison among WB countries. Nevertheless, the mobile broadband 

coverage is within the 10% of the EU-28 average, but mobile broadband take-

up is still lagging behind EU average.   The level of internet use is withing 10-

20% variation form EU 28 average. As the in the case of the most of the WB 

countries, internet is used mainly for news, communication and social 

networking and less for banking and shopping.  

The digital transformation reported in research papers is ongoing process 

that already took place in education (Miço and Zaçellari, 2020), (Haskaj, 2013), 

(Petro and Loloçi, 2021), e-government (Elezaj et al., 2018), pharmacy shops 

(Demaj, 2021)  sharing economy  in tourism and agriculture (Hysa and Kruja, 

2022), business (Curraj, 2021) 

The literature search gave number of cases of implementations of the 

machine learning and artificial intelligence on Albania. Tataj and Kola (2021), 

published the case study of implementation of the AI in creation of the 

educational policies that will enable employment security for next period. Data 

presented in the paper show what are the most chosen departments in Albanian 

universities. Moreover, the new educational policies have been undertaken in 

Albania to orient students in choosing university fields that promise a secure 

job in the future and even more made it possible to open many vocational 

schools in Albania that have high job potential in the future.  

During the workshop one case for using the AI as a tool for improvement 

of the urban living was presented. However, number of other cases and 

implementations were determined by literature search on use of ML and Ai. 

The some cases determined addressed use of AI in creation of educational 

policies (Tataj and Kola, 2021), forecasting total fertility rate by using the 

Artificial Neural Network (Mucaj and Sinaj, 2015),  (Nyoni et al., 2021). Using 

the big data in e-government (Elezaj et al., 2018) etc.   
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Moreover the AI implementation case in energy sector in Albania is 

represented by implementation of the Fuzzi Logic Metod (Konica, 2016). The 

implementation cases of AI were determined in water sector for forecasting the 

precipitation and water inflow (Gjika et al., 2019), market value of the 

apartments (Ballilaj  and Myftiu, 2015), use of database marketing as a tool for 

knowledge management for Albanian firms (Ramaj and Bazini, 2013) and 

others.   

 

1.2 Bosnia and Hercegovina   

Data on the connectivity including the broadband internet access for are 

not sufficiently covered in the Monitoring the digital economy and electronic 

communications services in the Report on Western Balkans and Turkey: 2019 

follow up study(CEU. CNECT. et al., 2019) Only one indicator presented show 

below average fixed broadband take-up of only 18% while EU28 average is 

76%. However same report presented higher level of internet users in Bosnia 

and Hercegovina (BiH) compared to EU28 average (90% in BiH and 81 in 

EU28). This clea4rly indicate that most of the users of Internet in BiH are using 

mobile internet and probably using telephone accessing the internet.  

The paper presented during the workshop addressed the process of data 

integration and interoperability of public land administration services in 

Federation of Bosnia and Herzegovina, as instrument for providing better and 

easily accessible services to the end users of the public land administration. 

However, number of other cases of digitalization in Bosnia and Herzegovina 

are available online. The e-government in Bosnia and Herzegovina is 

developing and important issue id citizens will adopt it. The work of 

(Osmanbegović and Lugavić, 2018) presented some problems in adaption of 

the e-government services influenced by several factors that have the most 

significant influence on e-government adoption by citizens’ in Bosnia and 

Herzegovina as: performance expectancy, effort expectancy and social 

influence.  The digital transformation of the higher education started before 

COVID-19 pandemic and analyse in 2021 show that end-users satisfaction is 

between 3 and 4 on scale 1 to 5, that is sign that additional efforts in 

improvement are required (Mabić and Praničević, 2021). The case of 

digitalization of agriculture is presented by (Vico et al., 2021).   
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However, although BiH has a relative correct strategic framework for the 

digital transformation of agriculture in the public sector, as well as relevant 

legislative, it should be amended in the next planning period in accordance with 

EU aquis. The analyses of the economic effects of the digital transformation in 

Bosnia and Herzegovina are presented in the  book Economics of Digital 

Transformation (Drezgić et al., 2019).  

The researchers in BiH analyzed the level of digital literacy in the 

country as main prerequisite for digital transformation. Their finding is that 

highest level of digital literacy is find among persons with completed second 

cycle of university studies, master, followed by bachelors and putting PhD 

holders at third place. (Habibija and Mekić, 2021). Authors emphasize highest 

than ever importance of digital literacy and recommend to strengthen the 

educational system in Bosnia and Herzegovina and do improvement of study 

programs at all cycles of study since all of them contribute to digital literacy of 

respondents. 

