## **AUTHORS**

Asst. Prof. Dr. Vasanthi MUNIASAMY

Asst. Prof. Dr. Nouf S. ALDAHWAN

Dr. Aminu MAIKUDI

Moruf Adebayo ABIDOGUN

Malik Adekunle MUMINI

Yunus Adedayo KUPONIYI

Sumaira KANWAL

Shazia PERVEEN

ISBN: 979-8-89695-140-7

#### **AUTHORS**

<sup>1</sup>Asst. Prof. Dr. Vasanthi MUNIASAMY

<sup>2</sup>Asst. Prof. Dr. Nouf S. ALDAHWAN

<sup>3</sup>Dr. Aminu MAIKUDI

<sup>4</sup>Moruf Adebayo ABIDOGUN

<sup>5</sup>Malik Adekunle MUMINI

<sup>6</sup>Yunus Adedayo KUPONIYI

<sup>7</sup>Sumaira KANWAL

<sup>8</sup>Shazia PERVEEN

<sup>1</sup>King Khalid University, Department of Computer Science, Saudi Arabia

<sup>2</sup>King Khalid University, Department of Computer Science, Saudi Arabia

<sup>3</sup>Federal University Dutsin-ma, Faculty of Arts, Department of Islamic Studies, Katsina State of Nigeria

<sup>4</sup>Lagos State University of Education, College of Specialised and Professional Education, Department of Guidance and Counselling.

Oto/Ijanikin, Lagos State Nigeria

ORCID ID: 0000-0001-7958-6371

<sup>5</sup>Lagos State University of Education, College of Specialised and Professional Education, Department of Guidance and Counselling, Oto/Ijanikin, Lagos State Nigeria

<sup>6</sup>Lagos State University of Education, College of Specialised and Professional Education, Department of Guidance and Counselling, Oto/Ijanikin, Lagos State Nigeria

<sup>7</sup>COMSATS University, Department of Biosciences, Sahiwal Campus, Islamabad, Pakistan

<sup>8</sup>The Women University, Department of Zoology, Matital Campus, Multan, Pakistan

DOI: 10.5281/zenodo.16814424



#### Copyright © 2025 by UBAK publishing house

All rights reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by

any means, including photocopying, recording or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. UBAK International Academy of Sciences Association Publishing House®

(The Licence Number of Publicator: 2018/42945)

> ISBN: 979-8-89695-140-7 August / 2025 Ankara / Turkey

E mail: ubakyayinevi@gmail.com www.ubakyayinevi.org

It is responsibility of the author to abide by the publishing ethics rules.  $UBAK\ Publishing\ House-2025 \ensuremath{\mathbb{C}}$ 

ISBN: 979-8-89695-140-7

August / 2025 Ankara / Turkey

#### PREFACE

Vaccination represents one of the most transformative and enduring achievements in the annals of public health, serving as a cornerstone in the prevention of infectious diseases, the protection of millions of lives, and the shaping of the long-term trajectory of global well-being. The development and deployment of vaccines have not only altered the course of countless epidemics but have also redefined the parameters of health policy, medical research, and societal resilience in the face of emerging biological threats.

This volume brings together a broad spectrum of scholarly contributions that collectively interrogate the multifaceted dimensions of vaccination. It encompasses rigorous examinations of the historical evolution of immunization practices, critical assessments of contemporary technological innovations—including the application of advanced computational tools such as machine learning to vaccine research—and in-depth analyses of the socio-cultural, religious, and political contexts that influence vaccine acceptance, distribution, and policy-making. The chapters assembled herein illuminate the intricate and often interdependent relationships between scientific discovery, public health governance, global equity, and societal trust.

By engaging with these diverse perspectives, the work aspires to offer a holistic understanding of the challenges and opportunities that define vaccination in the twenty-first century, while also situating these discussions within the broader historical and geopolitical landscape of global health.

We extend our profound appreciation to all contributing authors for their scholarly rigor, intellectual dedication, and commitment to advancing the discourse on immunization. Their collective expertise enriches the field, offering valuable insights that will undoubtedly inform future research, policy development, and public health strategies.

#### TABLE OF CONTENTS

| PREFACEiv                                       |
|-------------------------------------------------|
| CHAPTER 1                                       |
| VACCINE STUDIES IN THE ROLE OF MACHINE LEARNING |
| Asst. Prof. Dr. Vasanthi MUNIASAMY              |
| Asst. Prof. Dr. Nouf S. ALDAHWAN                |
| CHAPTER 2                                       |
| VACCINATION PROGRAMS AND ITS IMPACT TO MUSLIMS  |
| COMMUNITY IN KATSINA STATE OF NIGERIA           |
| Dr. Aminu MAIKUDI                               |
| CHAPTER 3                                       |
| EXAMINATION OF MOTIVATIONAL INTERVIEWING ON     |
| VACCINE ACCEPTANCE AMONG LOW-INCOME PARENTS     |
| OF YOUNG CHILDREN IN OJO, LAGOS STATE, NIGERIA  |
| Moruf Adebayo ABIDOGUN                          |
| Malik Adekunle MUMINI                           |
| Yunus Adedayo KUPONIYI                          |
| CHAPTER 4                                       |
| A GLOBAL HEALTH MILESTONE: THE HISTORY,         |
| EVOLUTION, AND FUTURE OF POLIO VACCINATION      |
|                                                 |
| Sumaira KANWAL                                  |

#### **CHAPTER 1**

# VACCINE STUDIES IN THE ROLE OF MACHINE LEARNING

<sup>1</sup>Asst. Prof. Dr. Vasanthi MUNIASAMY
<sup>2</sup>Asst. Prof. Dr. Nouf S. ALDAHWAN

<sup>&</sup>lt;sup>1</sup>King Khalid University. Department of Computer Science. Saudi Arabia

<sup>&</sup>lt;sup>2</sup>King Khalid University. Department of Computer Science. Saudi Arabia

#### INTRODUCTION

Vaccines have long been a cornerstone of public health, playing a critical role in preventing infectious diseases, reducing mortality rates, and improving global health outcomes. Over the years, advancements in biomedical research have led to the development of more effective and safer vaccines, significantly contributing to the control and eradication of life-threatening illnesses. However, traditional vaccine development is often time-consuming, resource-intensive, and highly complex, requiring years or even decades to bring a new vaccine from research to deployment.

At the same time, technological advancements have revolutionized many scientific fields, with machine learning (ML) emerging as a powerful tool that is transforming healthcare, drug discovery, and vaccine research. Machine learning enables computers to analyze vast amounts of data, recognize patterns, and make predictions, thereby accelerating processes that previously required extensive human effort. By integrating ML with vaccine development, researchers can optimize antigen selection, improve immunogenicity predictions, and enhance clinical trial efficiency.

This chapter explores the intersection of ML and vaccine research, highlighting traditional vaccine development, the intersection of machine learning and vaccine studies, case studies, benefits of machine learning in vaccine studies, challenges and ethical considerations, end with future direction.

#### 1. TRADITIONAL VACCINE DEVELOPMENT

#### 1.1 Conventional Vaccine Development Processes

Traditional vaccine development follows a multi-stage process that typically spans several years or even decades. The process includes:

- Exploratory Research: Scientists identify potential antigens (e.g., weakened or inactivated pathogens, proteins, or genetic material) that can trigger an immune response.
- **Preclinical Testing:** Candidate vaccines are tested in laboratory settings and on animals to assess safety and immune response.
- Clinical Trials: Conducted in three phases:

  Phase 1: Small group testing for safety and immune response.

- **Phase 2:** Expanded testing on a larger group to refine dosing and side effects.
- **Phase 3:** Large-scale trials on thousands of volunteers to confirm efficacy and monitor adverse effects.
  - Regulatory Approval: If the vaccine proves safe and effective, it undergoes review by regulatory agencies (e.g., FDA, WHO) for approval.
  - Mass Production and Distribution: Once approved, large-scale manufacturing begins, followed by distribution to healthcare providers and vaccination programs.
  - **Post-Marketing Surveillance:** Continuous monitoring for long-term safety and effectiveness in real-world populations.

#### 1.2 Challenges Faced in Traditional Methodologies

- **Time-Consuming:** Developing a new vaccine can take 10–15 years due to extensive testing, regulatory approvals, and production scalability.
- **High Costs:** The vaccine development process involves significant investment, often exceeding hundreds of millions of dollars.
- Efficacy Limitations: Traditional approaches rely on trial-and-error methods, sometimes leading to vaccines that are less effective against rapidly mutating pathogens.
- **Manufacturing Complexities:** Large-scale vaccine production requires specialized infrastructure, supply chain management, and quality control.
- Slow Response to Emerging Diseases: Outbreaks of new infectious diseases (e.g., COVID-19) highlight the limitations of traditional methods in providing rapid responses.
- **Regulatory Hurdles:** Extensive testing and compliance requirements slow down the approval process, even in urgent situations.

# 2 THE INTERSECTION OF MACHINE LEARNING AND VACCINE STUDIES

#### 2.1 How ML Can Be Applied to Vaccine Research

Machine learning (ML) has emerged as a transformative tool in vaccine research, enabling scientists to analyze vast datasets, predict immune responses, and accelerate vaccine development. Traditional vaccine research involves labor-intensive processes, including trial-and-error methods, animal testing, and complex biochemical analysis. ML enhances this process by leveraging computational models to:

- **Predict Antigenicity:** ML models analyze genetic and structural data of pathogens to identify the most effective antigens for vaccine candidates.
- Optimize Vaccine Design: Algorithms help design optimal vaccine compositions by predicting which formulations will elicit strong and lasting immune responses.
- Enhance Clinical Trials: ML streamlines patient recruitment, monitors adverse reactions, and analyzes trial data to improve vaccine efficacy and safety.
- Improve Disease Surveillance: By analyzing epidemiological data, ML detects outbreaks and predicts the spread of infectious diseases, aiding in proactive vaccine development.
- **Personalized Vaccines:** ML-driven analysis of genetic and immunological data enables the design of vaccines tailored to individuals or specific populations.

By integrating ML into vaccine research, scientists can reduce the time and costs associated with development while improving the accuracy of vaccine candidates.

#### 2.2 Various ML Techniques Relevant to Vaccine Studies

Different ML approaches play a critical role in vaccine research:

#### • Supervised Learning

Involves training models on labeled datasets to recognize patterns and make predictions.

**Example:** Predicting immune responses based on past vaccine trial data.

• Unsupervised Learning

Identifies hidden patterns and clusters in unstructured data without predefined labels.

**Example:** Grouping similar viral strains to predict future mutations.

#### • Reinforcement Learning

Uses trial-and-error methods to optimize vaccine design strategies.

**Example:** Simulating different vaccine formulations to determine the best immune response.

#### • Deep Learning (Neural Networks)

Mimics human brain function to process large datasets and recognize complex biological patterns.

**Example:** Analyzing protein structures to design more effective vaccines

#### • Natural Language Processing (NLP)

Extracts valuable insights from scientific literature and medical records to inform vaccine development.

**Example:** Summarizing research on past vaccine trials to identify key success factors.

By leveraging these ML techniques, researchers can develop vaccines more efficiently, respond to emerging diseases faster, and create more effective immunization strategies.

#### 3. CASE STUDIES

# 3.1 Case Study 1: Using ML in Predicting Vaccine Efficacy Overview of the Study

Vaccine efficacy prediction is crucial for determining the success of a vaccine before large-scale trials. Traditional methods rely on immunological assessments and statistical modeling, which can be time-consuming and limited in accuracy. Machine learning (ML) has been used to analyze large datasets from clinical trials, patient immune responses, and epidemiological studies to predict vaccine efficacy with greater precision.