The application of ML and Ai in Bosnia and Herzegovina was not 

presented during the workshop, therefore some cases from literature review are 

presented. The Ai is applied as educational tool to support e-learning 

(Šećkanović et al., 2020). Moreover,  the AI implementation for development 

of the  intelligent manufacturing systems driven by AI in Industry 4.0 was 

determined (Banjanović-Mehmedović and Mehmedović, 2020).  

 

1.3 Kosovo    

According the(CEU. CNECT. et al., 2019) The digitalization of Kosovo 

is quite impressive in term of fixed and mobile broadband coverage (100% and 

89% respectively). Compared with EU-28 Kosovo is ahead in fixed broadband 

coverage and slightly behind in mobile broadband coverage. However, like 

most of the Western Balkan countries fixed broadband take up is behind the EU 

28 average (only 18% in Kosovo and 76% for EU-28). However, the mobile 

broadband take-up is impressive 92 (per 100 population) and higher than EU-

28 value of 90.  Therefore, mobile broadband is preferred by Kosovo citizens 

and most of them use mobile internet.  

In term of digital skills, about 87% are internet users and only 7% of the 

individuals do not use internet (EU-28: 81% and 13% respectively.  
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 However, only 1% are ICT specialists that is far behind compared to the 

EU-28 average of 4%. Citizens mainly use internet for video calls (85%) and 

for social networking (64%). Banking is used only by 1% and shopping by 3% 

that is by far lowest value in Western Balkans and far away from EU-29 values 

of 61% and 68% respectively.  

The challenge of digital transformation in Kosovo is presented by 

(Limani et al., 2018c) and show some lagging compared to western economies. 

Authors concluded that enterprises should be more vigilant concerning the 

speed and the acceleration of digitalisation requirements and developments. 

Increasing demand for digitalisation involves high level attention from all 

levels of organisations structure. Strategic planning level, leadership, teams and 

individuals need high level awareness concerned with the challenges of 

adopting new digital technologies. The digital transformation in pre university 

education due to COVID-19 schools’ closure is described as one of the biggest 

challenges of the last two decades, forcing the country to mobilize quickly and 

transform the teaching and learning process from regular to virtual/online 

classes (Beka, 2021). Same author reported that including all stakeholders, 

governmental bodies, schools, principals, teachers, parents, and pupils make 

this transformation easier and faster than previous attempts declared in strategic 

documents but hardly realized. The higher education also successfully 

transformed their activities in digital format (Hoti et al., 2022), (Limani et al., 

2019), (Limani et al., 2018a).  

Moreover the digital transformation process was reported for banking 

services (Sadiku, 2019), brand promotion and brand positioning in Kosovo’s 

enterprises (Istrefi-Jahja and Zeqiri, 2021), performances of the small and 

medium enterprises (Limani et al., 2018b), efects on the growing business 

(Shehu et al., 2022) etc. 

The work presented during the workshop addressed implementation of 

AI in development and implementation of speech-to-text technology in 

Albanian language. However more implementation cases are available on-line.  

The paper on automatic lung cancer detection using artificial Intelligence 

(Bardh and Karahoda, 2019) was based on using the convolutional neural 

network architectures for classifying images of patients with cancer, and 

presented AI implementation in medicine.   
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Moreover, some authors discussed on implementation of AI and ML in, 

energy sector (Nagy and Hajrizi, 2018) , telecommunications (Fazliu et al., 

2020), smart vending machines (Istrefi and Zdravevski, 2020), data based 

evaluation of the efficiency of dairy farms (Shkodra et al., 2020). 

 

1.4 Montenegro    

The Montenegro was not presented during the workshop; therefore, all 

findings are result of the literature search. The digitalization, presented by data 

on the connectivity including the broadband internet access (fixed and mobile) 

and other indicators presented by (CEU. CNECT. et al., 2019) show that fixed 

broadband coverage is 90%, that is below EU-28 average, but take up is 81%, 

that is the highest value in all WB countries, and higher than EU-28 average of 

91%, The mobile (4G) broadband coverage is also higher than EU-28 average 

(97% in Montenegro and 91% in EU28). The fast broadband take-up is 52%, 

that is higher than EU-28 average and the highest among WB countries. The 

ultrafast broadband coverage with 61% is higher than EU-28 average, bit take-

up is just 5% that is significantly lower than EU-28 average of 15%. However, 

same report presented lower level of internet users in Montenegro (71%) 

compared to EU28 average (81%). Moreover, the report presented very high 

percentage of individuals not using internet (23%) that is significantly higher 

than EU-28 average of 13%. However, percentage of individuals with at least 

basic digital skills is presented as 50% that is quite close to the EU-28 average 

of 57%. The percent of the users of e-government services is only 9%and main 

use of internet are: social networks (84%), video calls (83%) and news (72%). 

The digital transformation in Montenegro can be seen in number of 

sectors. However, the report of the European Bank for Reconstruction and 

Development (EBRD) entitled as Assessing Montenegro’s digital maturity 

from February 2022 state that “Montenegro was found to have a “basic” level 

of digital maturity in seven dimensions, meaning organisations entered into 

sporadic e-government activities as part of reactive processes, with no clear 

strategy or coordination in five areas. These included financing digitalisations, 

level of digital skill and access to services. The right conditions had been 

created for digitalisation, but fell short when it came to implementation.   
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These included political will and support, the legal framework, digital 

infrastructure and interoperability, digital identity/signature and security. The 

literature search show several documents on digital transformation in the 

country. The discussion on digital transformation and what measures should be 

implemented to achieve positive effect in bussines environment, education and 

other sectors is presented by (Mićunović and Srića, 2021). At the University of 

Montenegro, teaching staff put a significant effort into converting their face-to-

face lectures into a digital format and have demonstrated a great level of 

flexibility. To assure digitalization process on the long run, the University is 

tending to organize trainings for teaching staff in order to further enhance their 

skills and know-how. Additionally, University will provide further investments 

in the technical infrastructure supporting digitalization of education and student 

services in order to establish blended learning approach in its teaching & 

learning process. (Nikolic, 2020). The research on the impact of digital 

transformation and digital marketing on the brand promotion has shown that 

social networks are the form of digital marketing that companies use most often. 

This is especially evident in companies that use digital marketing for more than 

5 or more than 10 years. The most common ways to measure the effects of 

digital marketing are Google Analytics, followed by the Social Network User 

Engagement Rate and the Degree of Interaction (Melović et al., 2020). 

However, the digitalization in some aspects of truism are evident as 

digitalization of Maritime museum of Kotor. Moreover, the literature search 

show examples on  the airline transport digitalization of the Montenegro 

airlines (Podzharaya and Sochenkova, 2019)  and implementation of IoT and 

blockchain technologies in Wine Supply Chain (Cakic et al., 2021), amalyse of 

the AI implementation and limitations in Telenor in Montenegro (Kascelan, 

2011) etc.   

 

1.5 North Macedonia    

The digitalization, presented by data on the connectivity including the 

broadband internet access (fixed and mobile) and other indicators presented by 

(CEU. CNECT, 2019) show that broadband coverage is quite high (fixed 98%, 

mobile 100%) that is above EU-28 average (97% fixed and 91% mobile). 

However, the take-up is below EU-28 average.   
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The report presented lower level of internet users in North Macedonia 

(78%) compared to EU28 average (81%) and higher percentage of persons not 

using internet (18% in North Macedonia, 13% EU-28 average. Similarly, to the 

other Western Balkan countries, internet is predominantly used for social 

networks (82%) and video calls (76%) that is higher than EU-28 average. About 

65% of the users use internet for news that is slightly lower than EU-28 average 

of 73%. Only 12% of the users use internet for banking (61% EU-28 average), 

Finally 32% use internet for shopping that is by far highest value in the Western 

Balkan countries, however much less than EU-28 average of 68%. Also, North 

Macedonia recorded highest score among the WB countries for the citizens 

using e-government (21%), but this value is still much lower than EU28 average 

of 59%.  