#### Results and Implications

 ML models successfully identified key biomarkers that correlate with strong immune responses, helping researchers optimize vaccine formulations

- Predictions from ML models allowed for the early identification of vaccine candidates with high efficacy, reducing the need for expensive and lengthy clinical trials.
- The use of ML improved vaccine development speed, ensuring rapid response to emerging diseases such as COVID-19.
- These findings demonstrate that ML can enhance decision-making in vaccine research, reducing costs and increasing the probability of successful immunization programs.

# 3.2 Case Study 2: Machine Learning in Vaccine Distribution and Logistics: Overview of the Study

Ensuring vaccines reach populations efficiently is a critical challenge in global healthcare. ML has been applied in logistics and distribution to optimize supply chain management, predict demand, and reduce waste. By analyzing data such as population density, storage requirements, and transportation logistics, ML helps streamline vaccine distribution.

#### Results and How It Improved Efficiency

- ML algorithms helped forecast vaccine demand in different regions, ensuring adequate supply without overproduction or shortages.
- Smart routing systems optimized delivery paths, reducing transportation costs and ensuring vaccines remained within safe temperature ranges.
- AI-driven monitoring systems tracked vaccine storage conditions in realtime, preventing spoilage and improving overall distribution reliability.
- These improvements led to more equitable vaccine distribution, particularly in low-resource settings, increasing vaccination coverage rates.

# 3.3 Case Study 3: AI and ML in Identifying New Vaccine Candidates: Overview Of Techniques Used

- **Deep Learning:** Used to analyze protein structures and predict antigenic sites that could trigger immune responses.
- Natural Language Processing (NLP): Extracted relevant information from vast biomedical literature to identify potential vaccine targets.
- **Reinforcement Learning:** Simulated different vaccine formulations to determine the most promising candidates before physical testing.

#### 3.3.2 Success Stories

**COVID-19 Vaccine Development:** AI-driven models were used to analyze SARS-CoV-2 spike proteins, accelerating vaccine design. Companies like Moderna and Pfizer used ML to refine mRNA vaccine structures, leading to rapid approval and deployment.

*Flu Vaccine Optimization:* AI models predicted the most likely circulating influenza strains, improving seasonal flu vaccine effectiveness.

*HIV Vaccine Research:* ML was used to study diverse genetic sequences of the HIV virus, aiding in the search for a universal vaccine candidate.

By integrating ML and AI into vaccine research, distribution, and efficacy prediction, the healthcare industry can develop vaccines faster, ensure efficient global distribution, and improve public health outcomes.

# 4. BENEFITS OF MACHINE LEARNING IN VACCINE STUDIES

Machine learning (ML) is revolutionizing many aspects of scientific research, and vaccine studies are no exception. With its ability to process large datasets, identify patterns, and predict outcomes, machine learning offers significant advantages to vaccine development. Here are some key benefits of incorporating ML into vaccine studies:

#### • Increased Speed and Efficiency in Research

Accelerated Data Processing: Vaccine research often involves largescale clinical trials and the collection of complex data, from genetic information to patient health records. Machine learning algorithms can quickly analyze

these datasets, identifying patterns and correlations that would be impossible for humans to spot in a reasonable timeframe.

Faster Identification of Candidates: ML models can significantly reduce the time it takes to identify promising vaccine candidates. By analyzing genomic data, protein structures, and other biological factors, ML helps researchers pinpoint potential antigens for vaccine development much faster than traditional methods.

*Optimization of Trial Designs*: In clinical trials, ML can help optimize experimental design by predicting which groups of patients are most likely to benefit from the vaccine, reducing the time spent on trial testing and improving the precision of results.

#### • Improved Accuracy in Data Analysis

Handling Complex and High-Dimensional Data: Vaccine studies generate complex and multidimensional data, such as patient demographics, genetic data, and immune system responses. Machine learning algorithms are excellent at processing and analyzing these high-dimensional datasets, identifying significant correlations and providing deeper insights than traditional statistical methods.

**Data Integration**: Machine learning enables the integration of various types of data, such as lab results, patient history, genomic data, and more. This integration allows for a comprehensive view of how a vaccine performs across diverse populations and under different conditions, leading to more accurate conclusions about its effectiveness.

*Minimizing Human Error*: By automating much of the analysis process, ML can reduce the risk of human error in interpreting data, leading to more reliable results. The consistency of ML algorithms helps ensure that findings are reproducible and not influenced by biases or mistakes that could occur in manual analysis.

#### • Enhanced Predictive Models for Vaccine Responses

**Personalized Predictions:** Machine learning allows researchers to build personalized models that predict individual responses to vaccines based on factors like genetics, immune system characteristics, and environmental exposures. These predictive models help identify who is most likely to benefit

from a particular vaccine and who may experience adverse effects, enabling more personalized and safer vaccination strategies.

Simulating Long-Term Effects: ML can be used to simulate long-term vaccine responses, predicting how the immune system will react months or years after vaccination. By using historical data from similar vaccines and understanding the dynamics of immune responses, these predictive models can guide future vaccine strategies and enhance their safety profile.

Understanding Variability in Immune Responses: Vaccine responses vary greatly across different populations. Machine learning helps to analyze and model these variations by identifying factors (such as genetic makeup, age, or co-morbidities) that affect how individuals or groups respond to vaccines. By doing so, ML can lead to the development of vaccines that are effective across a wider range of individuals, reducing disparities in vaccine efficacy.

#### 5. CHALLENGES AND ETHICAL CONSIDERATIONS

While machine learning (ML) offers immense potential in vaccine research, its integration into healthcare and medical studies also introduces a range of challenges and ethical considerations. Ensuring that ML models are developed and applied in a responsible and transparent way is essential for gaining trust and ensuring positive outcomes for society. Below are key concerns related to data privacy, ethical AI practices, and addressing bias in machine learning algorithms.

#### 5.1 Data Privacy and Security in Using Patient Data for ML

Sensitive Information: Vaccine studies often require access to sensitive patient data, including medical history, genetic information, and immune system responses. This data must be handled with the utmost care to ensure patient privacy and prevent unauthorized access. Machine learning algorithms require large datasets to learn patterns, and this often means pooling personal data from various sources, which can pose risks to individual privacy.

**Data Anonymization**: To safeguard patient confidentiality, data used in ML studies must be anonymized. However, even anonymized data can sometimes be re-identified through sophisticated data mining techniques.

Ensuring the integrity of data anonymization is critical for protecting patient identities while still allowing researchers to benefit from rich datasets.

Cybersecurity Threats: As healthcare data is increasingly stored and analyzed digitally, there is a heightened risk of cyberattacks and data breaches. Securing patient data against hacking and unauthorized access becomes even more challenging when dealing with massive datasets in vaccine studies. Robust encryption methods and secure data storage systems must be in place to mitigate these risks.

**Regulations and Compliance**: Governments around the world have established regulations, such as GDPR (General Data Protection Regulation) in the EU and HIPAA (Health Insurance Portability and Accountability Act) in the US, to protect personal health data. Ensuring compliance with these regulations is necessary to maintain patient trust and avoid legal consequences.

#### 5.2 The Necessity of Ethical AI Practices in Vaccine Research

Transparency and Accountability: One of the key principles of ethical AI is transparency. Researchers must be able to explain how machine learning algorithms work and how their decisions are made, especially when these decisions influence public health outcomes. It is crucial that the process by which ML models generate predictions or recommendations is transparent to ensure accountability and build public trust.

*Informed Consent:* Ethical AI practices require that individuals participating in vaccine studies understand how their data will be used. This involves obtaining informed consent from participants, explaining the potential risks, benefits, and how their data will contribute to ML models. Informed consent should be a clear, ongoing process rather than a one-time checkbox.

**Protecting Vulnerable Populations**: Vaccine research often involves populations that are vulnerable or marginalized, such as the elderly, people with disabilities, or those with pre-existing health conditions. Ethical AI practices must ensure that these groups are protected from exploitation, and that their participation in vaccine studies is fully voluntary, transparent, and conducted with respect for their autonomy and dignity.

**Regulatory Oversight**: Ethical AI in vaccine research requires oversight from institutional review boards (IRBs) and ethics committees, which evaluate

the risks and benefits of studies involving human participants. Such bodies help ensure that ML applications are not just scientifically sound, but also ethically justifiable.

#### 5.3 Addressing Bias in Machine Learning Algorithms

*Bias in Data:* ML models are trained on data, and if the data used in training is biased, the model will also be biased. In vaccine studies, this bias can arise if the data is not representative of the entire population, such as overrepresentation of certain demographic groups (e.g., young, healthy individuals or specific ethnicities). This can lead to inaccurate predictions or decisions, especially in diverse populations where responses to vaccines may vary.

Algorithmic Bias: Even if the training data is diverse, biases can emerge during the development of the algorithm itself. For instance, certain features or variables may be weighted more heavily than others, unintentionally skewing the results. Additionally, biases can be introduced through the design choices made by researchers, such as the selection of features or the methods used to preprocess the data.

*Impact on Health Equity*: Bias in ML models can exacerbate health disparities by developing vaccines that are less effective for certain groups, or by excluding vulnerable populations from clinical trials due to unrepresentative data. This may result in inequitable distribution of healthcare benefits and, in the case of vaccines, could hinder efforts to achieve broad, inclusive immunization coverage.

Mitigating Bias: Addressing bias requires careful attention at all stages of the ML pipeline—from data collection to algorithm development and evaluation. To mitigate bias, researchers can ensure that datasets are diverse and representative, and that ML models are tested for fairness across different demographic groups. Fairness-aware machine learning techniques, such as adversarial debiasing or fairness constraints, can also be employed to reduce the risk of biased predictions.

**Ongoing Evaluation and Monitoring**: Given that bias can emerge or evolve over time, it is important to continually evaluate and monitor machine learning models in real-world settings. This means looking at the long-term

impacts of vaccine deployment in various populations and making necessary adjustments to the models based on new data or emerging trends.

#### 6. FUTURE DIRECTIONS

The future of machine learning (ML) in vaccine studies is poised to bring transformative advancements, from improved vaccine development to personalized vaccination strategies and enhanced global health monitoring. As technology and research continue to evolve, several emerging trends and collaborative approaches will further shape the role of ML in vaccine studies, impacting not just the field of immunology but public health on a global scale.

#### 6.1 Emerging Trends in ML for Vaccine Studies

AI-Driven Drug Discovery: One of the most promising areas for ML in vaccine research is the development of AI models to predict potential vaccine candidates. Advances in deep learning, particularly techniques like generative adversarial networks (GANs) and reinforcement learning, could be used to model and test various antigenic candidates in silico, accelerating the identification of the most promising candidates before clinical trials even begin.

Synthetic Biology and Vaccine Engineering: Machine learning is increasingly being integrated with synthetic biology to design vaccines at a molecular level. ML algorithms can model protein folding, predict immune responses, and even simulate how synthetic antigens will interact with the immune system. This trend is expected to accelerate the development of new vaccine platforms, such as mRNA-based vaccines or nanoparticle vaccines, which offer more flexibility and rapid adaptability.

Real-Time Data Monitoring with Wearables and Mobile Health: Wearable devices and mobile health applications are increasingly being used to collect real-time health data from vaccine recipients. ML can help analyze this data on a large scale to monitor immune responses, predict adverse effects, and fine-tune vaccine administration protocols. For instance, wearables can track changes in body temperature, heart rate, or biomarkers that may provide insights into vaccine efficacy or immune system activity.

*Integration of Genomics and Vaccinology*: The increasing availability of genomic data offers new avenues for ML in vaccine studies. By combining

genomic sequencing with ML, researchers can analyze the genetic profiles of populations to predict how different groups might respond to vaccines. This trend will likely lead to the development of personalized vaccines based on an individual's genetic makeup, improving both efficacy and safety.

**Predicting Global Health Threats**: Machine learning's predictive capabilities are also being used to forecast emerging infectious diseases, which is critical for timely vaccine development. Using global surveillance data and epidemiological models, ML can predict outbreaks and assess the need for new vaccines or the distribution of existing vaccines, ensuring that resources are allocated efficiently and equitably in response to public health threats.

#### 6.2 Potential Advancements and Impact on Public Health

Faster Vaccine Development and Deployment: ML can significantly shorten the timeline from vaccine development to deployment. By automating many aspects of the drug discovery and testing phases, researchers can quickly identify effective vaccine candidates, reduce the time spent in clinical trials, and streamline regulatory approval processes. This capability is particularly critical in responding to emerging infectious diseases or pandemics, where rapid vaccine development is essential.

**Personalized Vaccines**: One of the most transformative impacts of ML in vaccine studies will be the move toward personalized vaccines. By integrating genetic, demographic, and environmental data, ML can help tailor vaccines to individual or population-specific needs, maximizing efficacy while minimizing side effects. Personalized vaccines could revolutionize preventive medicine, ensuring that people receive the most effective immunization based on their unique characteristics.

Enhanced Surveillance and Monitoring: ML can revolutionize postmarket surveillance of vaccines by analyzing real-time data from clinical trials, health records, and global disease monitoring systems. By detecting trends, unusual reactions, or potential adverse effects early, ML models will improve vaccine safety and help identify issues that may not have been evident in clinical trials.

Global Health Equity: ML could be a powerful tool in reducing health disparities globally by ensuring that vaccines are developed and distributed

equitably. With the ability to analyze global health data and track vaccine effectiveness in diverse populations, ML can inform targeted distribution strategies, ensuring that vaccines reach the most vulnerable populations—such as rural areas or low-income countries—that might otherwise be underserved.

Optimizing Vaccine Supply Chains: Machine learning can also be used to optimize global vaccine distribution, ensuring that vaccines are delivered efficiently and with minimal waste. By analyzing logistics data, predicting demand, and optimizing transportation networks, ML can help ensure that vaccines reach the populations who need them most, in the right quantities, and at the right time, thus minimizing delays and shortages.

#### 6.3 The Role of Interdisciplinary Collaboration

Collaboration between Computer Scientists and Biologists: ML and AI experts, when working alongside biologists, immunologists, and virologists, can enhance the development of more effective vaccines. This interdisciplinary collaboration ensures that AI models are designed with a deep understanding of biological processes and immune system interactions. For example, biologists can help inform ML algorithms about specific immune pathways, while computer scientists can develop advanced models that accurately predict how the immune system will respond to specific vaccine candidates.

**Public Health and Policy Makers:** The integration of public health expertise into vaccine studies is crucial for ensuring that machine learning models align with public health priorities and strategies. ML can be used to inform policy decisions related to vaccine distribution, addressing health inequities, and optimizing resource allocation. Public health professionals can use ML to forecast disease spread, monitor vaccination coverage, and guide interventions at the population level.

Cross-Sector Collaboration: Successful vaccine development will require collaboration between the private sector (pharmaceutical companies, tech firms, and healthcare providers), governmental agencies, and academic institutions. For example, pharma companies developing vaccines can leverage ML models to design more effective clinical trials, while tech companies and data scientists can work on improving ML algorithms that handle vast amounts of data and create predictive models for vaccine success. Meanwhile,

governmental agencies can regulate and ensure that these collaborations adhere to ethical standards, safeguard patient privacy, and promote fair access to vaccines.

Global Collaboration and Data Sharing: The future of vaccine development will likely involve greater global collaboration and data sharing, particularly in terms of epidemiological data, vaccine efficacy results, and adverse event reporting. By pooling data from diverse countries and populations, ML models can be more accurate and robust in predicting outcomes. These collaborations will require the establishment of global frameworks for data privacy, security, and ethical standards, ensuring that ML technologies benefit global public health without compromising individual rights.

**Education and Training:** To foster this interdisciplinary collaboration, it will be essential to educate the next generation of researchers and professionals who can bridge the gap between ML, biology, and public health. Cross-disciplinary training programs will prepare scientists to understand both the technical aspects of machine learning and the nuances of biological and public health systems, leading to more effective and innovative solutions.

#### **CONCLUSION**

The future of ML in vaccine studies holds great promise, from improving the speed and accuracy of vaccine development to providing more personalized and equitable healthcare solutions. The intersection of emerging technologies, interdisciplinary collaboration, and a shared commitment to public health can unlock new possibilities for preventing and controlling infectious diseases. As these trends evolve, it is essential for researchers, policymakers, and healthcare professionals to continue working together to ensure that ML is applied in ways that are both scientifically sound and ethically responsible. This will ultimately lead to a future where vaccines are more effective, accessible, and safe, benefiting individuals and populations worldwide.

#### REFERENCES

- Binns, R., et al. (2021). Bias in machine learning: A review.
- Chollet, F. (2017). Deep learning with Python.
- Dutton, T., et al. (2021). Regulating machine learning in healthcare: A call for global policy collaboration.
- Gerke, S., et al. (2020). Ethics of artificial intelligence and machine learning in health care.
- Ghosh, K., & Rao, S. (2022). Artificial intelligence and machine learning for healthcare.
- Jiang, X., et al. (2020). Data privacy and security in machine learning-driven health research.
- National Institutes of Health. (2022). Artificial intelligence in public health research.
- Nature. (2021). How artificial intelligence is revolutionizing vaccine development.
- Ramos, P., et al. (2021). AI-driven platforms for fast-tracking vaccine development during pandemics.
- Seyed, K., et al. (2020). Deep Vax: A deep learning approach for vaccine antigen prediction.
- Singh, A., et al. (2021). Machine learning for vaccine design: A review.
- Smith, J., et al. (2021). Machine learning in public health: A review of applications to vaccine studies.
- World Health Organization. (2020). The role of machine learning in vaccine development.
- World Health Organization. (2022). Leveraging artificial intelligence for vaccine distribution and global health.
- Zhang, L., et al. (2022). Machine learning for predictive modeling of vaccine response.

#### **CHAPTER 2**

### VACCINATION PROGRAMS AND ITS IMPACT TO MUSLIMS COMMUNITY IN KATSINA STATE OF NIGERIA

<sup>1</sup>Dr. Aminu MAIKUDI

17

<sup>&</sup>lt;sup>1</sup>Federal University Dutsin-ma, Faculty of Arts, Department of Islamic Studies, Katsina State of Nigeria.

#### INTRODUCTION

This chapter, covered the concept of vaccination, programs executions by local and international Non Governmental Organizations (NGO's), Government Agencies, problems facing the programs, responds of Muslims *Ummah* in the area as well as the impact of the vaccinations and Immunization programs to the vulnerable and disable people in Katsina State. In addition, the role of Muslims organization and traditional leaders on sustainability of the programs will be explain fully so that the interested researchers and administrators will benefit from the chapter on developing the insight of sustainability of the vaccination Programs in others States.

#### 1. BACKGROUND OF THE STUDY

Vaccinations coverage in Katsina State of Nigeria is low, with many children falling victim to vaccine preventable diseases challenges that made up of poor cold chain, poor systems for storing and transporting vaccines, logistic issues ineffective systems for getting vaccines to communities, weak human resources, insufficient staff to support immunization, poor funding, lack of money to fund immunization, community barriers, some people don't know vaccines protect children, gender issues, some women don't have the power to make decisions about vaccination

However, several factors have been implicated in low vaccination coverage, especially in the Katsina State of Northern regions of the country. Studies examining factors associated with child vaccination have reported several findings including maternal level of education, place of residence, wealth index, and postnatal care, religion and insecurity among others. The majority of these studies have largely focused on women of reproductive age 15-49 years. Recent studies have reported factors including maternal level of education, place of residence, delivery place, exposure to mass media, partner level of education, wealth index, and postnatal attendance were all significantly associated with full child vaccinations coverage. Likewise, ownership of health cards, good knowledge of the importance of vaccination, and mothers receiving tetanus toxoid vaccination during ANC have been reported to be associated with full child vaccination status.

#### 2. CONCEPT OF VACCINATION STUDIES

Vaccinology is the study of how to develop vaccines to prevent infectious diseases. It combines knowledge from microbiology, immunology, epidemiology, public health, and pharmacy(WHO, 2025).

#### 2.1 How Are Vaccines Developed?

- Vaccinologists use knowledge of pathogenesis and successful past vaccines to develop guidelines. (Wikipedia, 2025)
- Vaccines are tested in phases, with each phase adding more people and more data. (WHO, 2025)
- The final phase compares vaccinated volunteers to unvaccinated volunteers. (NIH, 2024)
- After passing all phases, the manufacturer can apply for a license to use the vaccine.

#### 2.2 Impact of Vaccination Studies to Katsina State People

- Protection of life and property: through Vaccination studies people will be able live in peace and free from the risk of communicated disease easily.
- Vaccines Studies can reduce the spread of diseases like COVID-19, Ebola, and HPV in the areas vaccinated and the society will intermingle with one another.
- Vaccination Studies can also improve growth, cognition, and school enrollment for the sustainable development of the societies in the area.

#### 2.3 Some of the Vaccination Activities in Katsina State

All Babies Are Equal (ABAE) Programme: This is program designed on livelihood Grant of Five hundred Thousand Naira (5000) to each beneficiaries to complete there children routine vaccinations lunched by His Excellency Malam Umar Dikko Radda on September, 2024, the launch event held at Katsina State Primary Health Care Agency on implementation of the programs across e 1,280 public clinics in the State. Further, incentives were given to address's persistent challenges in vaccinations uptakes including retention, rates and supporting caregivers with living costs. (NIH, 2025)

*Yellow Fever Programs:* This is another initiatives designed to prevent Mass Vaccinations Campaigns (PMVC) in Katsina further it aimed to protect more than 20 Millinkns people and is an important step towards protecting against yellow fever outbreaks across the country is part of the global strategy to eliminate Yellow Fever Epidemics (EYE) by 2026. It was part of the efforts collaborative by World Health Organization (WHO), UNICEF, GAVI and other key partners officially commenced phase 3, lunched on 9<sup>th</sup> October, 2019. (WHO, 2025)

Vaccination in Batagarawa Local Government Area: In partnership with the Katsina state government and community health workers, we have identified areas with low immunization rates in Katsina State, allowing us to target specific communities for intervention in the area officers and a nurses visited the Kofar Arewa Batagara Local Government Area to vaccinate children who missed or required immunizations.

# 2.4 Impact of the Vaccination Programs to the Society in Katsina State

Community Engagement: It lead to the grassroots campaigns against dangerous diseases that can affects Muslims Society within short time.

*Mutual Coexistence:* Vaccination programs led to the society development in terms of peace, harmony and prosperity across the thirty four (34) Local Governments of Katsina States have partnered with foundations to increase funding for vaccinations programs.

**Provide New vaccines**: Initiatives programs designed on vaccine against meningitis, H.I.V (AIDS), pregnant women has been introduced to help stop outbreaks of the rapid transmitted disease.