The authors from North Macedonia delivered 20 presentations during the 

workshop. The first group of presentations addressed the digitalization and 

digital transformation process in number of sectors such education including 

the higher education, bat also the primary education by implementing the 

geospatial technology for studying the natural and social subjects in primary 

schools in North Macedonia. Some paper from this group addresses the digital 

transformation in public administration, banking sector, participatory urban 

planning, crisis management system and national population register and digital 

identity. These papers gave good overview of the digital transformation and 

achievement. Moreover, the number of governmental services is already 

transformed to digital. In this group is also the presentation discussed on 

collaboration platform as a driver of the digital transformation in GIS and 

geospatial data sector and analyses two already completed projects two 

implemented national level projects that developed collaborative platform and 

support practical digital transformation process: National spatial data 

infrastructure (NSDI) geoportal and LiDAR distribution portal. Moreover, two 

paper is discussing digital transformation of the geospatial data and 

development of the digital landslide susceptibility map of North Macedonia and 

second one address creation of the national cadasters of degraded areas in 

Serbia and North Macedonia.   
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Finally, two papers from this group addressed digital transformation by 

implementing the machine learning for early season crop yield forecasting and 

use of remote sensing in google earth Engine for assessing the effects of rapid 

urbanization on land surface temperature. Second group of papers deals with 

theoretical background Applications of Deep Learning Based Semantic 

Segmentation of Images, Horizontally scalable lambda architecture for 

processing and analyzing multivariate time-series data, Programming Logic in 

Artificial Intelligence: a metamorphosis of M-mode to I-mode, or discuss on 

state with the most exciting disruptive technologies for accounting researchers 

and professionals at the global level (big data, data analytics, cloud, artificial 

intelligence and blockchain). 

Finally, the last group is composed of three papers that addressed 

companies and products developed using the digital services, artificial 

intelligence and machine learning. One of the product is based on Ai for direct 

and personalized marketing of the products in real time during the shopping. 

Second one developed the facial mask that can analyses facial movements and 

use AI to associate data collected from the sensors in emotional status. The third 

one is explaining the AI-powered image recognition software that detects 

fashion items in images and enables fashion retailers to delight shoppers by 

saving their time and effort in search for the desired products. 

Even though the presentations delivered gave quite good idea on state in 

digitalization and implementation of the digital transformation and 

implementation of ML and Ai in the country, the quick search of the research 

publication gave some additional highlights. Several sectors not mentioned in 

the presentations delivered at the workshop also achieved some advancement 

in digital transformation as: construction sector (Stojanovska-Georgievska et 

al., 2022), digital economy (Tosheva, 2020), consumer behavior (Mirchevska 

et al., 2021), digitalization of the small and medium enterprises (Risteski et al., 

2019), telecom sector (Baleski, 2019), municipalities (Janevski et al., 2020), 

helath sector (Miseva et al., 2020) and others. 

In use of artificial intelligence and machine learning also gain some new 

sectors using literature review: environmental modeling and monitoring (Sajn 

et al., 2021), energetic sector (Popovski et al., 2020), (Kostov et al., 2020), 

tourism (Erceg et al., 2020), Insurance and others. (Denkova, 2019).   
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1.6 Serbia   

The connectivity including the broadband internet access (fixed and 

mobile) and other indicators related to the digital skills of the citizens, citizens 

internet use, digital public service use and others   are presented by (CEU. 

CNECT,2019) to explain capacities for digital transformation and digital 

economy. The connectivity dimension show that fixed broadband coverage in 

Serbia is 72%, that is below EU-28 average of 97%. The take-up of the fixed 

broadband is 62%.  The mobile (4G) broadband coverage is higher than EU-28 

average (96% in Serbia and 91% in EU28) and take-up is 83%, close to the EU-

28 average of 90%. The fast broadband take-up is 44%, that is higher than EU-

28 average. The ultrafast broadband coverage with 67% is higher than EU-28 

average and the highest among WB countries. However the ultrafast broadband 

take-up is still very low at the level of  2% that is significantly lower than EU-

28 average of 15%. When discussing on the digital skills, the same report 

presented lower level of internet users in Serbia, (73%) compared to EU28 

average (81%). Moreover, the report presented by far highest percentage of 

individuals not using internet of 24% that is highest vale among Western Balkan 

countries and significantly higher than EU-28 average of 13%. However, 

percentage of individuals with at least basic digital skills is presented as 66% 

that is higher than EU-28 average of 57%, and the highest score in the WB 

countries. 

Serbian citizens use internet for news (78%), video calls 67% and social 

networks (70%) at higher level than EU-28 average. The use of internet for 

music, video and games (73%), is close to the EU-28 average, and highest level 

compared to other WB countries. However, internet use for banking (20% and 

shopping 16% is much lower than EU28 average of 61% and 68% respectively.  