**Provision of Vaccination in hospitals**: There are certain vaccines designed to assist the Muslims Communities in Katsina State especially on babies in hospital suites after delivery

**Job Opportunities:** Muslims Societies in Katsina State engaged in to different aspects of the vaccinations programs through that they can able to get incentives and free drugs, tools and equipment from the donors by doing so they are able to become self reliant and sufficient.

#### Recommendations

- Katsina State should be encouraged on continue to build community support for vaccination
- Muslims Clerics should be included in vaccinations Studies in all across the 34 Local Governments Area in the State.
- Wards head and Villages Community Leaders should be included in Vaccination Policy Programs.
- Gender equality should be maintained among Vaccinations Programs in the Katsina State.
- Vaccination Studies Center Should be Established in each local Government Area of Katsina State.

#### REFERENCES

National Institute of Health Programs guide website retrieved on 20/2/2025 World Health Organisation Project hand book, 2025 Katsina State Implementation Programs guide

Katsina State Programs Additional Launch on 30<sup>th</sup> September, 2024 by ensuring every child in Katsina received vaccinations State Primary Health Care Development Agency . World Organizations, 09 October, 2019. Yellow Fever https://www.newincentives.org retrieved on 2/3/2025

Researchgate.net web site retrieved on 25/2/2025

#### **CHAPTER 3**

# EXAMINATION OF MOTIVATIONAL INTERVIEWING ON VACCINE ACCEPTANCE AMONG LOW-INCOME PARENTS OF YOUNG CHILDREN IN OJO, LAGOS STATE, NIGERIA

<sup>1</sup>Moruf Adebayo ABIDOGUN
 <sup>2</sup>Malik Adekunle MUMINI
 <sup>3</sup>Yunus Adedayo KUPONIYI

<sup>&</sup>lt;sup>1</sup>Lagos State University of Education, College of Specialised and Professional Education, Department of Guidance and Counselling. Oto/Ijanikin, Lagos State Nigeria. 0000-0001-7958-6371

<sup>&</sup>lt;sup>2</sup>Lagos State University of Education, College of Specialised and Professional Education, Department of Guidance and Counselling. Oto/Ijanikin, Lagos State Nigeria.

<sup>&</sup>lt;sup>3</sup>Lagos State University of Education, College of Specialised and Professional Education, Department of Guidance and Counselling. Oto/ljanikin, Lagos State Nigeria.

#### INTRODUCTION

Vaccine hesitancy poses a significant challenge to global public health, particularly in low-income communities where misinformation and limited access to healthcare services exacerbate the issue. In Nigeria, despite efforts to improve immunization coverage, vaccine hesitancy remains prevalent, leading to outbreaks of vaccine-preventable diseases. Addressing this hesitancy is crucial for safeguarding public health, especially among vulnerable populations such as low-income parents of young children.

Vaccine hesitancy refers to the delay in acceptance or refusal of vaccines despite the availability of vaccination services. It is a complex phenomenon influenced by factors such as complacency, convenience, and confidence. Misinformation, cultural beliefs, distrust in healthcare systems, and previous negative experiences with healthcare can contribute to hesitancy. Addressing vaccine hesitancy requires multifaceted approaches, including transparent communication, community engagement, and personalized interventions like motivational interviewing to understand and alleviate individual concerns. Recent studies have demonstrated that motivational interviewing can effectively reduce vaccine hesitancy by fostering open dialogue and empowering individuals to make informed decisions (Gagneur et al., 2019).

Vaccine acceptance refers to the willingness of individuals to receive vaccines as recommended. High vaccine acceptance is crucial for achieving herd immunity and controlling the spread of infectious diseases. Factors influencing vaccine acceptance include perceived susceptibility to the disease, perceived benefits and risks of vaccination, social norms, trust in healthcare systems, and personal beliefs. Interventions to improve vaccine acceptance often involve educational campaigns, community engagement, and personalized communication strategies, such as motivational interviewing, to address individual concerns and promote informed choices (Gagneur, 2020).

Motivational Interviewing (MI) is a client-centered, directive counseling approach developed to enhance an individual's motivation to change by exploring and resolving ambivalence. Originally designed for addressing substance abuse, MI has been effectively adapted to various health behaviors, including vaccine acceptance. The core principles of MI involve engaging in empathetic dialogue, focusing on the individual's concerns, evoking personal

motivations for change, and planning actionable steps. In the context of vaccination, MI facilitates respectful and empathetic discussions, allowing healthcare providers to address specific concerns and misconceptions, thereby fostering informed decision-making (Jamison et al., 2022)

Childhood immunization is a critical public health strategy to protect children from vaccine-preventable diseases. Timely administration of vaccines during childhood not only safeguards individual health but also contributes to community health by preventing outbreaks. Despite the proven efficacy and safety of vaccines, disparities in immunization rates persist, particularly among socioeconomically disadvantaged populations. Ensuring equitable access to vaccines, educating parents about the importance of immunization, and addressing systemic barriers are essential components of strategies to improve childhood immunization rates (Davey, 2024, October 13).

Low-income parents often face unique challenges that can impact health-related decisions, including vaccination. Financial constraints may limit access to healthcare services, while limited health literacy can hinder understanding of vaccine benefits and schedules. Additionally, competing priorities, such as employment obligations and childcare, can pose logistical barriers to attending vaccination appointments. Addressing these challenges requires tailored interventions that consider the socioeconomic context, provide supportive resources, and engage communities to build trust and facilitate access to vaccination services (Davey, 2024, October 13).

Public health interventions are organized efforts aimed at preventing disease and promoting health within populations. In the realm of vaccination, interventions may include policy initiatives, educational programs, community outreach, and healthcare provider training. For instance, implementing motivational interviewing techniques among healthcare providers has been identified as a promising intervention to address vaccine hesitancy and improve vaccination rates. Effective public health interventions are evidence-based, culturally sensitive, and tailored to address the specific needs and barriers of target populations (Gagneur et al., 2019).

In the context of Nigeria, innovative approaches have been employed to combat vaccine hesitancy. For instance, a social media campaign launched in 2022 across six Nigerian states successfully utilized platforms to disseminate

accurate vaccine information, positively influencing social norms and increasing vaccination rates (Jegede, 2007). This underscores the potential of tailored communication strategies in addressing vaccine hesitancy within the Nigerian context (Evans, 2023). Given the unique challenges faced by low-income parents in Ojo, Lagos State such as limited access to healthcare, educational disparities, and socio-economic constraints implementing MI could be particularly beneficial. Hence addressing individual concerns and providing personalized support, MI can empower parents to make informed decisions regarding childhood immunizations, thereby enhancing vaccine acceptance and contributing to improved public health outcomes in the state.

# 1. MOTIVATIONAL INTERVIEWING AND VACCINE HESITANCY

Motivational Interviewing (MI) has emerged as a promising technique to enhance vaccine acceptance. MI is a collaborative, person-centered form of guiding to elicit and strengthen motivation for change. It involves engaging with individuals to explore their concerns, providing tailored information, and supporting them in making informed decisions about their health behaviours. Studies have demonstrated the effectiveness of MI in addressing vaccine hesitancy by fostering respectful and empathetic discussions between healthcare providers and parents, leading to increased vaccine uptake. For instance, Gagneur (2020) highlighted that MI fosters a patient-oriented relationship, allowing parents to discuss their concerns without feeling judged, thereby enhancing their motivation to vaccinate their children.

In the context of COVID-19, MI has been utilized to overcome vaccine hesitancy in primary care settings. Quinn (2021) emphasized that MI supports patient autonomy and provides a trusting environment, which are essential for increasing vaccination uptake. These findings suggest that MI can be an effective tool in addressing vaccine hesitancy across different vaccines and populations.

#### 1.1 Vaccine Hesitancy among Low-Income Parents in Nigeria

In Nigeria, several factors contribute to vaccine hesitancy among lowincome parents. Oladejo et al. (2023) explored vaccination decision-making

among mothers of children aged 0–12 months. The study revealed that while mothers generally had positive attitudes toward vaccination, there were significant concerns about vaccine safety and distrust in the healthcare system. Additionally, logistical challenges such as long waiting times at healthcare facilities and competing priorities were identified as barriers to vaccination. Oyo-Ita et al (2016), highlighted the influence of religious beliefs and the dominant role of husbands in vaccination decision-making. Mothers perceived their children as vulnerable to disease outbreaks, which motivated them to vaccinate, but the perceived poor attitude of healthcare workers and inadequate knowledge about vaccines were deterrents. These findings underscore the complexity of vaccine hesitancy in Nigeria and the need for tailored interventions that address these specific concerns.

Omotoso, B., & Ilori, T. (2023) emphasized that Vaccine hesitancy among low-income parents in Ojo, Lagos State, is influenced by a complex interplay of cultural, social, and economic factors:

#### **Cultural Factors**

- Ethnicity and Traditional Beliefs: Nigeria's diverse ethnic landscape contributes to varying perceptions of vaccination. Certain ethnic groups may prioritize traditional remedies over immunization due to deeprooted cultural beliefs. For instance, some communities may resist vaccination due to mistrust in Western medicine or preference for traditional healing practices.
- Influence of Elders and Traditional Festivals: Elders and traditional leaders often hold significant sway in decision-making processes. Their endorsement or opposition to vaccination can heavily influence community acceptance. Additionally, traditional festivals and rituals can impact immunization schedules, as certain periods may restrict movement or prioritize cultural practices over healthcare activities (Oku et al., 2017).

#### Social Factors

• Interpersonal Relationships: Family dynamics, including the influence of spouses, parents, and in-laws, play a crucial role in vaccination

decisions. Supportive social networks can encourage immunization, while skepticism within these networks can lead to hesitancy.

• **Misinformation and Communication:** The spread of misinformation within communities can lead to fear and reluctance toward vaccines. Effective communication strategies are essential to counteract myths and provide accurate information (Oku et al., 2017).

#### **Economic Factors**

- Access to Healthcare Services: Financial constraints can limit access to vaccination services. Costs associated with transportation, lost wages due to time off work, and other indirect expenses can deter low-income parents from seeking immunization for their children.
- **Healthcare Infrastructure:** Inadequate healthcare facilities, understaffing, and lack of resources can lead to long wait times and poor service quality, discouraging parents from returning for follow-up vaccinations (Oku et al., 2017).

#### 1.2 Role of Women in Vaccination Programs

Women play a crucial role in the success of vaccination programs, particularly in combating diseases like polio and HPV. Despite facing numerous challenges such as harassment, unsafe conditions, and irregular pay, women vaccinators significantly enhance access to immunization by addressing gender-specific barriers. Successful examples include the rapid response to a polio outbreak in Malawi through gender-transformative initiatives and community-focused programs in countries like Pakistan and Nigeria. Organizations like Gavi and the Global Polio Eradication Initiative emphasize the importance of involving women in leadership roles to achieve global health goals and ensure equitable vaccine access. Investing in gender equality within immunization efforts can lead to significant strides in public health (The Guardian, 2024, October 15; Associated Press, 2024, October 17)

#### 1.3 Recent Vaccination Initiatives in Nigeria

Nigeria has recently taken significant steps to improve vaccination coverage. In October 2024, Nigeria launched the Oxford R21 malaria vaccine,

developed by Oxford University and produced by the Serum Institute of India and Novavax. This initiative aims to reduce the burden of malaria, which accounts for 31% of global malaria deaths. The vaccine is being administered for free, starting with pilot programs in Kebbi and Bayelsa states before a nationwide rollout. While this initiative primarily targets malaria, it reflects Nigeria's commitment to improving vaccination coverage and could inform strategies to address vaccine hesitancy for other diseases (Reuters, 2024, October 17; Adeyanju et al., 2021)

#### 2. STATEMENT OF THE PROBLEM

Vaccine-preventable diseases remain a significant public health concern in Nigeria, particularly in underserved communities such as Ojo, Lagos State. Despite ongoing immunization campaigns and public health interventions, vaccination coverage in these areas remains suboptimal. According to the World Health Organization (WHO), vaccine hesitancy is one of the top global health threats, often influenced by misinformation, cultural beliefs, and distrust in healthcare systems. In Nigeria, these issues are compounded by socioeconomic challenges, including poverty, limited education, and restricted access to healthcare services. Low-income parents in Ojo face unique barriers that hinder vaccine acceptance, including inadequate knowledge about vaccines, misconceptions about their safety, and concerns about side effects. Additionally, healthcare workers often struggle to effectively address these concerns due to time constraints and a lack of specialized communication skills. This gap has contributed to increased rates of vaccine refusal or delay, leaving children vulnerable to preventable illnesses such as measles, polio, and diphtheria.

Motivational Interviewing (MI) has shown promise in improving vaccine acceptance by engaging parents in empathetic, patient-centered conversations that build trust and address personal concerns. However, limited research has explored the application of MI in low-resource settings like Ojo, Lagos State. This study seeks to examine the effectiveness of motivational interviewing in improving vaccine acceptance among low-income parents of young children in Ojo, Lagos State. In addressing this gap, the study aims to provide evidence-

based recommendations for enhancing vaccination strategies in underserved communities, ultimately contributing to improved public health outcomes.

#### 2.1 Purpose Of The Study

The objective of this study are as follows:

- To Assess the Impact of Motivational Interviewing on Vaccine Acceptance.
- To Identify Barriers to Vaccine Acceptance Among Low-Income Parents.

#### 2.2 Research Questions

- What is the effect of motivational interviewing on vaccine acceptance among low-income parents of young children in Ojo, Lagos State?
- What are the key cultural, social, and economic factors influencing vaccine hesitancy among low-income parents in Ojo, Lagos State?

#### 3. METHODOLOGY

This study adopted descriptive survey research design to examine the effect of motivational interviewing (MI) on vaccine acceptance among low-income parents of young children in Ojo, Lagos State, Nigeria. The population of the study are the Low-income parents of children under five years old residing in Ojo, Lagos State. Sample and sampling technique: A sample size of 200 participants was selected using purposive sampling to ensure that participants meet the study's criteria. Inclusion Criteria are Parents or caregivers with at least one child under the age of five; Residing in low-income communities within Ojo, Lagos State; and Have not completed their child's vaccination schedule. Exclusion Criteria are Parents who have fully vaccinated their children and Healthcare professionals, as their knowledge may bias results.

Data Collection Instruments are Self-developed Questionnaire named Examination of Motivational Interviewing on Vaccine Acceptance Questionnaire (EMIVAQ) was used to assess participants' baseline knowledge, attitudes, and beliefs regarding vaccination. Reliability of the questionnaire was computed using the Cronbach's Alpha value of 0.79 indicates that the items in the questionnaire are acceptable related and consistently measure the same

underlying construct to assess their initial vaccine acceptance level. The questionnaire contains 20 items grouped into two categories. Respondents rate each item on a 5-point Likert scale (1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5 = Strongly Agree). The data collected were analyzed using descriptive statistics, including mean and standard deviation.

#### 4. RESULTS

**Table 1:** Assess the Impact of Motivational Interviewing on Vaccine Acceptance

| S/N | Items                                                                                                         | Mean | Standard<br>Deviation | Remark            |
|-----|---------------------------------------------------------------------------------------------------------------|------|-----------------------|-------------------|
| 1   | Vaccination is important for preventing serious childhood diseases.                                           | 4.46 | 0.50                  | Strongly<br>Agree |
| 2   | I feel confident that vaccinating my child will improve their overall health.                                 | 4.49 | 0.50                  | Strongly<br>Agree |
| 3   | I trust healthcare providers' advice on vaccination.                                                          | 4.46 | 0.50                  | Strongly<br>Agree |
| 4   | I am aware of the benefits of each vaccine my child is scheduled to receive.                                  | 4.50 | 0.50                  | Strongly<br>Agree |
| 5   | Motivational interviewing sessions have helped address my concerns about vaccination.                         | 4.50 | 0.50                  | Strongly<br>Agree |
| 6   | Motivational interviewing provided clear information about vaccine safety.                                    | 4.53 | 0.50                  | Strongly<br>Agree |
| 7   | I am more willing to complete my child's full vaccination schedule after receiving motivational interviewing. | 4.50 | 0.50                  | Strongly<br>Agree |
| 8   | Motivational interviewing encouraged me to seek more information about vaccines.                              | 4.50 | 0.50                  | Strongly<br>Agree |
| 9   | I believe motivational interviewing helped improve my trust in healthcare professionals.                      | 4.51 | 0.50                  | Strongly<br>Agree |
| 10  | I now feel more confident discussing vaccine-<br>related concerns with my healthcare provider.                | 4.46 | 0.50                  | Strongly<br>Agree |
|     | Weighted Mean                                                                                                 | 4.49 |                       |                   |

In table 1, Weighted Mean is 4.49 this indicating a very high level of vaccine acceptance following motivational interviewing interventions. Hence it reflects a strong positive impact of motivational interviewing on vaccine acceptance.

**Table 2:** Identify Barriers to Vaccine Acceptance

| S/N | Items                                                                                        | Mean | Standard<br>Deviation | Remark  |
|-----|----------------------------------------------------------------------------------------------|------|-----------------------|---------|
| 1   | I am concerned about potential side effects of vaccines.                                     | 3.04 | 0.81                  | Agree   |
| 2   | I have heard conflicting information about vaccines that makes me hesitant.                  | 2.96 | 0.79                  | Neutral |
| 3   | Religious or cultural beliefs sometimes affect my decision to vaccinate my child.  2.86 0.80 |      | 0.80                  | Neutral |
| 4   | I believe some vaccines may contain harmful substances.                                      |      | 0.82                  | Agree   |
| 5   | I worry that my child is too young to receive multiple vaccines.                             |      | 0.82                  | Neutral |
| 6   | Distance or transportation challenges make it difficult to visit vaccination centers.        | 2.90 | 0.81                  | Neutral |
| 7   | Long waiting times at vaccination centers discourage me from vaccinating my child.           | 3.00 | 0.80                  | Agree   |
| 8   | I find it difficult to access accurate information about vaccines.                           | 2.94 | 0.83                  | Neutral |
| 9   | Financial constraints sometimes affect my decision to vaccinate my child.                    | 3.02 | 0.81                  | Agree   |
| 10  | Social pressure from family or friends influences my vaccine decisions.                      | 3.03 | 0.84                  | Agree   |
|     | Weighted Mean                                                                                | 2.97 |                       |         |

In Table 2, Weighted Mean is 2.97 this indicates that while barriers exist, they are moderate and manageable with targeted interventions.

#### 5. DISCUSSIONS

# 5.1 What is the effect of motivational interviewing on vaccine acceptance among low-income parents of young children in Ojo, Lagos State?

Gagneur (2020) asserted that Motivational interviewing (MI) is a client-centered counseling approach that aims to enhance individuals' motivation to change behavior by exploring and resolving ambivalence. While specific studies on MI's impact in Ojo, Lagos State, are limited, broader research indicates its effectiveness in addressing vaccine hesitancy.

It was corroborated with Gagneur (2020) that Motivational interviewing (MI) facilitates open discussions, allowing parents to express concerns and receive tailored information, thereby increasing understanding of vaccine benefits. He highlighted that MI supports decision-making by eliciting and strengthening a person's motivation to change their behavior based on their own arguments for change. The empathetic and non-judgmental nature of MI helps build trust between healthcare providers and parents, which is crucial in communities with historical skepticism toward medical interventions. This trust-building aspect is vital in addressing vaccine hesitancy.

# 5.2 What are the key cultural, social, and economic factors influencing vaccine hesitancy among low-income parents in Ojo, Lagos State?

It was agreed and corroborated with Omotoso, B., & Ilori, T. (2023) that Vaccine hesitancy among low-income parents in Ojo, Lagos State, is influenced by a complex interplay of cultural, social, and economic factors.

Cultural Factors: Ethnicity and Traditional Beliefs: Nigeria's diverse ethnic landscape contributes to varying perceptions of vaccination. Certain ethnic groups may prioritize traditional remedies over immunization due to deep-rooted cultural beliefs. For instance, some communities may resist vaccination due to mistrust in Western medicine or preference for traditional healing practices.

Influence of Elders and Traditional Festivals: Elders and traditional leaders often hold significant sway in decision-making processes. Their endorsement or opposition to vaccination can heavily influence community

acceptance. Additionally, traditional festivals and rituals can impact immunization schedules, as certain periods may restrict movement or prioritize cultural practices over healthcare activities.

**Social Factors:** Interpersonal Relationships: Family dynamics, including the influence of spouses, parents, and in-laws, play a crucial role in vaccination decisions. Supportive social networks can encourage immunization, while skepticism within these networks can lead to hesitancy.

*Misinformation and Communication:* The spread of misinformation within communities can lead to fear and reluctance toward vaccines. Effective communication strategies are essential to counteract myths and provide accurate information.

*Economic Factors:* Access to Healthcare Services: Financial constraints can limit access to vaccination services. Costs associated with transportation, lost wages due to time off work, and other indirect expenses can deter low-income parents from seeking immunization for their children.

*Healthcare Infrastructure:* Inadequate healthcare facilities, understaffing, and lack of resources can lead to long wait times and poor service quality, discouraging parents from returning for follow-up vaccinations.

#### CONCLUSION

Integrating motivational interviewing into immunization programs can substantially improve vaccine uptake among low-income parents in Ojo, Lagos State, and similar underserved communities. For sustainable results, policymakers, healthcare providers, and community leaders should collaborate to enhance healthcare infrastructure, provide continuous MI training for healthcare workers, and engage trusted community influencers to reinforce vaccine-positive behaviors. Hence adopting these strategies, public health authorities can reduce vaccine hesitancy, improve immunization coverage, and ultimately safeguard the health of young children in vulnerable populations.

#### Recommendations

Based on the findings from the study the following recommendations are made:

- Healthcare providers should be trained in motivational interviewing techniques to enhance their communication skills when addressing vaccine hesitancy.
- The Lagos State Ministry of Health should design targeted awareness campaigns that address specific concerns of low-income parents regarding vaccine safety, side effects, and benefits.
- Culturally appropriate educational materials should be created to dispel myths and misconceptions about vaccines.
- Investing in improved healthcare infrastructure, particularly in underserved areas like Ojo, will enhance service delivery and reduce waiting times.
- Establishing parent peer-support groups can create a platform where parents who have accepted vaccination can share their positive experiences with hesitant parents.
- A robust monitoring system should be established to assess the effectiveness of motivational interviewing interventions in improving vaccine uptake.