During the workshop 4 presentations were delivered addressing the 

situation in Serbia. Two of them addressed the geospatial information, one 

about establishment of national cadasters of degraded areas and second one 

about geospatial data as a core instrument to transform the country. Geospatial 

data is considered as a key element to map and monitor the resources of an 

entire nation, allowing for the quantitative documentation of policy 

implementations on the ground.   
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The Republic of Serbia is supported by the FAO, World Banka and other 

development partners to improve the use of available geospatial data and 

technology and to strengthen government capacity to make best use of available 

data and technology. Republic Geodetic Authority (RGA) is a national Spatial 

Data Infrastructure (SDI) coordinator and the INSPIRE National Contact Point. 

The RGA is a special governmental organization, which performs state survey, 

maintenance of real estate cadasters and management of geospatial data at the 

national level. The RGA plays an important role in making the geospatial 

information available, to support the government and municipal authorities as 

well as the general public and businesses. One presentation was addressing the 

challenges of Digital Government Transformation, as a tool for improving the 

public sector services and reducing existing administrative burden that can lead 

to increased savings in money and time for public administration, businesses, 

and citizens. Although, there is significant support and interest from many 

stakeholders (EC, UNDP, World Bank; Chamber of Commerce and Industry of 

Serbia, NGO’s as NALED) to enable digital transformation, Serbia still faces 

challenges with successful development of e-services. Interoperability is one of 

the key challenges and it is acknowledged as the first action and goal to achieve 

in “Program for e-government development of Serbia”. The fourth presentation 

presented the results from the project CASPER on use of AI to filter the content 

displayed to the user and the content sent by the user via the Internet. The 

experimental use of pilot software confirmed that AI can be successfully used 

to protect vulnerable categories of users from inappropriate content and 

malicious activities on the Internet 

The literature search gave the biggest number of papers published in the 

last 5 years addressing digital transformation, artificial intelligence and 

machine learning. It was somehow expected, Serbia is the biggest country 

among the WB countries, with strongest economy and highly ranked 

Universities on global ranking lists. The digital transformation, aside from the 

developments in e-government presented during the workshop, is also 

advancing in many other sectors. Notable areas include education (Kabiljo et 

al., 2020; Pitić et al., 2018), banking (Milojević and Redzepagić, 2020), eco-

innovations and sustainable technologies (Đukić et al., 2022), and business 

performance (Kahrović and Avdović, 2021).   
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Additionally, sectors such as insurance (Pušara, 2020), crime and law 

(Ivanović and Pavlović, 2018), and environmental modelling (Malinović-

Milićević et al., 2021; Mitrović et al., 2019) are also experiencing significant 

digital transformation. Other fields like medicine (Ristivojević et al., 2022), 

agriculture (Vujović et al., 2020), and many more continue to adopt digital 

technologies and AI-driven solutions. 

Moreover, there is quite good legal and organizational setup on AI related 

issues, starting with Strategy for development of artificial intelligence in the 

Republic of Serbia: 2020-25; The Institute for Artificial Intelligence Research 

and Development of Serbia located at Science and Technology Park in Novi 

Sad,  that has been established by the Government of Serbia based on the 

initiative from the national AI strategy; Serbian Artificial Intelligence Society, 

SAIS, that promotes AI research and development of applications in the 

Artificial Intelligence industry. Members are Serbian AI companies, 

researchers, decision-makers, entrepreneurs, organizations, professionals and 

students active in, or interested in the area of Artificial Intelligence.    

 

2. RESULTS AND DISCUSSION 

The convergence of Digital Transformation, Data, and AI has made a 

profound transformation of our economy and society. Digital Transformation, 

Data, and Artificial Intelligence are pillars of modern society and together with 

the European Green Deal are the flagship priorities of the EU. Many 

applications from these technologies have started entering our daily lives, from 

image recognition, machine translation and autonomous systems that are 

increasingly deployed on the web, commerce, industry, and government.  

EU’s ambition is to become the world-leading region for developing and 

deploying cutting edge, ethical and secure AI and Data services as well as to 

promote a human-centric approach in the global context. Western Balkan (WB) 

countries, as EU candidate and accession countries, should adopt, benefit, and 

collaborate in these emerging initiatives with their partners from the EU.  