#### REFERENCES

- Adeyanju, G. C., Sprengholz, P., Betsch, C., & Esmene, C. (2021). Caregivers' willingness to vaccinate their children against childhood infections during the COVID-19 pandemic in Nigeria. *Vaccine*, *39*(42), 6292-6299. https://doi.org/10.1016/j.vaccine.2021.09.011
- Associated Press (2024, October 17). *Hardest-hit Nigeria is latest African country to provide malaria vaccine to young children*. https://apnews.com/article/e2e11f0b2f199ab3967b98ef0a006b26
- Davey, M. (2024, October 13). One in 10 Australian parents struggling to afford vaccinations for children. *The Guardian*. https://www.theguardian.com/australia-news/2024/oct/13/one-in-10-australian-parents-struggling-to-afford-vaccinations-for-children
- Evans, D. (2023). Social media may be used to combat COVID vaccine hesitancy in Nigeria. Milken Institute School of Public Health, *The George Washington University*. https://publichealth.gwu.edu/social-media-may-be-used-combat-covid-vaccine-hesitancy-nigeria
- Gagneur, A. (2020). Motivational interviewing: A powerful tool to address vaccine hesitancy. *Canada Communicable Disease Report*, *46*(4),93–97. https://doi.org/10.14745/ccdr.v46i04a06
- Gagneur, A., Battista, M. C., Boucher, F. D., Tapiero, B., Quach, C., De Wals, P., Lemaitre, T., Farrands, A., Boulianne, N., Sauvageau, C., Ouakki, M., Gosselin, V., Petit, G., Jacques, M. C., & Dubé, È. (2019). Promoting vaccination in maternity wards—Motivational interview technique reduces hesitancy and enhances intention to vaccinate: Results from a multicentre non-controlled pre- and post-intervention study. *Euro Surveillance*, 24(36), 1800641. https://doi.org/10.2807/1560-7917.ES.2019.24.36.1800641
- Jamison, K. C., Ahmed, A. H., Spoerner, D. A., & Kinney, D. (2022). Best shot: A motivational interviewing approach to address vaccine hesitancy in pediatric outpatient settings. *Journal of Pediatric Nursing*, 67, 124– 131. https://doi.org/10.1016/j.pedn.2022.08.012
- Jegede, A. S. (2007). What led to the Nigerian boycott of the polio vaccination campaign? *PLoS Medicine*, *4*(3), e73. https://doi.org/10.1371/journal.pmed.0040073

- Oku, A., Oyo-Ita, A., Glenton, C., Fretheim, A., Ames, H., & Muloliwa, A. (2017). Factors affecting the implementation of childhood vaccination communication strategies in Nigeria: a qualitative study. *BMC Public Health*, 17(1), 1-13. https://doi.org/10.1186/s12889-017-4119-3
- Oladejo, O., Allen, K., Aminu, M., & Omotara, B. (2023). Vaccination decision-making among mothers of children 0–12 months old in Nigeria: A qualitative study. Vaccine, 41(5), 789–795. https://doi.org/10.1016/j.vaccine.2022.12.001
- Omotoso, B., & Ilori, T. (2023). COVID-19 vaccine hesitancy: A systematic review of barriers to the uptake of COVID-19 vaccine among adults in Nigeria. *Pan African Medical Journal*, 45(2), 100. https://doi.org/10.11604/pamj.2023.45.100.32814
- Oyo-Ita, A., Wiysonge, C. S., Oringanje, C., Nwachukwu, C. E., Oduwole, O., & Meremikwu, M. M. (2016). Interventions for improving coverage of childhood immunization in low- and middle-income countries. *Cochrane Database of Systematic Reviews*, (7). https://doi.org/10.1002/14651858.CD008145.pub3
- Quinn, S. (2021). The use of motivational interviewing to overcome COVID-19 vaccine hesitancy in primary care settings. *Journal of Advanced Nursing*, 77(12), 4827–4835. https://doi.org/10.1111/jan.15092
- Reuters (2024, October 17). *Nigeria rolls out new Oxford R21 malaria vaccine*.https://www.reuters.com/business/healthcare
- The Guardian (2024, October 15). *The essential ingredient of any vaccination programme? Women.* https://www.theguardian.com/global-development/2024/oct/15/vaccination-programme-women-world-health-summit-leaders-gender-related-barriers-immunisation-diseases-polio

### **CHAPTER 4**

# A GLOBAL HEALTH MILESTONE: THE HISTORY, EVOLUTION, AND FUTURE OF POLIO VACCINATION

<sup>1</sup>Sumaira KANWAL <sup>2</sup>Shazia PERVEEN

<sup>&</sup>lt;sup>1</sup>COMSATS University, Department of Biosciences, Sahiwal Campus, Islamabad, <sup>2</sup>The Women University, Department of Zoology, Matital Campus, Multan, Pakistan

#### INTRODUCTION

Polio, or poliomyelitis, is a viral disease that primarily affects children below the age of 5, Inducing paralysis and potentially death in the most severe cases. Polio outbreaks have Aroused widespread Panic throughout history. with the disease once being a leading cause of handicap globally. The yesteryear of polio epidemics and their connected The damage stretches across centuries., but the utmost devastation was experienced in the 20th century Before the vaccine was developed.

The Preliminary history history and Knowledge of poliomyelitis (polio) is marked by a bit-by-bit increase of knowledge regarding the disease, its inception, and its transmittance. The disease has probably persisted for For countless centuries, though it wasn't recognized or understood in the modern sense until relatively recently. Let's take a In-depth analysis at how polio was viewed and interpreted over the years.

#### 1. ANCIENT EVIDENCE

Diseases resembling polio have been referenced throughout history, but the specific recognition of polio as we understand it is recognized today was only established in the 20th century.

Ancient Egypt (circa 1400 BCE): Some of the earliest known references to polio-like symptoms appear in ancient Egyptian artifacts. The most famous example is the depiction of a limping figure in a bas-relief from the Middle Kingdom of Egypt (around 1400 BCE), which shows a person with a paralyzed leg, potentially indicative of polio. This suggests that polio, or a similar disease, may have existed in ancient civilizations.

*Greek and Roman References:* Greek and Roman physicians such as Hippocrates (460–370 BCE) and Galen (129–200 CE) described cases of paralysis that may have been related to polio. Galen, for example, wrote about a condition that caused partial paralysis, which some researchers suggest might have been polio. However, these early references lacked the scientific understanding of the disease's causes or transmission.

### 1.1 Early Modern Period (17th–19th Century)

It wasn't until the 17th and 18th centuries that the disease began to appear more frequently in historical records as a distinct medical problem.

19th Century Surge in Cases: As industrialization and urbanization progressed in the late 19th century, polio began to emerge as a more recognizable and frequent problem. Urban centers saw a rise in outbreaks of polio, particularly in children. These outbreaks caused high mortality and disability rates, especially in the summers. However, at this point, polio was still not understood in terms of its etiology or method of transmission.

**Disease Progression and Symptoms:** Acute flucid paralysis was identified primarily in legs that results in lifelong handicapness or even death in some cases. The disease would often start with fever, fatigue, headache, vomiting, and stiffness in the neck, followed by paralysis. Its effects were most devastating when the virus attacked the respiratory muscles, which leads to paralysis of the diaphragm and leading to death unless the person was supported by mechanical ventilation, such as the iron lung.

### 1.2 Late 19th and Early 20th Century: Identifying the Disease

Early 20th Century (1900-1920s): Polio was still not well understood, but in the beginning of the 20th century, there were remarkable progress in medical observation and the development of microbiology. It was the period when clinicians were in a position to understand the cause of paralysis is a viral infection but were still unable to understand the specific nature of the virus.

First Major Outbreaks: The first major polio outbreak was registered in New York City in 1916, which brought polio into people' consciousness. This epidemic, parallel with other outbreaksalong with similar ones across the U.S. and Europe, resulted in thousands of infected people and deaths. Intensity of fear was at peak among the people Public panic over the disease escalated, especially after high-profile cases of polio paralysis, such as that of President Franklin D. Roosevelt (FDR), who also caught infection contracted polio in 1921, leading to the handicap of his legs.[1, 2]

# 1.3 Scientific Advancements in Understanding Polio (Early 20th Century)

The Search for the Causative Agent: All over the early 20th century, scientists were progressively convergent on finding the root cause of polio. In 1908, Karl Landsteiner and Erwin Popper, two Austrian scientists, revealed that polio was originated by a virus. They were the pioneer to exhibit that the disease could be evoked in monkeys by administering them with spinal cord tissue from contaminated humans. This turning point finding was central in recognizing that polio was a viral infection, however the actual behaviour and its infection pathway was still not so clear that time[3].

Transmission and Controversies: In the beginning of the 20<sup>th</sup> century there was various concept regarding regarding the transmission of polio. Some scientists thought that it could be spread by some bacterial infections or toxins. However believed that it could be transferred by means of water routes as various outbreaks was in co incidence of watery areas and poor sanitation regions It wasn't until the 1940s and 1950s that scientists confirmed that polio was spread through fecal-oral transmission—meaning that the virus was primarily spread by consuming contaminated food or water.

#### 2. ADVANCES IN THE MID-20TH CENTURY

### 2.1 Polio Virus Identification and Understanding

Understanding the Virus: It was only in 1908, when Karl Landsteiner and Erwin Popper Determined the Poliovirus as the inception of polio, that a leading discovery happened. They Demonstrated that the disease could be transmissible infecting monkeys with human spinal cord tissue, Thus confirming that polio was caused by a virus, not bacteria. or environmental factors.toxin.By the 1930s and 1940s, research on the Poliovirus advanced significantly, aided by the development of more sophisticated lab techniques and the use of animal models. Scientists were able to isolate and identify the three distinct strains of the poliovirus: Type 1, Type 2, and Type 3.

The Development of the Vaccine: in the 1950s: In the 1950s, the development of the Inactivated Polio Vaccine (IPV) by Jonas Salk and the Oral Polio Vaccine (OPV) by Albert Sabin converted the understanding of polio from a deadly epidemic to a Avoidable disease. These vaccines were essential

in minimizing the disease burden and preventing further epidemics. The introduction of these vaccines marked the end of the uncontrolled polio outbreak period

### 2.2 Development of the Polio Vaccine: A Detailed History

The development of polio vaccine is on of the most remarkable achievement in medical science and public health. As the disease is really viral infectious disease has been a source of globally fear and damages in terms of paralysis and deaths in whole one century, especially in children, made it one of the most dreaded diseases globally before the introduction of effective vaccines.

### 2.2.1 The Path to Vaccine Development

As the virus's behaviour became understood, more vigorous efforts were convergent to develop a vaccine. The early efforts centered on finding ways to either Attenuate or inactivate the poliovirus so it could excite the resistant system without causing disease. This journey began in earnest in the 1930s, following two important scientific developments: the discovery of the poliovirus and the development of cell culture techniques that allowed viruses to be grown in laboratories.

### 2.2.2 Jonas Salk and the Inactivated Polio Vaccine (IPV)

By the 1940s, researchers were actively engaged on developing vaccines. One of the most important figures in this endeavor was Jonas Salk, an American virologist.

*Salk's Approach:* Salk's approach involved using an inactivated (killed) virus **to** develop immunity. He Suggested that if the virus could be killed but still keeps the quality to excite an immune outcome, it would provide security against the disease. By inactivating the virus with formaldehyde, Salk's team aimed to create a harmless and efficacious vaccine that could excite antibody production without causing the disease itself.

**Development of the IPV**: In 1952, Salk and his colleagues had successfully developed the Inactivated Polio Vaccine (IPV), which consisted of a mixture of inactivated poliovirus strains for types 1, 2, and 3. The vaccine

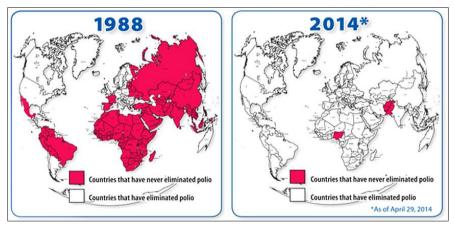
was administered through an intramuscular injection, making it the first injectable polio vaccine.

Human Trials and Success: The vaccine underwent extensive testing on animals and humans before large-scale trials. In 1954, Salk began the first large-scale field trial, which involved 1.8 million children in the United States. The results were astonishing—Salk's vaccine was found to be safe, and it reduced the incidence of polio by more than 90% in vaccinated individuals. By 1955, the U.S. Food and Drug Administration (FDA) approved IPV for public use, marking the beginning of mass vaccination campaigns[4].

*Impact:* Following its approval, the IPV became a cornerstone of public health campaigns. Within a few years, polio incidence in the United States dropped unexceptionally. Salk's vaccine was credited with saving millions of lives and preventing paralysis, and it became a key tool in the global fight against polio.

#### 2.2.3 Albert Sabin and the Oral Polio Vaccine (OPV)

While the IPV was a breakthrough, there were still limitations, especially in terms of global distribution and ease of administration. Albert Sabin, a Polish American virologist, addressed these limitations by developing the Oral Polio Vaccine (OPV).


**Sabin's Approach**: Sabin sought to develop a live, attenuated (weakened) version of the virus that could be taken orally, making it easier to distribute to large populations, especially in developing countries. He believed that a live vaccine could also boost immunity in the intestinal tract, which was the primary site of infection for polio[5].

**Development of OPV**: Sabin's live-attenuated vaccine used weakened versions of the three poliovirus strains that would replicate in the intestines but would not cause disease. The key advantage of the oral vaccine was its ease of administration—it could be given as drops on a sugar cube or directly into the mouth, making it much easier to distribute in mass immunization campaigns.

**Testing and Approval**: Sabin's vaccine was tested in the early 1960s, and after showing excellent safety and immunity-inducing properties, the OPV was approved for use in the United States in 1961. Unlike the IPV, OPV did not

require injections, which made it more practical for mass vaccination programs, especially in remote and rural areas.

Global Campaigns and Impact: OPV became the vaccine of choice in large-scale global vaccination campaigns, particularly in low-income regions where IPV's need for injections and refrigerated storage posed logistical challenges Fig.1. The success of OPV in global immunization efforts led to dramatic declines in polio incidence worldwide. By the late 20th century, polio had been eliminated from many regions, including Latin America and much of Asia and Africa. The Global Polio Eradication Initiative (GPEI), launched in 1988, relied heavily on the use of OPV to eradicate the disease, leading to a dramatic reduction in global cases.



**Figure 1:** comparison of world before and afterGPEI campaign success from 1988-2014

The Global Polio Eradication Initiative (GPEI) has made remarkable progress over the past few decades, drastically reducing the number of polio cases and bringing the world closer to eradicating the disease. However, several challenges remain in the final stages of the eradication effort, and these challenges complicate the path toward achieving a polio-free world. Below are the current challenges facing the GPEI:Afghanistan and Pakistan are the last two countries where polio remains endemic, and both have faced significant security challenges that make vaccination efforts difficult. In parts of these

countries, vaccination teams are often attacked or victimized by armed groups, which can pause or crippled immunization campaigns[6-11].

Current Challenges in polio Eradication and continuous immunization in endemic Countries.

#### 3. CULTURAL AND RELIGIOUS BELIEFS

#### 3.1 Misinformation and Rumors

There has been general information about the polio vaccine in both countries. Rumors, such as the belief that the vaccine causes infertility or is a Western plot, have led to resistance from some communities[12, 13].

Cultural Resistance to Women Vaccinators: In some regions, cultural standards curb the role of females in national life, which includes delivery as health workers. This limits the effectuality of vaccination movement, as female vaccinators are often the only ones who can reach female children in certain communities. Religious Misinformation: Religious leaders in some areas have expressed opposition to the polio vaccine, either due to misinterpretations of religious texts or external political pressures, further hindering vaccination efforts. One of the most significant barriers to polio eradication is conflict and political instability in certain regions. War-torn areas present unique obstacles to immunization campaigns due to the breakdown of infrastructure, difficulties in reaching remote areas, and the safety risks for health workers.

## 3.2 Geographic and Logistical Barriers

**Remote Areas:** Both countries have vast mountainous and rural areas, making it difficult for vaccination teams to access every household. These remote areas may be isolated for long periods due to harsh terrain, seasonal weather, or insecurity.

**Displacement:** Conflict in both Afghanistan and Pakistan has caused large-scale displacement of populations, complicating vaccination efforts. Displaced families living in camps or moving between regions may miss routine vaccination campaigns.

#### 3.3 Weak Health Infrastructure

Limited Health Infrastructure: In many areas, especially rural ones, there is limited access to healthcare services. Health systems can be underfunded or lack the necessary resources to carry out large-scale immunization campaigns.

**Limited Surveillance and Monitoring:** Effective surveillance and monitoring are important to follow the spread of the virus and identify vaccination efforts. In terrorist zones, this is often paused, which leads to gaps in coverage and late response times.

### 3.4 Political In consistancy and management Issues

*Lack of Consistent Governance*: In both Afghanistan and Pakistan, there have been times of political instability, particularly in regions where the central government has little control. This affects coordination, funding, and consistent implementation of polio eradication programs.

Coordination Challenges: Coordination between government bodies, international agencies (like WHO and UNICEF), and NGOs is critical for successful eradication. Political disagreements and governance challenges sometimes make this coordination difficult.

## 3.5 Vaccination Fatigue

Repeated Campaigns: The prolonged nature of the polio eradication effort means that people in some areas are becoming fatigued by repeated vaccination campaigns. The constant need for booster doses and the long duration of campaigns can lead to complacency or resistance from communities.

Vaccine Access and Supply Chain Issues: Interruptions in vaccine supplies due to political or security issues can delay campaigns or result in gaps in vaccination coverage.

#### 3.6 Cross-Border Transmission

Cross-Border Motility: Afghanistan and Pakistan share a long border, and polio cases can easily spread between the two countries due to the

movement of people. This has made it difficult to completely isolate and eliminate polio in either country.

**Polio Outbreaks:** Even when one country makes significant progress in polio elimination, outbreaks in neighboring areas (such as in Pakistan) can reintroduce the virus into previously polio-free zones.

#### 3.7 Economic and Resource Constraints

*Finance Inadequacy:* Polio eradication programs require substantial financial resources, and although international donors have been critical, there can be fluctuations in funding levels, which can delay campaigns or reduce their scale.

Competing Priorities: In regions with limited resources, health priorities can shift toward more immediate threats, such as malnutrition or maternal and child health. Polio eradication efforts may not always receive the focus or resources they need to be fully successful.

### 3.8 Conflict Zones and Insecurity

Areas affected by ongoing conflicts (such as parts of Syria, Somalia, and Nigeria) complicate vaccination efforts further. These regions lack sufficient access to healthcare, and many families are displaced, making it difficult to track and immunize all children.

## 4. VACCINE-DERIVED POLIOVIRUS (VDPV)

While the oral polio vaccine (OPV) has been a crucial tool in the fight against polio, it carries a small risk of causing vaccine-derived poliovirus (VDPV) in rare instances. VDPV occurs when the attenuated poliovirus in OPV mutates and becomes capable of causing paralytic polio in unvaccinated individuals. VDPV outbreaks can occur in areas with low immunization coverage, where the weakened virus used in OPV can spread and mutate.

The WHO and other health organizations have worked to mitigate the risks associated with VDPV by phasing out the use of OPV in favor of the inactivated polio vaccine (IPV), which carries no risk of VDPV. However, this transition presents logistical challenges, especially in low-resource settings.

Despite these efforts, there have been occasional outbreaks of VDPV in areas where immunization coverage is incomplete, or oral vaccines continue to be used

### 4.1 Logistical and Operational Challenges

Mass immunization campaigns require an immense logistical effort. Ensuring that vaccines are distributed effectively to the most remote areas and ensuring cold chain management (keeping vaccines at the proper temperature) is a daunting task, particularly in low-resource or high-risk settings.

Cold chain logistics: OPV and IPV vaccines require proper refrigeration to maintain their effectiveness. In areas with limited access to reliable electricity or proper storage facilities, ensuring the cold chain is maintained can be challenging.

Transporting vaccines: Getting vaccines to hard-to-reach, geographically isolated areas—such as mountainous regions, desert areas, or areas with poor road infrastructure—is a logistical challenge. In some conflict zones, roads may be impassable or unsafe, further complicating the effort.

Funding constraints: While the GPEI has received substantial financial support from governments and organizations, ensuring long-term funding for vaccination programs, surveillance, and outbreak response remains a challenge. As polio cases continue to decline, there is a risk that funding could be reduced or redirected toward other health priorities, which could jeopardize eradication efforts.

## 4.2 Surveillance and Monitoring

Polio elimination Necessitates impressive surveillance to trail cases, detect outbreaks, and supervise the achievement of vaccination drive. However, there are still obstacles to keeping surveillance systems robust.

In few nations, especially in battle zones or regions with poor Facilities, Inadequate infrastructure surveillance systems may be weak or underdeveloped.

To detect the last remaining pockets of polio, environmental surveillance (testing water and sewage systems for the poliovirus) is used to identify

potential outbreaks. However, this is difficult in areas with limited access to sanitation and poor infrastructure.

The GPEI must continue to strengthen these systems and ensure accurate, timely reporting to ensure that polio transmission is interrupted everywhere.

### 4.3 Transitioning from OPV to IPV

The switch from OPV to IPV presents another significant challenge in the final stages of eradication.

*OPV Phase-out:* OPV, which contains weakened live poliovirus, has been a key tool in the global effort to eradicate polio. However, as mentioned earlier, OPV carries a small risk of vaccine-derived poliovirus (VDPV). As polio cases decrease, and the world moves closer to eradication, the GPEI has worked to phase out OPV in favor of IPV, which is inactivated and carries no risk of VDPV.

Cost and Availability: IPV requires injectable administration and has higher production costs than OPV. For many low-income countries, the cost and logistical constraints of IPV make it a challenge to switch from OPV, especially in areas with already weakened healthcare infrastructure.

*Global Coordination:* The complete withdrawal of OPV and the full implementation of IPV require global coordination to ensure that no country is left behind in the effort to fully immunize every child. Transitioning smoothly to IPV without creating gaps in coverage is crucial.

### 4.4 Inconsistent Immunization Coverage

Achieving high immunization coverage in every country and community is critical to polio eradication, but incomplete coverage remains a significant challenge.

*Missed Children:* Even in countries with relatively strong health systems, some children remain missed during vaccination campaigns due to factors like mobility, living in remote areas, parental refusal, or lack of access to healthcare facilities.

Vaccination Gaps: In some regions, there are significant gaps in vaccination coverage due to health system weaknesses, lack of awareness, or

logistical difficulties in reaching every child, especially in rural or hard-to-reach areas.

In countries with persistent low vaccination rates, populations at high risk of polio transmission (such as refugee camps or marginalized groups) can hinder eradication efforts.

### 4.5 Vaccine Hesitancy

Vaccine hesitancy—the reluctance or refusal to vaccinate despite availability—has become an emerging issue in some parts of the world. Although vaccine hesitancy is not a widespread problem globally for polio, it has created challenges in some regions, especially in areas where there are cultural, religious, or political objections to vaccination.

In Pakistan and parts of Afghanistan, misinformation, conspiracy theories, and religious opposition have fueled vaccine hesitancy, with some local leaders and communities refusing polio vaccination.

In some cases, polio vaccination campaigns have been falsely linked to foreign agendas, western interference, or population control, creating distrust and resistance.

This resistance can be exacerbated by social media, where misinformation and anti-vaccine rhetoric spread rapidly, further eroding confidence in vaccines.