Temporary limitations of number of services and other aspects of 

everyday life fostered quick response and shifted many of the services online.   
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Number of different sectors affected (education, food supply chain, 

health system, banking, governmental services, socializing, news…) started 

their digital transformation   by offering number of different digital tools to fill 

the gap. Number of online services gained in speed and volume to an 

unprecedented extent during the period. (Bieber, 2020), named this process as 

“digital leap” that occurred against the backdrop of a region that has been 

lagging behind the EU average in most digital indicators, from household 

access to digital infrastructure and the use of the most common online services. 

Same author pointed out that at the same time, there have been regional efforts, 

including several digital summits in the region since 2018 and a joint Digital 

Agenda for the Western Balkans drafted by the European Union and the six 

Western Balkan economies. As such, the region has been preparing for 

enhancing digital infrastructure and its use.  

Moreover, (Bieber, 2020) conclude that, across the region, there has been 

a marked increase in using the internet to access key services, particularly for 

education, entertainment, social contact and information, whereas increases in 

teleworking, online shopping and e-government have been modest. The scale 

of obstacles faced by citizens across the region vary, but a majority faced at 

least one obstacle in using online services. Overall, citizens have been satisfied 

with online services and, with the exception of education, a majority of those 

who used them would like to continue doing so at the same or higher levels in 

the future. This provides a strong foundation for locking in the digital gains 

made during the pandemic and translating them into a sustainable digital 

transformation of the Western Balkans. 

During the workshop number of ML and AI use cases were presented. 

Starting from use cases in languages (translation, speech to text…), Images 

processing, urban living, crop yield forecasting, monitoring, control and 

analytical functions of the marketing mix subject to the supply records of 

companies in the Fast Moving Consumer Goods (FMCG) and the service 

sector, measuring the facial physiological responses, facial muscle activations, 

and motions from the user to recognize emotions, protection of the vulnerable 

Internet users at Human-Computer Interaction level and others. However, the 

literature review gave number of other sectors, particularly for optimizations in 

energy sector, in renewable energy. 
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The workshop gave information that ML and AI in Western Balkan 

countries already moved from the research groups to the implementation in the 

real live within various sectors, as agriculture, urban living, internet use, 

marketing, languages etc.    

 

CONCLUSIONS 

Digital transformation and the green deal are clearly European priorities. 

It is emphasized through the Berlin declaration on Digital Society and Value 

based Digital Government in 2020 and in the European Green Deal in 2019. 

Many resources are and will be available in next years to support achievement 

of these ambitious goals.  

It is also truth that both goals bring many challenges and opportunities. 

EC and EU Member States are already doing a lot in this direction. However, 

examples and good practices and use cases for digital transformation, machine 

learning, deep learning and implementation of artificial intelligence in various 

sectors from emerging startup companies to the governmental level presented 

in second chapter of this paper, clearly show that Western Balkans are not 

lagging behind. 

Digital Transformation together with Artificial Intelligence application 

are already visible in many areas such as: government and public administration 

including public services, agriculture, geospatial sector, urban planning, 

education, banking sector, crisis management etc. It is also evident that more 

and more startups appear in private sector. 

DT and AI could be and should be important factors to boost economic 

recovery and resilience in the future. The Digital transformation can bring 

number of benefits for Western Balkan countries and their citizens, while 

transforming of the governmental and/or local administration services into 

digital services is important direction determined on this research.  

Number of researchers and research groups are active in the field of 

digital transformation, machine learning and artificial intelligence. Some quite 

interesting research activities in various fields of science are presented, 

therefore these advanced techniques find implementation in much wider 

surrounding than informatics itself. 
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The movement from open data to free data is still very big problem, 

therefore data accessibility remains the problem in all Western Balkan 

countries. However not all countries are on same level of development and 

implementation of the digital transformation, machine learning and artificial 

intelligence. The promotion of regional cooperation and establishment of the 

international institutes that will be centers for promoting the excellence in this 

field and will operate regionally is one of the solutions improving the level of 

development in all countries 

The Berlin process should consider the existing potentials in digital 

transformation, machine learning and implementation of the artifactual 

intelligence in various fields and support ongoing process on country level, and 

hopefully number of further initiatives on regional level. Geospatial 

information and location data are more and more part of activities of many 

sectors. Therefore, intensification of cooperation, communication and 

coordination and further work on geospatial information is required to make 

spatial data available for all interested parties. United Nations Global 

Geospatial Information Management (UN GGIM) can be good platform for 

this.   
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