## 4.6 Confict Zones And Insecurity

One of the most significant barriers to polio eradication is conflict and political instability in certain regions. War-torn areas present unique obstacles to immunization campaigns due to the breakdown of infrastructure, difficulties in reaching remote areas, and the safety risks for health workers. The number of polio cases reported in last five years in endemic countries I.e. Pakistan and Afghanistan (Table.1).

**Table 1:** Comparison Of Number Of Polio Cases Reported In Last Five Years In Pakistan And Afghanistan.

| Sr# | Year | Pakistan(<br>cases) | Afghanistan (cases) |
|-----|------|---------------------|---------------------|
| 1   | 2021 | 1                   | 1                   |
| 2   | 2022 | 22                  | 6                   |
| 3   | 2023 | 6                   | 5                   |
| 4   | 2024 | 74                  | 2                   |
| 5   | 2025 | 3                   | 13                  |

Afghanistan and Pakistan are the last two countries where polio remains endemic, and both have faced significant security challenges that make vaccination efforts difficult. In parts of these countries, vaccination teams are often attacked or targeted by armed groups, which can delay or halt immunization campaigns.

Areas affected by ongoing conflicts (such as parts of Syria, Somalia, and Nigeria) complicate vaccination efforts further. These regions lack sufficient access to healthcare, and many families are displaced, making it difficult to track and immunize all children.

### 5.VACCINE-DERIVED POLIOVIRUS (VDPV)

While the oral polio vaccine (OPV) has been a crucial tool in the fight against polio, it carries a small risk of causing vaccine-derived poliovirus (VDPV) in rare instances. VDPV occurs when the attenuated poliovirus in OPV mutates and becomes capable of causing paralytic polio in unvaccinated individuals.

## **5.1 Inconsistent Immunization Coverage**

Achieving high immunization coverage in every country and community is critical to polio eradication, but incomplete coverage remains a significant challenge.

*Missed children*: Even in countries with relatively strong health systems, some children remain missed during vaccination campaigns due to factors like mobility, living in remote areas, parental refusal, or lack of access to healthcare facilities.

*Vaccination gaps:* In some regions, there are significant gaps in vaccination coverage due to health system weaknesses, lack of awareness, or logistical difficulties in reaching every child, especially in rural or hard-to-reach areas.

In countries with persistent low vaccination rates, populations at high risk of polio transmission (such as refugee camps or marginalized groups) can hinder eradication efforts

### **5.2 Vaccine Hesitancy**

Vaccine reluctance the unwillingness or refusal to vaccinate despite availability has become an emerging issue in some parts of the world. Although vaccine hesitancy is not a widespread problem globally for polio, it has created challenges in some regions, especially in areas where there are cultural, religious, or political objections to vaccination.

In Pakistan and parts of Afghanistan, misinformation, conspiracy theories, and religious opposition have fueled vaccine hesitancy, with some local leaders and communities refusing polio vaccination.

In some cases, polio vaccination campaigns have been falsely linked to foreign agendas, western interference, or population control, creating distrust and resistance.

This resistance can be exacerbated by social media, where misinformation and anti-vaccine rhetoric spread rapidly, further eroding confidence in vaccines.

Efforts to combat vaccine hesitancy are underway, including community engagement, addressing misconceptions, and working with local leaders to build trust. However, overcoming entrenched beliefs can be a slow and difficult process.

### 5.3 Logistical and Operational Challenges

Collective immunization campaigns necessitate an huge provision effort. Guarantee that vaccines are dispensed effectively to the most distant areas and guarantee cold chain management (keeping vaccines at the proper temperature) is a intimidating task, particularly in low-resource or high-risk settings.

- Cold chain logistics: OPV and IPV vaccines require proper refrigeration
  to maintain their effectiveness. In areas with limited access to reliable
  electricity or proper storage facilities, ensuring the cold chain is
  maintained can be challenging.
- Transporting vaccines: Getting vaccines to hard-to-reach, geographically isolated areas—such as mountainous regions, desert areas, or areas with poor road infrastructure—is a logistical challenge. In some conflict zones, roads may be impassable or unsafe, further complicating the effort.
- Funding constraints: While the GPEI has received substantial financial support from governments and organizations, ensuring long-term funding for vaccination programs, surveillance, and outbreak response remains a challenge. As polio cases continue to decline, there is a risk that funding could be reduced or redirected toward other health priorities, which could jeopardize eradication efforts.

### 5.4 Supervision and Monitoring

Polio eradication requires effective surveillance to track cases, detect outbreaks, and monitor the success of vaccination campaigns. But, challenges remain in maintaining robust surveillance systems. In some countries, particularly in conflict zones or regions with poor infrastructure, surveillance systems may be weak or underdeveloped. To detect the last remaining pockets of polio, environmental surveillance (testing water and sewage systems for the poliovirus) is used to identify potential outbreaks. However, this is difficult in areas with limited access to sanitation and poor infrastructure. The GPEI must continue to strengthen these systems and ensure accurate, timely reporting to ensure that polio transmission is interrupted everywhere.

#### 5.5 Transformation from OPV to IPV

The switch from OPV to IPV presents another significant challenge in the final stages of eradication.

- OPV discontinuation: OPV, which contains weakened live poliovirus, has been a key tool in the global effort to eradicate polio. However, as mentioned earlier, OPV carries a small risk of vaccine-derived poliovirus (VDPV). As polio cases decrease, and the world moves closer to eradication, the GPEI has worked to phase out OPV in favor of IPV, which is inactivated and carries no risk of VDPV.
- Price and accessibility: IPV requires injectable administration and has
  higher production costs than OPV. For many low-income countries, the
  cost and logistical constraints of IPV make it a challenge to switch from
  OPV, especially in areas with already weakened healthcare
  infrastructure.
- Worldwide coordination: The complete withdrawal of OPV and the full
  implementation of IPV require global coordination to ensure that no
  country is left behind in the effort to fully immunize every child.
  Transitioning smoothly to IPV without creating gaps in coverage is
  crucial.

#### **CONCLUSION**

Achieving the ultimate goal of a polio-free world requires continued global collaboration, political will, and sustained investment. While the last mile may be the hardest, the GPEI's efforts over the past three decades have shown that eradication is achievable, and the end of polio is within reach. The Global Polio Eradication Initiative (GPEI) has made remarkable progress over the past few decades, drastically reducing the number of polio cases and bringing the world closer to eradicating the disease. However, several challenges remain in the final stages of the eradication effort, and these challenges complicate the path toward achieving a polio-free world. Below are the current challenges facing the GPEI: The GPEI is confronting numerous fundamental situations as it works to eliminate polio. These include ongoing issues with conflict, vaccine-derived poliovirus, vaccine hesitancy, and

logistical difficulties in immunizing every child. Despite these obstacles, substantial progress continues to be made. The endgame strategy for polio wipeout involves a accumulation of empowering health systems, raising vaccination coverage, improving surveillance, and tackling with vaccine hesitancy. Accomplishing the objective of a polio-free world Necessitates Uninterrupted global alliance political commitment, and sustained funding. Even though the last part is often the most difficult. the GPEI's endeavours over the past three decades have shown that wipeout is Attainable, and the end of polio is within scope. As we close target line in the global attempt to eliminate polio, We must not forget the significant human cost the disease once caused, and the exceptional advancement that has been made. While there are still Difficulties, including fight, vaccine hesitancy, and the final push in the remaining endemic regions, the ultimate success of the Global Polio Eradication Initiative is within range. Eradicating polio would not just put an end to a disabling disease, but also signify a place achievement in human history.—proof that global cooperation, loyalty, and dedication can conquer even the most daunting health challenges. Achieving a polio-free world will be a victory for humanity, demonstrating that with the right root system, invention, and commonality, diseases that once crippled people can be eliminated, making way for a healthier, safer world for approaching generations. The polio vaccine has been a foundation of the effort to eliminate one of humanity's most fearfulness diseases. From the pioneering work of Jonas Salk and Albert Sabin to the global vaccination campaigns of today, the history of polio vaccination is a testament to the power of science, collaboration, and dedication to public health. The future of polio vaccination is bright, as the world nears its goal of a polio-free world. While challenges remain, particularly in the last endemic regions, the commitment to eliminate polio and the innovative strategies being employed suggest that it is within reach. Continuing investment in vaccination, surveillance, and global competition will guarantee that polio is eventually consigned to history, and the legacy of vaccination will serve as a powerful reminder of what can be realized when the world comes jointly to fight a communal opposition.

### **REFERENCES**

- [1] X. Hang et al., "Temporal and Spatial Effects of Extreme Drought Events on Human Epidemics over Ancient China in 1784-1787 CE," (in eng), Environ Health, vol. 24, no. 1, p. 8, Mar 11 2025.
- [2] P. C. Zúñiga, "[Urban prophylaxis against the cholera outbreak in Arica, Chile, 1886-1888]," (in spa), Hist Cienc Saude Manguinhos, vol. 31, p. e2024065, 2024. Profilaxis urbana frente al brote de cólera en Arica, Chile, 1886-1888.
- [3] K. L. Matthes et al., "Spatial pattern of all cause excess mortality in Swiss districts during the pandemic years 1890, 1918 and 2020," (in eng), Spat Spatiotemporal Epidemiol, vol. 51, p. 100697, Nov 2024.
- [4] K. M. Thompson and R. J. Tebbens, "Retrospective cost-effectiveness analyses for polio vaccination in the United States," (in eng), Risk Anal, vol. 26, no. 6, pp. 1423-40, Dec 2006.
- [5] V. M. Vashishtha and S. Kamath, "A Brief History of Vaccines Against Polio," (in eng), Indian Pediatr, vol. 53 Suppl 1, pp. S20-s27, Aug 7 2016.
- [6] S. F. Hussain, P. Boyle, P. Patel, and R. Sullivan, "Eradicating polio in Pakistan: an analysis of the challenges and solutions to this security and health issue," (in eng), Global Health, vol. 12, no. 1, p. 63, Oct 12 2016.
- [7] S. Rahim, Z. Ahmad, and J. Abdul-Ghafar, "The polio vaccination story of Pakistan," (in eng), Vaccine, vol. 40, no. 3, pp. 397-402, Jan 24 2022.
- [8] R. J. Duintjer Tebbens and K. M. Thompson, "Evaluation of Proactive and Reactive Strategies for Polio Eradication Activities in Pakistan and Afghanistan," (in eng), Risk Anal, vol. 39, no. 2, pp. 389-401, Feb 2019.
- [9] S. L. Cochi and O. Kew, "Polio today: are we on the verge of global eradication?," (in eng), Jama, vol. 300, no. 7, pp. 839-41, Aug 20 2008.
- [10] R. Steinglass, "Global eradication of polio," (in eng), Jama, vol. 301, no. 2, pp. 161-2; author reply 162, Jan 14 2009.
- [11] C. J. Rutty, L. Barreto, R. Van Exan, and S. Gilchrist, "Conquering the crippler: Canada and the eradication of polio," (in eng fre), Can J Public Health, vol. 96, no. 2, pp. I2-24, Mar-Apr 2005.
- [12] C. J. Mbani, M. P. Nekoua, D. Moukassa, and D. Hober, "The Fight against Poliovirus Is Not Over," (in eng), Microorganisms, vol. 11, no. 5, May 17 2023.

[13] O. M. Diop, C. C. Burns, R. W. Sutter, S. G. Wassilak, and O. M. Kew, "Update on Vaccine-Derived Polioviruses - Worldwide, January 2014-March 2015," (in eng), MMWR Morb Mortal Wkly Rep, vol. 64, no. 23, pp. 640-6, Jun 19 2015.

